1
|
Soulier M, Lekbaby B, Houari I, Decauchy H, Pavy A, Coumes A, Morichon R, Dufour T, Fouassier L. Targeting cholangiocarcinoma cells by cold piezoelectric plasmas: in vitro efficacy and cellular mechanisms. Sci Rep 2024; 14:30178. [PMID: 39632956 PMCID: PMC11618313 DOI: 10.1038/s41598-024-81664-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
Cold piezoelectric plasma (CPP) is a novel approach in cancer therapy, enabling the development of portable treatment devices capable of triggering cancer cell death. While its effectiveness remains underexplored, this research focuses on its application against cholangiocarcinoma (CCA), an aggressive cancer of the biliary tract. A CPP device is utilized to generate either a corona discharge (Pz-CD) or a dielectric barrier discharge (Pz-DBD) for in vitro experiments. Notably, Pz-CD can deliver more power than Pz-DBD, although both sources produce significant levels of reactive species in plasma and liquid phases. This work shows that CPP causes a gradient increase in medium temperature from the center towards the edges of the culture well, especially for longer treatment times. Although Pz-CD heats more significantly, it cools quickly after plasma extinction. When applied to human CCA cells, CPP shows immediate and long-term effects, more localized for Pz-CD, while more uniform for Pz-DBD. Immediate effects result also in actin cytoskeleton remodeling without alteration of the cell membrane permeability. Long-term effects of CPP, although the antioxidant system is engaged, include activation of the DNA damage response pathway leading to cell death. In conclusion, CPP should be recognized as a promising antitumor therapy.
Collapse
Affiliation(s)
- Manon Soulier
- Laboratoire de Physique des Plasmas (LPP), Sorbonne Université, Ecole Polytechnique, CNRS, Univ. Paris-Sud, Observatoire de Paris, Université Paris-Saclay, PSL Research University, 75252, Paris, France.
| | - Bouchra Lekbaby
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, F-75012, Paris, France
| | - Imane Houari
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, F-75012, Paris, France
| | - Henri Decauchy
- Laboratoire de Physique des Plasmas (LPP), Sorbonne Université, Ecole Polytechnique, CNRS, Univ. Paris-Sud, Observatoire de Paris, Université Paris-Saclay, PSL Research University, 75252, Paris, France
| | - Allan Pavy
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, F-75012, Paris, France
| | - Alexia Coumes
- Laboratoire de Physique des Plasmas (LPP), Sorbonne Université, Ecole Polytechnique, CNRS, Univ. Paris-Sud, Observatoire de Paris, Université Paris-Saclay, PSL Research University, 75252, Paris, France
| | - Romain Morichon
- Cytometry and Imagery Platform Saint-Antoine (CISA), Sorbonne Université, 75012, Paris, France
| | - Thierry Dufour
- Laboratoire de Physique des Plasmas (LPP), Sorbonne Université, Ecole Polytechnique, CNRS, Univ. Paris-Sud, Observatoire de Paris, Université Paris-Saclay, PSL Research University, 75252, Paris, France
| | - Laura Fouassier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, F-75012, Paris, France.
| |
Collapse
|
2
|
Biscop E, Baroen J, De Backer J, Vanden Berghe W, Smits E, Bogaerts A, Lin A. Characterization of regulated cancer cell death pathways induced by the different modalities of non-thermal plasma treatment. Cell Death Discov 2024; 10:416. [PMID: 39349444 PMCID: PMC11442809 DOI: 10.1038/s41420-024-02178-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 10/02/2024] Open
Abstract
Non-thermal plasma (NTP) has shown promising anti-cancer effects, but there is still limited knowledge about the underlying cell death mechanisms induced by NTP and inherent differences between NTP treatment modalities. This study aimed to investigate four major regulated cell death (RCD) pathways, namely apoptosis, pyroptosis, necroptosis, and ferroptosis, in melanoma cancer cells following NTP treatment, and to provide an overview of molecular mechanistic differences between direct and indirect NTP treatment modalities. To discriminate which cell death pathways were triggered after treatment, specific inhibitors of apoptosis, pyroptosis, necroptosis, and ferroptosis were evaluated. RCD-specific molecular pathways were further investigated to validate the findings with inhibitors. Both direct and indirect NTP treatment increased caspase 3/7 and annexin V expression, indicative of apoptosis, as well as lipid peroxidation, characteristic of ferroptosis. Pyroptosis, on the other hand, was only induced by direct NTP treatment, evidenced by increased caspase 1 activity, whereas necroptosis was stimulated in a cell line-dependent manner. These findings highlight the molecular differences and implications of direct and indirect NTP treatment for cancer therapy. Altogether, activation of multiple cell death pathways offers advantages in minimizing treatment resistance and enhancing therapeutic efficacy, particularly in a combination setting. Understanding the mechanisms underlying NTP-induced RCD will enable the development of strategic combination therapies targeting multiple pathways to achieve cancer lethality.
