1
|
Li B, Hauser SC, Gerling GJ. Faster Indentation Influences Skin Deformation To Reduce Tactile Discriminability of Compliant Objects. IEEE TRANSACTIONS ON HAPTICS 2023; 16:215-227. [PMID: 37028048 PMCID: PMC10357367 DOI: 10.1109/toh.2023.3253256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
To discriminate the compliance of soft objects, we rely upon spatiotemporal cues in the mechanical deformation of the skin. However, we have few direct observations of skin deformation over time, in particular how its response differs with indentation velocities and depths, and thereby helps inform our perceptual judgments. To help fill this gap, we develop a 3D stereo imaging method to observe contact of the skin's surface with transparent, compliant stimuli. Experiments with human-subjects, in passive touch, are conducted with stimuli varying in compliance, indentation depth, velocity, and time duration. The results indicate that contact durations greater than 0.4 s are perceptually discriminable. Moreover, compliant pairs delivered at higher velocities are more difficult to discriminate because they induce smaller differences in deformation. In a detailed quantification of the skin's surface deformation, we find that several, independent cues aid perception. In particular, the rate of change of gross contact area best correlates with discriminability, across indentation velocities and compliances. However, cues associated with skin surface curvature and bulk force are also predictive, for stimuli more and less compliant than skin, respectively. These findings and detailed measurements seek to inform the design of haptic interfaces.
Collapse
|
2
|
Rezaei M, Nagi SS, Xu C, McIntyre S, Olausson H, Gerling GJ. Thin Films on the Skin, but not Frictional Agents, Attenuate the Percept of Pleasantness to Brushed Stimuli. ARXIV 2023:arXiv:2303.00049v1. [PMID: 36911281 PMCID: PMC10002820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Brushed stimuli are perceived as pleasant when stroked lightly on the skin surface of a touch receiver at certain velocities. While the relationship between brush velocity and pleasantness has been widely replicated, we do not understand how resultant skin movements - e.g., lateral stretch, stick-slip, normal indentation - drive us to form such judgments. In a series of psychophysical experiments, this work modulates skin movements by varying stimulus stiffness and employing various treatments. The stimuli include brushes of three levels of stiffness and an ungloved human finger. The skin's friction is modulated via non-hazardous chemicals and washing protocols, and the skin's thickness and lateral movement are modulated by thin sheets of adhesive film. The stimuli are hand-brushed at controlled forces and velocities. Human participants report perceived pleasantness per trial using ratio scaling. The results indicate that a brush's stiffness influenced pleasantness more than any skin treatment. Surprisingly, varying the skin's friction did not affect pleasantness. However, the application of a thin elastic film modulated pleasantness. Such barriers, though elastic and only 40 microns thick, inhibit the skin's tangential movement and disperse normal force. The finding that thin films modulate affective interactions has implications for wearable sensors and actuation devices.
Collapse
Affiliation(s)
- Merat Rezaei
- School of Engineering and Applied Science, at the University of Virginia, USA
| | - Saad S Nagi
- Center for Social and Affective Neuroscience (CSAN), Linköping University, Sweden
| | - Chang Xu
- School of Engineering and Applied Science, at the University of Virginia, USA
| | - Sarah McIntyre
- Center for Social and Affective Neuroscience (CSAN), Linköping University, Sweden
| | - Håkan Olausson
- Center for Social and Affective Neuroscience (CSAN), Linköping University, Sweden
| | - Gregory J Gerling
- School of Engineering and Applied Science, at the University of Virginia, USA
| |
Collapse
|
3
|
Potential Haptic Perceptual Dimensionality of Rendered Compliance. Biomimetics (Basel) 2023; 8:biomimetics8010064. [PMID: 36810395 PMCID: PMC9944077 DOI: 10.3390/biomimetics8010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Studies have proven that humans perceive haptic textures through different perceptual dimensions, such as rough/smooth and soft/hard, which provide useful guidance in the design of haptic devices. However, few of these have focused on the perception of compliance, which is another important perceptual property in haptic interfaces. This research was conducted to investigate the potential basic perceptual dimensions of the rendered compliance and quantify the effects of the simulation parameters. Two perceptual experiments were designed based on 27 stimuli samples generated by a 3-DOF haptic feedback device. Subjects were asked to describe these stimuli using adjectives, classify the samples, and rate them according to corresponding adjective labels. Multi-dimensional scaling (MDS) methods were then used to project adjective ratings into 2D and 3D perception spaces. According to the results, hardness and viscosity are considered two basic perceptual dimensions of the rendered compliance, while crispness can be regarded as a subsidiary perceptual dimension. Then, the relations between simulation parameters and perceptual feelings were analyzed by the regression analysis. This paper may provide a better understanding of the compliance perception mechanism and useful guidance for the improvement of rendering algorithms and devices for haptic human-computer interaction.
