1
|
Safaei A, Brancart J, Wang Z, Yazdani S, Vanderborght B, Van Assche G, Terryn S. Fast Self-Healing at Room Temperature in Diels-Alder Elastomers. Polymers (Basel) 2023; 15:3527. [PMID: 37688153 PMCID: PMC10490179 DOI: 10.3390/polym15173527] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Despite being primarily categorized as non-autonomous self-healing polymers, we demonstrate the ability of Diels-Alder polymers to heal macroscopic damages at room temperature, resulting in complete restoration of their mechanical properties within a few hours. Moreover, we observe immediate partial recovery, occurring mere minutes after reuniting the fractured surfaces. This fast room-temperature healing is accomplished by employing an off-stoichiometric maleimide-to-furan ratio in the polymer network. Through an extensive investigation of seven Diels-Alder polymers, the influence of crosslink density on self-healing, thermal, and (thermo-)mechanical performance was thoroughly examined. Crosslink density variations were achieved by adjusting the molecular weight of the monomers or utilizing the off-stoichiometric maleimide-to-furan ratio. Quasistatic tensile testing, dynamic mechanical analysis, dynamic rheometry, differential scanning calorimetry, and thermogravimetric analysis were employed to evaluate the individual effects of these parameters on material performance. While lowering the crosslink density in the polymer network via decreasing the off-stoichiometric ratio demonstrated the greatest acceleration of healing, it also led to a slight decrease in (dynamic) mechanical performance. On the other hand, reducing crosslink density using longer monomers resulted in faster healing, albeit to a lesser extent, while maintaining the (dynamic) mechanical performance.
Collapse
Affiliation(s)
- Ali Safaei
- Physical Chemistry and Polymer Science, Department of Materials and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; (A.S.); (J.B.); (S.Y.); (G.V.A.)
| | - Joost Brancart
- Physical Chemistry and Polymer Science, Department of Materials and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; (A.S.); (J.B.); (S.Y.); (G.V.A.)
- Brubotics, Vrije Universiteit Brussel and Imec, Pleinlaan 2, B-1050 Brussels, Belgium; (Z.W.); (B.V.)
| | - Zhanwei Wang
- Brubotics, Vrije Universiteit Brussel and Imec, Pleinlaan 2, B-1050 Brussels, Belgium; (Z.W.); (B.V.)
| | - Sogol Yazdani
- Physical Chemistry and Polymer Science, Department of Materials and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; (A.S.); (J.B.); (S.Y.); (G.V.A.)
| | - Bram Vanderborght
- Brubotics, Vrije Universiteit Brussel and Imec, Pleinlaan 2, B-1050 Brussels, Belgium; (Z.W.); (B.V.)
| | - Guy Van Assche
- Physical Chemistry and Polymer Science, Department of Materials and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; (A.S.); (J.B.); (S.Y.); (G.V.A.)
| | - Seppe Terryn
- Physical Chemistry and Polymer Science, Department of Materials and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; (A.S.); (J.B.); (S.Y.); (G.V.A.)
- Brubotics, Vrije Universiteit Brussel and Imec, Pleinlaan 2, B-1050 Brussels, Belgium; (Z.W.); (B.V.)