Collapse
Affiliation(s)
- Eline Biscop
- PLASMANT, Department of Chemistry, University of Antwerp, Antwerp, Belgium.
- Center for Oncological Research - Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| | - Jana Baroen
- PLASMANT, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Center for Oncological Research - Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Joey De Backer
- Cell Death Signaling Lab, University of Antwerp, Antwerp, Belgium
| | | | - Evelien Smits
- Center for Oncological Research - Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Annemie Bogaerts
- PLASMANT, Department of Chemistry, University of Antwerp, Antwerp, Belgium
| | - Abraham Lin
- PLASMANT, Department of Chemistry, University of Antwerp, Antwerp, Belgium.
- Center for Oncological Research - Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
3
|
Tabassum S, Khan MN, Faiz N, Almas, Yaseen B, Ahmad I. Cold atmospheric plasma-activated medium for potential ovarian cancer therapy. Mol Biol Rep 2024; 51:834. [PMID: 39042272 DOI: 10.1007/s11033-024-09795-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Cold atmospheric plasma (CAP) has emerged as an innovative tool with broad medical applications, including ovarian cancer (OC) treatment. By bringing CAP in close proximity to liquids such as water or cell culture media, solutions containing reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated, called plasma-activated media (PAM). In this systematic review, we conduct an in-depth analysis of studies focusing on PAM interactions with biological substrates. We elucidate the diverse mechanisms involved in the activation of different media and the complex network of chemical reactions underlying the generation and consumption of the prominent reactive species. Furthermore, we highlight the promises of PAM in advancing biomedical applications, such as its stability for extended periods under appropriate storage conditions. We also examine the application of PAM as an anti-cancer and anti-metastatic treatment for OC, with a particular emphasis on its ability to induce apoptosis via distinct signaling pathways, inhibit cell growth, suppress cell motility, and enhance the therapeutic effects of chemotherapy. Finally, the future outlook of PAM therapy in biomedical applications is speculated, with emphasis on the safety issues relevant to clinical translation.
Collapse
Affiliation(s)
- Shazia Tabassum
- Department of Obstetrics and Gynaecology, Hayatabad Medical Complex, Peshawar, Pakistan
| | | | | | - Almas
- Abdul Wali Khan University, Mardan, Pakistan
| | - Bushra Yaseen
- Department of Gynaecology, Khyber Teaching Hospital, Peshawar, Pakistan
| | - Iftikhar Ahmad
- Institute of Radiotherapy and Nuclear Medicine (IRNUM), Peshawar, Pakistan.
| |
Collapse
|
4
|
Negi M, Kaushik N, Lamichhane P, Jaiswal A, Borkar SB, Patel P, Singh P, Choi EH, Kaushik NK. Biocompatible plasma-treated liquids: A sustainable approach for decontaminating gastrointestinal-infection causing pathogens. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134562. [PMID: 38743977 DOI: 10.1016/j.jhazmat.2024.134562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Nosocomial infections are a serious threat and difficult to cure due to rising antibiotic resistance in pathogens and biofilms. Direct exposure to cold atmospheric plasma (CAP) has been widely employed in numerous biological research endeavors. Nonetheless, plasma-treated liquids (PTLs) formulated with physiological solutions may offer additional benefits such as enhanced portability, and biocompatibility. Additionally, CAP-infused long-lived reactive oxygen and nitrogen species (RONS) such as nitrite (NO2-), nitrate (NO3-), and hydrogen peroxide (H2O2) can synergistically induce their antibacterial activity. Herein, we investigated those argon-plasma jet-treated liquids, including Ringer's lactate (RL), phosphate-buffered saline (PBS), and physiological saline, have significant antibacterial activity against nosocomial/gastrointestinal-causing pathogens, which might be due to ROS-mediated lipid peroxidation. Combining the conventional culture-based method with propidium iodide monoazide quantitative PCR (PMAxx™-qPCR) indicated that PTLs induce a minimal viable but non-culturable (VBNC) state and moderately affect culturable counts. Specifically, the PTL exposure resulted in pathogenicity dysfunction via controlling T3SS-related effector genes of S. enterica. Overall, this study provides insights into the effectiveness of PTLs for inducing ROS-mediated damage, controlling the virulence of diarrheagenic bacteria, and modulating homeostatic genes.