Collapse
|
4
|
Xu S, Xu C, McIntyre S, Olausson H, Gerling GJ. 3D Visual Tracking to Quantify Physical Contact Interactions in Human-to-Human Touch. Front Physiol 2022; 13:841938. [PMID: 35755449 PMCID: PMC9219726 DOI: 10.3389/fphys.2022.841938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Across a plethora of social situations, we touch others in natural and intuitive ways to share thoughts and emotions, such as tapping to get one's attention or caressing to soothe one's anxiety. A deeper understanding of these human-to-human interactions will require, in part, the precise measurement of skin-to-skin physical contact. Among prior efforts, each measurement approach exhibits certain constraints, e.g., motion trackers do not capture the precise shape of skin surfaces, while pressure sensors impede skin-to-skin contact. In contrast, this work develops an interference-free 3D visual tracking system using a depth camera to measure the contact attributes between the bare hand of a toucher and the forearm of a receiver. The toucher's hand is tracked as a posed and positioned mesh by fitting a hand model to detected 3D hand joints, whereas a receiver's forearm is extracted as a 3D surface updated upon repeated skin contact. Based on a contact model involving point clouds, the spatiotemporal changes of hand-to-forearm contact are decomposed as six, high-resolution, time-series contact attributes, i.e., contact area, indentation depth, absolute velocity, and three orthogonal velocity components, together with contact duration. To examine the system's capabilities and limitations, two types of experiments were performed. First, to evaluate its ability to discern human touches, one person delivered cued social messages, e.g., happiness, anger, sympathy, to another person using their preferred gestures. The results indicated that messages and gestures, as well as the identities of the touchers, were readily discerned from their contact attributes. Second, the system's spatiotemporal accuracy was validated against measurements from independent devices, including an electromagnetic motion tracker, sensorized pressure mat, and laser displacement sensor. While validated here in the context of social communication, this system is extendable to human touch interactions such as maternal care of infants and massage therapy.
Collapse
Affiliation(s)
- Shan Xu
- School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, United States
| | - Chang Xu
- School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, United States
| | - Sarah McIntyre
- Center for Social and Affective Neuroscience (CSAN), Linköping University, Linköping, Sweden
| | - Håkan Olausson
- Center for Social and Affective Neuroscience (CSAN), Linköping University, Linköping, Sweden
| | - Gregory J. Gerling
- School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
5
|
Inoue K, Okamoto S, Akiyama Y, Yamada Y. Surfaces With Finger-Sized Concave Feel Softer. IEEE TRANSACTIONS ON HAPTICS 2022; 15:32-38. [PMID: 34962878 DOI: 10.1109/toh.2021.3138640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The judgment of elastic softness is determined not only by mechanical parameters related to hardness, such as the elastic modulus and stiffness, but also by macroscopic surface features. This study experimentally demonstrates that objects with a finger-sized concave with a depth of 1-3 mm feel softer than flat surfaces made of the same materials when they are pushed by a finger. In Experiment 1, participants judged the surfaces of a rigid material with thumb-sized concaves to be softer than the flat and convex surfaces. Experiment 2 used rubbers of various elastic moduli, and the softness of a concave object with a Young's modulus of 0.55 MPa was subjectively equal to that of a flat object with an average Young's modulus of 0.23 MPa. Furthermore, the softness of a convex object was subjectively equal to that of a 1.68 MPa flat object. The contact phenomena between a finger pad and concave or convex objects are different from those between a finger pad and flat objects, and they influence the softness judgment. Such phenomena include the relationship between the pressing force and contact area. These results provide insights into surface design and improve comprehension of the perceptual principles of softness.