| |
Collapse
|
2
|
Cerdan K, Brancart J, De Coninck H, Van Hooreweder B, Van Assche G, Van Puyvelde P. Laser sintering of self-healable and recyclable thermoset networks. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Terryn S, Brancart J, Roels E, Verhelle R, Safaei A, Cuvellier A, Vanderborght B, Van Assche G. Structure–Property Relationships of Self-Healing Polymer Networks Based on Reversible Diels–Alder Chemistry. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Seppe Terryn
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Joost Brancart
- Physical Chemistry and Polymer Science (FYSC), VUB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Ellen Roels
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Robrecht Verhelle
- Physical Chemistry and Polymer Science (FYSC), VUB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Ali Safaei
- Physical Chemistry and Polymer Science (FYSC), VUB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Audrey Cuvellier
- Physical Chemistry and Polymer Science (FYSC), VUB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Bram Vanderborght
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Guy Van Assche
- Physical Chemistry and Polymer Science (FYSC), VUB, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
4
|
Tadakuma K, Kawakami M, Furukawa H. From a Deployable Soft Mechanism Inspired by a Nemertea Proboscis to a Robotic Blood Vessel Mechanism. JOURNAL OF ROBOTICS AND MECHATRONICS 2022. [DOI: 10.20965/jrm.2022.p0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this project, we aim to establish a design theory as well as implementation methods for deformable robot mechanisms that can branch and change in shape, structure, and stiffness. As the first step in our research on this project, we present an initial prototype of a branched torus mechanism that uses an inflatable structure inspired by a nemertea proboscis. We develop a basic mechanical model of this proboscis structure, and we confirm the basic performance and effective functionality of the configuration experimentally using a real prototype, specifically, a deployable torus mechanism and a retractable torus mechanism with an incompressible fluid. In addition, as an expanded concept from the branched torus mechanism, robotic blood vessels that can have an active self-healing function are prototyped, and the basic performance of the actual prototype is confirmed through experiments.
Collapse
|
5
|
Roels E, Terryn S, Iida F, Bosman AW, Norvez S, Clemens F, Van Assche G, Vanderborght B, Brancart J. Processing of Self-Healing Polymers for Soft Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104798. [PMID: 34610181 DOI: 10.1002/adma.202104798] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Soft robots are, due to their softness, inherently safe and adapt well to unstructured environments. However, they are prone to various damage types. Self-healing polymers address this vulnerability. Self-healing soft robots can recover completely from macroscopic damage, extending their lifetime. For developing healable soft robots, various formative and additive manufacturing methods have been exploited to shape self-healing polymers into complex structures. Additionally, several novel manufacturing techniques, noted as (re)assembly binding techniques that are specific to self-healing polymers, have been created. Herein, the wide variety of processing techniques of self-healing polymers for robotics available in the literature is reviewed, and limitations and opportunities discussed thoroughly. Based on defined requirements for soft robots, these techniques are critically compared and validated. A strong focus is drawn to the reversible covalent and (physico)chemical cross-links present in the self-healing polymers that do not only endow healability to the resulting soft robotic components, but are also beneficial in many manufacturing techniques. They solve current obstacles in soft robots, including the formation of robust multi-material parts, recyclability, and stress relaxation. This review bridges two promising research fields, and guides the reader toward selecting a suitable processing method based on a self-healing polymer and the intended soft robotics application.
Collapse
Affiliation(s)
- Ellen Roels
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Pleinlaan 2, Brussels, 1050, Belgium
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| | - Seppe Terryn
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Pleinlaan 2, Brussels, 1050, Belgium
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| | - Fumiya Iida
- Machine Intelligence Lab, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK
| | - Anton W Bosman
- SupraPolix B. V., Horsten 1.29, Eindhoven, 5612 AX, The Netherlands
| | - Sophie Norvez
- Chimie Moléculaire, Macromoléculaire, Matériaux, École Supérieure de Physique et de Chimie (ESPCI), 10 Rue Vauquelin, Paris, 75005, France
| | - Frank Clemens
- Laboratory for High Performance Ceramics, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Überlandstrasse 129, Dübendorf, 8600, Switzerland
| | - Guy Van Assche
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| | - Bram Vanderborght
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Pleinlaan 2, Brussels, 1050, Belgium
| | - Joost Brancart
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| |
Collapse
|
6
|
Chen B, Luo XL, Wan X. The abnormal situation with reversal characteristic in chemical processes: Local monitoring and self-recovery. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Ekeocha J, Ellingford C, Pan M, Wemyss AM, Bowen C, Wan C. Challenges and Opportunities of Self-Healing Polymers and Devices for Extreme and Hostile Environments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008052. [PMID: 34165832 DOI: 10.1002/adma.202008052] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/21/2020] [Indexed: 06/13/2023]
Abstract
Engineering materials and devices can be damaged during their service life as a result of mechanical fatigue, punctures, electrical breakdown, and electrochemical corrosion. This damage can lead to unexpected failure during operation, which requires regular inspection, repair, and replacement of the products, resulting in additional energy consumption and cost. During operation in challenging, extreme, or harsh environments, such as those encountered in high or low temperature, nuclear, offshore, space, and deep mining environments, the robustness and stability of materials and devices are extremely important. Over recent decades, significant effort has been invested into improving the robustness and stability of materials through either structural design, the introduction of new chemistry, or improved manufacturing processes. Inspired by natural systems, the creation of self-healing materials has the potential to overcome these challenges and provide a route to achieve dynamic repair during service. Current research on self-healing polymers remains in its infancy, and self-healing behavior under harsh and extreme conditions is a particularly untapped area of research. Here, the self-healing mechanisms and performance of materials under a variety of harsh environments are discussed. An overview of polymer-based devices developed for a range of challenging environments is provided, along with areas for future research.