Collapse
Affiliation(s)
- Manorma Negi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, South Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, South Korea.
| | - Prajwal Lamichhane
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, South Korea
| | - Apurva Jaiswal
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, South Korea
| | - Shweta B Borkar
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, South Korea
| | - Paritosh Patel
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, South Korea
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, South Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, South Korea.
| |
Collapse
|
5
|
Veronico V, Morelli S, Piscioneri A, Gristina R, Casiello M, Favia P, Armenise V, Fracassi F, De Bartolo L, Sardella E. Anticancer Effects of Plasma-Treated Water Solutions from Clinically Approved Infusion Liquids Supplemented with Organic Molecules. ACS OMEGA 2023; 8:33723-33736. [PMID: 37744835 PMCID: PMC10515361 DOI: 10.1021/acsomega.3c04061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/25/2023] [Indexed: 09/26/2023]
Abstract
Water solutions treated by cold atmospheric plasmas (CAPs) currently stand out in the field of cancer treatment as sources of exogenous blends of reactive oxygen and nitrogen species (RONS). It is well known that the balance of RONS inside both eukaryotic and prokaryotic cells is directly involved in physiological as well as pathological pathways. Also, organic molecules including phenols could exert promising anticancer effects, mostly attributed to their pro-oxidant ability in vitro and in vivo to generate RONS like O2-, H2O2, and a mixture of potentially cytotoxic compounds. By our vision of combining the efficacy of plasma-produced RONS and the use of organic molecules, we could synergistically attack cancer cells; yet, so far, this combination, to the best of our knowledge, has been completely unexplored. In this study, l-tyrosine, an amino acid with a phenolic side chain, is added to a physiological solution, often used in clinical practice (SIII) to be exposed to plasma. The efficacy of the gas plasma-oxidized SIII solution, containing tyrosine, was evaluated on four cancer cell lines selected from among tumors with poor prognosis (SHSY-5Y, MCF-7, HT-29, and SW-480). The aim was to induce tumor toxicity and trigger apoptosis pathways. The results clearly indicate that the plasma-treated water solution (PTWS) reduced cell viability and oxygen uptake due to an increase in intracellular ROS levels and activation of apoptosis pathways in all investigated cancer cells, which may be related to the activation of the mitochondrial-mediated and p-JNK/caspase-3 signaling pathways. This research offers improved knowledge about the physiological mechanisms underlying cancer treatment and a valid method to set up a prompt, adequate, and effective cancer treatment in the clinic.
Collapse
Affiliation(s)
- Valeria Veronico
- Department
of Chemistry, University of Bari Aldo Moro, via Orabona, 4, 70126 Bari, Italy
| | - Sabrina Morelli
- CNR-Institute
on Membrane Technology (CNR-ITM), Via Pietro Bucci Cubo, 17/C, 87036 Rende, CS, Italy
| | - Antonella Piscioneri
- CNR-Institute
on Membrane Technology (CNR-ITM), Via Pietro Bucci Cubo, 17/C, 87036 Rende, CS, Italy
| | - Roberto Gristina
- CNR-Institute
of Nanotechnology (CNR-NANOTEC), Via Amendola, 122/D, 70124 Bari, Italy
| | - Michele Casiello
- Department
of Chemistry, University of Bari Aldo Moro, via Orabona, 4, 70126 Bari, Italy
| | - Pietro Favia
- Department
of Chemistry, University of Bari Aldo Moro, via Orabona, 4, 70126 Bari, Italy
- CNR-Institute
of Nanotechnology (CNR-NANOTEC), Via Amendola, 122/D, 70124 Bari, Italy
| | - Vincenza Armenise
- Department
of Chemistry, University of Bari Aldo Moro, via Orabona, 4, 70126 Bari, Italy
| | - Francesco Fracassi
- Department
of Chemistry, University of Bari Aldo Moro, via Orabona, 4, 70126 Bari, Italy
- CNR-Institute
of Nanotechnology (CNR-NANOTEC), Via Amendola, 122/D, 70124 Bari, Italy
| | - Loredana De Bartolo
- CNR-Institute
on Membrane Technology (CNR-ITM), Via Pietro Bucci Cubo, 17/C, 87036 Rende, CS, Italy
| | - Eloisa Sardella
- CNR-Institute
of Nanotechnology (CNR-NANOTEC), Via Amendola, 122/D, 70124 Bari, Italy
| |
Collapse
|
6
|
Pavlik T, Gudkova V, Razvolyaeva D, Pavlova M, Kostukova N, Miloykovich L, Kolik L, Konchekov E, Shimanovskii N. The Role of Autophagy and Apoptosis in the Combined Action of Plasma-Treated Saline, Doxorubicin, and Medroxyprogesterone Acetate on K562 Myeloid Leukaemia Cells. Int J Mol Sci 2023; 24:ijms24065100. [PMID: 36982174 PMCID: PMC10049101 DOI: 10.3390/ijms24065100] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
The anti-cancer properties of plasma-treated solutions (PTS) and their interaction with drugs are one of the most popular topics in modern plasma medicine. Our research involved comparing the effects of four physiological saline solutions (0.9% NaCl, Ringer’s solution, Hank’s Balanced Salt Solution, Hank’s Balanced Salt Solution with amino acids added in concentrations observed in the human blood) treated with cold atmospheric plasma and studying the combined cytotoxic effect of PTS with doxorubicin and medroxyprogesterone acetate (MPA). Analysis of the effect of the studied agents on the formation of radicals in the incubation medium, the vitality of K562 myeloid leukaemia cells, and the processes of autophagy and apoptosis in them revealed two key findings. The first is that when using PTS and doxorubicin-containing PTS, autophagy is the predominant process in cancer cells. The second is that combining PTS with MPA enhances apoptotic processes. It was hypothesised that while autophagy is stimulated by the accumulation of reactive oxygen species in the cell, apoptosis is stimulated through specific cell progesterone receptors.