Collapse
|
6
|
Cavdan M, Drewing K, Doerschner K. The look and feel of soft are similar across different softness dimensions. J Vis 2021; 21:20. [PMID: 34581768 PMCID: PMC8479577 DOI: 10.1167/jov.21.10.20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022] Open
Abstract
The softness of objects can be perceived through several senses. For instance, to judge the softness of a cat's fur, we do not only look at it, we often also run our fingers through its coat. Recently, we have shown that haptically perceived softness covaries with the compliance, viscosity, granularity, and furriness of materials (Dovencioglu, Üstün, Doerschner, & Drewing, 2020). However, it is unknown whether vision can provide similar information about the various aspects of perceived softness. Here, we investigated this question in an experiment with three conditions: in the haptic condition, blindfolded participants explored materials with their hands, in the static visual condition participants were presented with close-up photographs of the same materials, and in the dynamic visual condition participants watched videos of the hand-material interactions that were recorded in the haptic condition. After haptically or visually exploring the materials, participants rated them on various attributes. Our results show a high overall perceptual correspondence among the three experimental conditions. With a few exceptions, this correspondence tended to be strongest between haptic and dynamic visual conditions. These results are discussed with respect to information potentially available through the senses, or through prior experience, when judging the softness of materials.
Collapse
Affiliation(s)
- Müge Cavdan
- Justus Liebig University, Department of Psychology, Giessen, Germany
| | - Knut Drewing
- Justus Liebig University, Department of Psychology, Giessen, Germany
| | - Katja Doerschner
- Justus Liebig University, Department of Psychology, Giessen, Germany
- Bilkent University, National Magnetic Resonance Research Center, Ankara, Turkey
| |
Collapse
|
7
|
Rezaei M, Nagi SS, Xu C, McIntyre S, Olausson H, Gerling GJ. Thin Films on the Skin, but not Frictional Agents, Attenuate the Percept of Pleasantness to Brushed Stimuli. WORLD HAPTICS CONFERENCE. WORLD HAPTICS CONFERENCE 2021; 2021:49-54. [PMID: 35043106 PMCID: PMC8763324 DOI: 10.1109/whc49131.2021.9517259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Brushed stimuli are perceived as pleasant when stroked lightly on the skin surface of a touch receiver at certain velocities. While the relationship between brush velocity and pleasantness has been widely replicated, we do not understand how resultant skin movements - e.g., lateral stretch, stick-slip, normal indentation - drive us to form such judgments. In a series of psychophysical experiments, this work modulates skin movements by varying stimulus stiffness and employing various treatments. The stimuli include brushes of three levels of stiffness and an ungloved human finger. The skin's friction is modulated via non-hazardous chemicals and washing protocols, and the skin's thickness and lateral movement are modulated by thin sheets of adhesive film. The stimuli are hand-brushed at controlled forces and velocities. Human participants report perceived pleasantness per trial using ratio scaling. The results indicate that a brush's stiffness influenced pleasantness more than any skin treatment. Surprisingly, varying the skin's friction did not affect pleasantness. However, the application of a thin elastic film modulated pleasantness. Such barriers, though elastic and only 40 microns thick, inhibit the skin's tangential movement and disperse normal force. The finding that thin films modulate affective interactions has implications for wearable sensors and actuation devices.