Collapse
Affiliation(s)
- James Ekeocha
- International Institute for Nanocomposites Manufacturing (IINM), University of Warwick, Coventry, CV4 7AL, UK
| | - Christopher Ellingford
- International Institute for Nanocomposites Manufacturing (IINM), University of Warwick, Coventry, CV4 7AL, UK
| | - Min Pan
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Alan M Wemyss
- International Institute for Nanocomposites Manufacturing (IINM), University of Warwick, Coventry, CV4 7AL, UK
| | - Christopher Bowen
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Chaoying Wan
- International Institute for Nanocomposites Manufacturing (IINM), University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
8
|
Ostyn F, Lefebvre T, Vanderborght B, Crevecoeur G. Overload Clutch Design for Collision Tolerant High–Speed Industrial Robots. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2021.3051616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Miyake S, Nagahama S, Sugano S. Development of self-healing linear actuator unit using thermoplastic resin*. Adv Robot 2019. [DOI: 10.1080/01691864.2019.1684363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Shota Miyake
- Department of Creative Science and Engineering, Waseda University, Tokyo, Japan
| | - Shunsuke Nagahama
- Department of Creative Science and Engineering, Waseda University, Tokyo, Japan
| | - Shigeki Sugano
- Department of Creative Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
10
|
Mangialetto J, Cuvellier A, Verhelle R, Brancart J, Rahier H, Van Assche G, Van den Brande N, Van Mele B. Diffusion- and Mobility-Controlled Self-Healing Polymer Networks with Dynamic Covalent Bonding. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01453] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Jessica Mangialetto
- Physical Chemistry and Polymer Science, Vrije Universiteit Brussel, Pleinlaan 2 1050, Brussels
| | - Audrey Cuvellier
- Physical Chemistry and Polymer Science, Vrije Universiteit Brussel, Pleinlaan 2 1050, Brussels
| | - Robrecht Verhelle
- Physical Chemistry and Polymer Science, Vrije Universiteit Brussel, Pleinlaan 2 1050, Brussels
| | - Joost Brancart
- Physical Chemistry and Polymer Science, Vrije Universiteit Brussel, Pleinlaan 2 1050, Brussels
| | - Hubert Rahier
- Physical Chemistry and Polymer Science, Vrije Universiteit Brussel, Pleinlaan 2 1050, Brussels
| | - Guy Van Assche
- Physical Chemistry and Polymer Science, Vrije Universiteit Brussel, Pleinlaan 2 1050, Brussels
| | - Niko Van den Brande
- Physical Chemistry and Polymer Science, Vrije Universiteit Brussel, Pleinlaan 2 1050, Brussels
| | - Bruno Van Mele
- Physical Chemistry and Polymer Science, Vrije Universiteit Brussel, Pleinlaan 2 1050, Brussels
| |
Collapse
|
11
|
|
12
|
Terryn S, Brancart J, Lefeber D, Van Assche G, Vanderborght B. A Pneumatic Artificial Muscle Manufactured Out of Self-Healing Polymers That Can Repair Macroscopic Damages. IEEE Robot Autom Lett 2018. [DOI: 10.1109/lra.2017.2724140] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Terryn S, Brancart J, Lefeber D, Van Assche G, Vanderborght B. Self-healing soft pneumatic robots. Sci Robot 2017; 2:2/9/eaan4268. [DOI: 10.1126/scirobotics.aan4268] [Citation(s) in RCA: 243] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/20/2017] [Indexed: 11/02/2022]
|