Collapse
Affiliation(s)
- Tatyana Pavlik
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Correspondence:
| | - Victoria Gudkova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Science, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Darya Razvolyaeva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Science, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Marina Pavlova
- Faculty of Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Nadejda Kostukova
- Faculty of Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Lilia Miloykovich
- Faculty of Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Leonid Kolik
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Evgeny Konchekov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Nikolay Shimanovskii
- Faculty of Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
7
|
Živanić M, Espona‐Noguera A, Lin A, Canal C. Current State of Cold Atmospheric Plasma and Cancer-Immunity Cycle: Therapeutic Relevance and Overcoming Clinical Limitations Using Hydrogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205803. [PMID: 36670068 PMCID: PMC10015903 DOI: 10.1002/advs.202205803] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/27/2022] [Indexed: 05/19/2023]
Abstract
Cold atmospheric plasma (CAP) is a partially ionized gas that gains attention as a well-tolerated cancer treatment that can enhance anti-tumor immune responses, which are important for durable therapeutic effects. This review offers a comprehensive and critical summary on the current understanding of mechanisms in which CAP can assist anti-tumor immunity: induction of immunogenic cell death, oxidative post-translational modifications of the tumor and its microenvironment, epigenetic regulation of aberrant gene expression, and enhancement of immune cell functions. This should provide a rationale for the effective and meaningful clinical implementation of CAP. As discussed here, despite its potential, CAP faces different clinical limitations associated with the current CAP treatment modalities: direct exposure of cancerous cells to plasma, and indirect treatment through injection of plasma-treated liquids in the tumor. To this end, a novel modality is proposed: plasma-treated hydrogels (PTHs) that can not only help overcome some of the clinical limitations but also offer a convenient platform for combining CAP with existing drugs to improve therapeutic responses and contribute to the clinical translation of CAP. Finally, by integrating expertise in biomaterials and plasma medicine, practical considerations and prospective for the development of PTHs are offered.
Collapse
Affiliation(s)
- Milica Živanić
- BiomaterialsBiomechanics and Tissue Engineering GroupDepartment of Materials Science and EngineeringEscola d'Enginyeria Barcelona Est (EEBE)and Research Centre for Biomedical Engineering (CREB)Universitat Politècnica de Catalunya (UPC)c/Eduard Maristany 14Barcelona08019Spain
- Biomaterials and Tissue EngineeringInstitut de Recerca Sant Joan de DéuSanta Rosa 39–57Esplugues de Llobregat08950Spain
- Plasma Lab for Applications in Sustainability and Medicine‐Antwerp (PLASMANT)Department of ChemistryUniversity of AntwerpUniversiteitsplein 1Wilrijk‐Antwerp2610Belgium
| | - Albert Espona‐Noguera
- BiomaterialsBiomechanics and Tissue Engineering GroupDepartment of Materials Science and EngineeringEscola d'Enginyeria Barcelona Est (EEBE)and Research Centre for Biomedical Engineering (CREB)Universitat Politècnica de Catalunya (UPC)c/Eduard Maristany 14Barcelona08019Spain
- Biomaterials and Tissue EngineeringInstitut de Recerca Sant Joan de DéuSanta Rosa 39–57Esplugues de Llobregat08950Spain
| | - Abraham Lin
- Plasma Lab for Applications in Sustainability and Medicine‐Antwerp (PLASMANT)Department of ChemistryUniversity of AntwerpUniversiteitsplein 1Wilrijk‐Antwerp2610Belgium
- Center for Oncological Research (CORE)Integrated Personalized & Precision Oncology Network (IPPON)University of AntwerpUniversiteitsplein 1Wilrijk‐Antwerp2610Belgium
| | - Cristina Canal
- BiomaterialsBiomechanics and Tissue Engineering GroupDepartment of Materials Science and EngineeringEscola d'Enginyeria Barcelona Est (EEBE)and Research Centre for Biomedical Engineering (CREB)Universitat Politècnica de Catalunya (UPC)c/Eduard Maristany 14Barcelona08019Spain
- Biomaterials and Tissue EngineeringInstitut de Recerca Sant Joan de DéuSanta Rosa 39–57Esplugues de Llobregat08950Spain
| |
Collapse
|
8
|