Collapse
Affiliation(s)
- Merat Rezaei
- School of Engineering and Applied Science, at the University of Virginia, USA
| | - Saad S Nagi
- Center for Social and Affective Neuroscience (CSAN), Linköping University, Sweden
| | - Chang Xu
- School of Engineering and Applied Science, at the University of Virginia, USA
| | - Sarah McIntyre
- Center for Social and Affective Neuroscience (CSAN), Linköping University, Sweden
| | - Håkan Olausson
- Center for Social and Affective Neuroscience (CSAN), Linköping University, Sweden
| | - Gregory J Gerling
- School of Engineering and Applied Science, at the University of Virginia, USA
| |
Collapse
|
8
|
Xu C, Wang Y, Gerling GJ. Individual Performance in Compliance Discrimination is Constrained by Skin Mechanics but Improved under Active Control. WORLD HAPTICS CONFERENCE. WORLD HAPTICS CONFERENCE 2021; 2021:445-450. [PMID: 35043107 PMCID: PMC8763326 DOI: 10.1109/whc49131.2021.9517269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tactile acuity differs between individuals, likely a function of several interrelated factors. The extent of the impact of skin mechanics on individual differences is unclear. Herein, we investigate if differences in skin elasticity between individuals impact their ability to distinguish compliant spheres near limits of discriminability. After characterizing hyperelastic material properties of their skin in compression, the participants were asked to discriminate spheres varying in elasticity and curvature, which generate non-distinct cutaneous cues. Simultaneous biomechanical measurements were used to dissociate the relative contributions from skin mechanics and volitional movements in modulating individuals' tactile sensitivity. The results indicate that, in passive touch, individuals with softer skin exhibit larger gross contact areas and higher perceptual acuity. In contrast, in active touch, where exploratory movements are behaviorally controlled, individuals with harder skin evoke relatively larger gross contact areas, which improve and compensate for deficits in their acuity as observed in passive touch. Indeed, these participants exhibit active control of their fingertip movements that improves their acuity, amidst the inherent constraints of their less elastic finger pad skin.
Collapse
Affiliation(s)
- Chang Xu
- School of Engineering and Applied Science, University of Virginia, Charlottesville, VA 22904 USA
| | - Yuxiang Wang
- School of Engineering and Applied Science, University of Virginia, Charlottesville, VA 22904 USA
| | - Gregory J Gerling
- School of Engineering and Applied Science, University of Virginia, Charlottesville, VA 22904 USA
| |
Collapse
|
9
|
Xu C, Wang Y, Gerling GJ. An elasticity-curvature illusion decouples cutaneous and proprioceptive cues in active exploration of soft objects. PLoS Comput Biol 2021; 17:e1008848. [PMID: 33750948 PMCID: PMC8016306 DOI: 10.1371/journal.pcbi.1008848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/01/2021] [Accepted: 03/03/2021] [Indexed: 11/18/2022] Open
Abstract
Our sense of touch helps us encounter the richness of our natural world. Across a myriad of contexts and repetitions, we have learned to deploy certain exploratory movements in order to elicit perceptual cues that are salient and efficient. The task of identifying optimal exploration strategies and somatosensory cues that underlie our softness perception remains relevant and incomplete. Leveraging psychophysical evaluations combined with computational finite element modeling of skin contact mechanics, we investigate an illusion phenomenon in exploring softness; where small-compliant and large-stiff spheres are indiscriminable. By modulating contact interactions at the finger pad, we find this elasticity-curvature illusion is observable in passive touch, when the finger is constrained to be stationary and only cutaneous responses from mechanosensitive afferents are perceptible. However, these spheres become readily discriminable when explored volitionally with musculoskeletal proprioception available. We subsequently exploit this phenomenon to dissociate relative contributions from cutaneous and proprioceptive signals in encoding our percept of material softness. Our findings shed light on how we volitionally explore soft objects, i.e., by controlling surface contact force to optimally elicit and integrate proprioceptive inputs amidst indiscriminable cutaneous contact cues. Moreover, in passive touch, e.g., for touch-enabled displays grounded to the finger, we find those spheres are discriminable when rates of change in cutaneous contact are varied between the stimuli, to supplant proprioceptive feedback.