Miebach L, Mohamed H, Wende K, Miller V, Bekeschus S. Pancreatic Cancer Cells Undergo Immunogenic Cell Death upon Exposure to Gas Plasma-Oxidized Ringers Lactate. Cancers (Basel) 2023; 15:319. [PMID: 36612315 PMCID: PMC9818580 DOI: 10.3390/cancers15010319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023] Open
Abstract
Survival rates among patients with pancreatic cancer, the most lethal gastrointestinal cancer, have not improved compared to other malignancies. Early tumor dissemination and a supportive, cancer-promoting tumor microenvironment (TME) limit therapeutic options and consequently impede tumor remission, outlining an acute need for effective treatments. Gas plasma-oxidized liquid treatment showed promising preclinical results in other gastrointestinal and gynecological tumors by targeting the tumor redox state. Here, carrier solutions are enriched with reactive oxygen (ROS) and nitrogen (RNS) species that can cause oxidative distress in tumor cells, leading to a broad range of anti-tumor effects. Unfortunately, clinical relevance is often limited, as many studies have forgone the use of medical-grade solutions. This study investigated the efficacy of gas plasma-oxidized Ringer's lactate (oxRilac), a physiological solution often used in clinical practice, on two pancreatic cancer cell lines to induce tumor toxicity and provoke immunogenicity. Tumor toxicity of the oxRilac solutions was further confirmed in three-dimensional tumor spheroids monitored over 72 h and in ovo using stereomicroscope imaging of excised GFP-expressing tumors. We demonstrated that cell death signaling was induced in a dose-dependent fashion in both cell lines and was paralleled by the increased surface expression of key markers of immunogenic cell death (ICD). Nuclear magnetic resonance (NMR) spectroscopy analysis suggested putative reaction pathways that may cause the non-ROS related effects. In summary, our study suggests gas plasma-deposited ROS in clinically relevant liquids as an additive option for treating pancreatic cancers via immune-stimulating and cytotoxic effects.
Collapse
Affiliation(s)
- Lea Miebach
- Department of General, Thoraxic, Vascular, and Visceral Surgery, Greifswald University Medical Center, 17489 Greifswald, Germany
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Hager Mohamed
- Emergex Vaccines Holding Limited, Doylestown, PA 18902, USA
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Vandana Miller
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| |
Collapse
|
9
|
Clemen R, Arlt K, von Woedtke T, Bekeschus S. Gas Plasma Protein Oxidation Increases Immunogenicity and Human Antigen-Presenting Cell Maturation and Activation. Vaccines (Basel) 2022; 10:1814. [PMID: 36366323 PMCID: PMC9698879 DOI: 10.3390/vaccines10111814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 08/06/2023] Open
Abstract
Protein vaccines rely on eliciting immune responses. Inflammation is a prerequisite for immune responses to control infection and cancer but is also associated with disease onset. Reactive oxygen species (ROSs) are central during inflammation and are capable of inducing non-enzymatic oxidative protein modifications (oxMods) associated with chronic disease, which alter the functionality or immunogenicity of proteins that are relevant in cancer immunotherapy. Specifically, antigen-presenting cells (APCs) take up and degrade extracellular native and oxidized proteins to induce adaptive immune responses. However, it is less clear how oxMods alter the protein's immunogenicity, especially in inflammation-related short-lived reactive species. Gas plasma technology simultaneously generates a multitude of ROSs to modify protein antigens in a targeted and controlled manner to study the immunogenicity of oxMods. As model proteins relevant to chronic inflammation and cancer, we used gas plasma-treated insulin and CXCL8. We added those native or oxidized proteins to human THP-1 monocytes or primary monocyte-derived cells (moDCs). Both oxidized proteins caused concentration-independent maturation phenotype alterations in moDCs and THP-1 cells concerning surface marker expression and chemokine and cytokine secretion profiles. Interestingly, concentration-matched H2O2-treated proteins did not recapitulate the effects of gas plasma, suggesting sufficiently short diffusion distances for the short-lived reactive species to modify proteins. Our data provide evidence of dendric cell maturation and activation upon exposure to gas plasma- but not H2O2-modified model proteins. The biological consequences of these findings need to be elucidated in future inflammation and cancer disease models.
Collapse
|
10
|
Bekeschus S, Saadati F, Emmert S. The potential of gas plasma technology for targeting breast cancer. Clin Transl Med 2022; 12:e1022. [PMID: 35994412 PMCID: PMC9394754 DOI: 10.1002/ctm2.1022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 08/04/2022] [Indexed: 11/12/2022] Open
Abstract
Despite therapeutic improvements in recent years, breast cancer remains an often fatal disease. In addition, breast cancer ulceration may occur during late stages, further complicating therapeutic or palliative interventions. In the past decade, a novel technology received significant attention in the medical field: gas plasma. This topical treatment relies on the partial ionization of gases that simultaneously produce a plethora of reactive oxygen and nitrogen species (ROS/RNS). Such local ROS/RNS overload inactivates tumour cells in a non-necrotic manner and was recently identified to induce immunogenic cancer cell death (ICD). ICD promotes dendritic cell maturation and amplifies antitumour immunity capable of targeting breast cancer metastases. Gas plasma technology was also shown to provide additive toxicity in combination with radio and chemotherapy and re-sensitized drug-resistant breast cancer cells. This work outlines the assets of gas plasma technology as a novel tool for targeting breast cancer by summarizing the action of plasma devices, the roles of ROS, signalling pathways, modes of cell death, combination therapies and immunological consequences of gas plasma exposure in breast cancer cells in vitro, in vivo, and in patient-derived microtissues ex vivo.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)GreifswaldGermany
| | - Fariba Saadati
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)GreifswaldGermany
- Clinic and Policlinic for Dermatology and VenereologyRostock University Medical CenterRostockGermany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and VenereologyRostock University Medical CenterRostockGermany
| |
Collapse
|
11
|
Miebach L, Freund E, Cecchini AL, Bekeschus S. Conductive Gas Plasma Treatment Augments Tumor Toxicity of Ringer's Lactate Solutions in a Model of Peritoneal Carcinomatosis. Antioxidants (Basel) 2022; 11:antiox11081439. [PMID: 35892641 PMCID: PMC9331608 DOI: 10.3390/antiox11081439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Reactive species generated by medical gas plasma technology can be enriched in liquids for use in oncology targeting disseminated malignancies, such as metastatic colorectal cancer. Notwithstanding, reactive species quantities depend on the treatment mode, and we recently showed gas plasma exposure in conductive modes to be superior for cancer tissue treatment. However, evidence is lacking that such a conductive mode also equips gas plasma-treated liquids to confer augmented intraperitoneal anticancer activity. To this end, employing atmospheric pressure argon plasma jet kINPen-treated Ringer's lactate (oxRilac) in a CT26-model of colorectal peritoneal carcinomatosis, we tested repeated intraabdominal injection of such remotely or conductively oxidized liquid for antitumor control and immunomodulation. Enhanced reactive species formation in conductive mode correlated with reduced tumor burden in vivo, emphasizing the advantage of conduction over the free mode for plasma-conditioned liquids. Interestingly, the infiltration of lymphocytes into the tumors was equally enhanced by both treatments. However, significantly lower levels of interleukin (IL)4 and IL13 and increased levels of IL2 argue for a shift in intratumoral T-helper cell subpopulations correlating with disease control. In conclusion, our data argue for using conductively over remotely prepared plasma-treated liquids for anticancer treatment.
Collapse
Affiliation(s)
- Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (L.M.); (E.F.)
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Eric Freund
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (L.M.); (E.F.)
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Alessandra Lourenço Cecchini
- Department of General Pathology, State University of Londrina, Rodovia Celso Garcia Cid, Londrina 86051-990, Brazil;
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (L.M.); (E.F.)
- Correspondence: ; Tel.: +49-3834-554-3948
| |
Collapse
|
12
|
Freund E, Bekeschus S. Gas Plasma-Oxidized Liquids for Cancer Treatment: Preclinical Relevance, Immuno-Oncology, and Clinical Obstacles. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3029982] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
The Anticancer Efficacy of Plasma-Oxidized Saline (POS) in the Ehrlich Ascites Carcinoma Model In Vitro and In Vivo. Biomedicines 2021; 9:biomedicines9080932. [PMID: 34440136 PMCID: PMC8394252 DOI: 10.3390/biomedicines9080932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 01/31/2023] Open
Abstract
Cold physical plasma, a partially ionized gas rich in reactive oxygen species (ROS), is receiving increasing interest as a novel anticancer agent via two modes. The first involves its application to cells and tissues directly, while the second uses physical plasma-derived ROS to oxidize liquids. Saline is a clinically accepted liquid, and here we explored the suitability of plasma-oxidized saline (POS) as anticancer agent technology in vitro and in vivo using the Ehrlich Ascites Carcinoma (EAC) model. EAC mainly grows as a suspension in the peritoneal cavity of mice, making this model ideally suited to test POS as a putative agent against peritoneal carcinomatosis frequently observed with colon, pancreas, and ovarium metastasis. Five POS injections led to a reduction of the tumor burden in vivo as well as in a decline of EAC cell growth and an arrest in metabolic activity ex vivo. The treatment was accompanied by a decreased antioxidant capacity of Ehrlich tumor cells and increased lipid oxidation in the ascites supernatants, while no other side effects were observed. Oxaliplatin and hydrogen peroxide were used as controls and mediated better and worse outcomes, respectively, with the former but not the latter inducing profound changes in the inflammatory milieu among 13 different cytokines investigated in ascites fluid. Modulation of inflammation in the POS group was modest but significant. These results promote POS as a promising candidate for targeting peritoneal carcinomatosis and malignant ascites and suggest EAC to be a suitable and convenient model for analyzing innovative POS approaches and combination therapies.