Collapse
Affiliation(s)
- Chang Xu
- School of Engineering and Applied Science, University of Virginia, Charlottesville, Virginia, United States of America
| | - Yuxiang Wang
- School of Engineering and Applied Science, University of Virginia, Charlottesville, Virginia, United States of America
| | - Gregory J. Gerling
- School of Engineering and Applied Science, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
10
|
Li B, Hauser S, Gerling GJ. Identifying 3-D spatiotemporal skin deformation cues evoked in interacting with compliant elastic surfaces. IEEE HAPTICS SYMPOSIUM : [PROCEEDINGS]. IEEE HAPTICS SYMPOSIUM 2020; 2020:35-40. [PMID: 34458383 PMCID: PMC8395532 DOI: 10.1109/haptics45997.2020.ras.hap20.22.5a9b38d8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We regularly touch soft, compliant fruits and tissues. To help us discriminate them, we rely upon cues embedded in spatial and temporal deformation of finger pad skin. However, we do not yet understand, in touching objects of various compliance, how such patterns evolve over time, and drive perception. Using a 3-D stereo imaging technique in passive touch, we develop metrics for quantifying skin deformation, across compliance, displacement, and time. The metrics map 2-D estimates of terminal contact area to 3-D metrics that represent spatial and temporal changes in penetration depth, surface curvature, and force. To do this, clouds of thousands of 3-D points are reduced in dimensionality into stacks of ellipses, to be more readily comparable between participants and trials. To evaluate the robustness of the derived 3-D metrics, human subjects experiments are performed with stimulus pairs varying in compliance and discriminability. The results indicate that metrics such as penetration depth and surface curvature can distinguish compliances earlier, at less displacement. Observed also are distinct modes of skin deformation, for contact with stiffer objects, versus softer objects that approach the skin's compliance. These observations of the skin's deformation may guide the design and control of haptic actuation.
Collapse
Affiliation(s)
- Bingxu Li
- School of Engineering and Applied Science, University of Virginia, Charlottesville, VA 22904 USA
| | - Steven Hauser
- School of Engineering and Applied Science, University of Virginia, Charlottesville, VA 22904 USA
| | - Gregory J Gerling
- School of Engineering and Applied Science, University of Virginia, Charlottesville, VA 22904 USA
| |
Collapse
|
11
|
Xu C, Gerling GJ. Time-dependent Cues Encode the Minimum Exploration Time in Discriminating Naturalistic Compliances. IEEE HAPTICS SYMPOSIUM : [PROCEEDINGS]. IEEE HAPTICS SYMPOSIUM 2020; 2020:22-27. [PMID: 34447856 PMCID: PMC8386199 DOI: 10.1109/haptics45997.2020.ras.hap20.7.ec43f6a7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our perception of compliance is informed by multi-dimensional tactile cues. Compared with stationary cues at terminal contact, time-dependent cues may afford optimal efficiency, speed, and fidelity. In this work, we investigate strategies by which temporal cues may encode compliances by modulating our exploration time. Two potential perceptual strategies are considered, inspired by memory representations within and between explorations. For either strategy, we introduce a unique computational approach. First, a curve similarity analysis, of accumulating touch force between sequentially explored compliances, generates a minimum time for discrimination. Second, a Kalman filtering approach derives a recognition time from progressive integration of stiffness estimates over time within a single exploration. Human-subjects experiments are conducted for both single finger touch and pinch grasp. The results indicate that for either strategy, by employing a more natural pinch grasp, time-dependent cues afford greater efficiency by reducing the exploration time, especially for harder objects. Moreover, compared to single finger touch, pinch grasp improves discrimination rates in judging plum ripeness. The time-dependent strategies as defined here appear promising, and may tie with the time-scales over which we make perceptual judgments.
Collapse
Affiliation(s)
- Chang Xu
- School of Engineering and Applied Science, University of Virginia, Charlottesville, VA 22904 USA
| | - Gregory J Gerling
- School of Engineering and Applied Science, University of Virginia, Charlottesville, VA 22904 USA
| |
Collapse
|