Collapse
|
14
|
Plasma-Treated Solutions (PTS) in Cancer Therapy. Cancers (Basel) 2021; 13:cancers13071737. [PMID: 33917469 PMCID: PMC8038720 DOI: 10.3390/cancers13071737] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Cold physical plasma is a partially ionized gas generating various reactive oxygen and nitrogen species (ROS/RNS) simultaneously. ROS/RNS have therapeutic effects when applied to cells and tissues either directly from the plasma or via exposure to solutions that have been treated beforehand using plasma processes. This review addresses the challenges and opportunities of plasma-treated solutions (PTSs) for cancer treatment. Abstract Cold physical plasma is a partially ionized gas generating various reactive oxygen and nitrogen species (ROS/RNS) simultaneously. ROS/RNS have therapeutic effects when applied to cells and tissues either directly from the plasma or via exposure to solutions that have been treated beforehand using plasma processes. This review addresses the challenges and opportunities of plasma-treated solutions (PTSs) for cancer treatment. These PTSs include plasma-treated cell culture media in experimental research as well as clinically approved solutions such as saline and Ringer’s lactate, which, in principle, already qualify for testing in therapeutic settings. Several types of cancers were found to succumb to the toxic action of PTSs, suggesting a broad mechanism of action based on the tumor-toxic activity of ROS/RNS stored in these solutions. Moreover, it is indicated that the PTS has immuno-stimulatory properties. Two different routes of application are currently envisaged in the clinical setting. One is direct injection into the bulk tumor, and the other is lavage in patients suffering from peritoneal carcinomatosis adjuvant to standard chemotherapy. While many promising results have been achieved so far, several obstacles, such as the standardized generation of large volumes of sterile PTS, remain to be addressed.
Collapse
|
15
|
Gandhirajan RK, Endlich N, Bekeschus S. Zebrafish larvae as a toxicity model in plasma medicine. PLASMA PROCESSES AND POLYMERS 2021; 18. [DOI: 10.1002/ppap.202000188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/27/2020] [Indexed: 01/05/2025]
Abstract
AbstractPlasma technology has emerged as a promising tool in medicine that, however, requires not only efficacy but also toxicological assessments. Traditional cell culture systems are fast and economical, but they lack in vivo relevance; however, rodent models are highly complex and necessitate extended facilities. Zebrafish larvae bridge this gap, and many larvae can be analyzed in well plates in a single run, giving results in 1–2 days. Using the kINPen, we found plasma exposure to reduce hedging rates and viability in a dose‐dependent manner, accompanied with an increase in reactive oxygen species and a decrease of glutathione in plasma‐treated fish. Modest growth alterations were also observed. Altogether, zebrafish larvae constitute a fast, reliable, and relevant model for testing the toxicity of plasma sources.
Collapse
Affiliation(s)
- Rajesh K. Gandhirajan
- Division of ZIK plasmatis Leibniz Institute for Plasma Science and Technology (INP) Greifswald Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology Greifswald University Medicine Greifswald Germany
| | - Sander Bekeschus
- Division of ZIK plasmatis Leibniz Institute for Plasma Science and Technology (INP) Greifswald Germany
| |
Collapse
|
16
|
Lin A, Biscop E, Breen C, Butler SJ, Smits E, Bogaerts A. Critical Evaluation of the Interaction of Reactive Oxygen and Nitrogen Species with Blood to Inform the Clinical Translation of Nonthermal Plasma Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9750206. [PMID: 33343810 PMCID: PMC7728471 DOI: 10.1155/2020/9750206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/14/2020] [Accepted: 11/04/2020] [Indexed: 11/22/2022]
Abstract
Non-thermal plasma (NTP), an ionized gas generated at ambient pressure and temperature, has been an emerging technology for medical applications. Through controlled delivery of reactive oxygen and nitrogen species (ROS/RNS), NTP can elicit hormetic cellular responses, thus stimulating broad therapeutic effects. To enable clinical translation of the promising preclinical research into NTP therapy, a deeper understanding of NTP interactions with clinical substrates is profoundly needed. Since NTP-generated ROS/RNS will inevitably interact with blood in several clinical contexts, understanding their stability in this system is crucial. In this study, two medically relevant NTP delivery modalities were used to assess the stability of NTP-generated ROS/RNS in three aqueous solutions with increasing organic complexities: phosphate-buffered saline (PBS), blood plasma (BP), and processed whole blood. NTP-generated RNS collectively (NO2 -, ONOO-), H2O2, and ONOO- exclusively were analyzed over time. We demonstrated that NTP-generated RNS and H2O2 were stable in PBS but scavenged by different components of the blood. While RNS remained stable in BP after initial scavenging effects, it was completely reduced in processed whole blood. On the other hand, H2O2 was completely scavenged in both liquids over time. Our previously developed luminescent probe europium(III) was used for precision measurement of ONOO- concentration. NTP-generated ONOO- was detected in all three liquids for up to at least 30 seconds, thus highlighting its therapeutic potential. Based on our results, we discussed the necessary considerations to choose the most optimal NTP modality for delivery of ROS/RNS to and via blood in the clinical context.
Collapse
Affiliation(s)
- Abraham Lin
- PLASMANT-Research Group, University of Antwerp, 2601 Antwerpen-Wilrijk, Belgium
- Center for Oncological Research―Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2601 Antwerpen-Wilrijk, Belgium
| | - Eline Biscop
- PLASMANT-Research Group, University of Antwerp, 2601 Antwerpen-Wilrijk, Belgium
- Center for Oncological Research―Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2601 Antwerpen-Wilrijk, Belgium
| | - Colum Breen
- Department of Chemistry, Loughborough University, LE11 3TU Loughborough, UK
| | - Stephen J. Butler
- Department of Chemistry, Loughborough University, LE11 3TU Loughborough, UK
| | - Evelien Smits
- Center for Oncological Research―Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2601 Antwerpen-Wilrijk, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, 2650 Antwerp-Edegem, Belgium
| | - Annemie Bogaerts
- PLASMANT-Research Group, University of Antwerp, 2601 Antwerpen-Wilrijk, Belgium
| |
Collapse
|
17
|
Physical Plasma-Treated Skin Cancer Cells Amplify Tumor Cytotoxicity of Human Natural Killer (NK) Cells. Cancers (Basel) 2020; 12:cancers12123575. [PMID: 33265951 PMCID: PMC7761052 DOI: 10.3390/cancers12123575] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Natural killer (NK)-cells are known to have antitumor potential. Cold physical plasma generates ROS exogenously to be utilized as a novel anticancer agent, especially in skin cancer. However, it is unknown whether plasma-treated skin cancer cells promote or inhibit NK-cell-mediated toxicity. To this end, we analyzed NK-cell-activating receptors on plasma-treated skin cancer cells and demonstrated an enhanced NK-cell activity augmenting tumor cell death upon plasma treatment. Abstract Skin cancers have the highest prevalence of all human cancers, with the most lethal forms being squamous cell carcinoma and malignant melanoma. Besides the conventional local treatment approaches like surgery and radiotherapy, cold physical plasmas are emerging anticancer tools. Plasma technology is used as a therapeutic agent by generating reactive oxygen species (ROS). Evidence shows that inflammation and adaptive immunity are involved in cancer-reducing effects of plasma treatment, but the role of innate immune cells is still unclear. Natural killer (NK)-cells interact with target cells via activating and inhibiting surface receptors and kill in case of dominating activating signals. In this study, we investigated the effect of cold physical plasma (kINPen) on two skin cancer cell lines (A375 and A431), with non-malignant HaCaT keratinocytes as control, and identified a plasma treatment time-dependent toxicity that was more pronounced in the cancer cells. Plasma treatment also modulated the expression of activating and inhibiting receptors more profoundly in skin cancer cells compared to HaCaT cells, leading to significantly higher NK-cell killing rates in the tumor cells. Together with increased pro-inflammatory mediators such as IL-6 and IL-8, we conclude that plasma treatment spurs stress responses in skin cancer cells, eventually augmenting NK-cell activity.
Collapse
|
18
|
Hasse S, Meder T, Freund E, von Woedtke T, Bekeschus S. Plasma Treatment Limits Human Melanoma Spheroid Growth and Metastasis Independent of the Ambient Gas Composition. Cancers (Basel) 2020; 12:cancers12092570. [PMID: 32917026 PMCID: PMC7565798 DOI: 10.3390/cancers12092570] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Despite recent advances in therapeutic options, melanoma remains a deadly disease with a poor prognosis. Physical gas plasma has been proposed as a promising technology for the treatment of melanoma. This study aimed to develop and investigate a convenient test system based on three-dimensional cell cultures (spheroids) of two melanoma cell lines in response to physical gas plasma. The experimental approach combined high-content imaging technology and different gas plasma treatment modalities (direct and indirect, gas compositions). Our results revealed that plasma treatment was toxic for both cell lines predominantly dependent on the treatment time. Furthermore, we addressed the question of safety and morphological changes in response to physical gas plasma exposure and found no support for metastatic progression. Treatment with physical gas plasma effectively limited the growth of human 3D melanoma spheroids and provided a versatile test system for more in vivo-like tumor tissue. Abstract Melanoma skin cancer is still a deadly disease despite recent advances in therapy. Previous studies have suggested medical plasma technology as a promising modality for melanoma treatment. However, the efficacy of plasmas operated under different ambient air conditions and the comparison of direct and indirect plasma treatments are mostly unexplored for this tumor entity. Moreover, exactly how plasma treatment affects melanoma metastasis has still not been explained. Using 3D tumor spheroid models and high-content imaging technology, we addressed these questions by utilizing one metastatic and one non-metastatic human melanoma cell line targeted with an argon plasma jet. Plasma treatment was toxic in both cell lines. Modulating the oxygen and nitrogen ambient air composition (100/0, 75/25, 50/50, 25/75, and 0/100) gave similar toxicity and reduced the spheroid growth for all conditions. This was the case for both direct and indirect treatments, with the former showing a treatment time-dependent response while the latter resulted in cytotoxicity with the longest treatment time investigated. Live-cell imaging of in-gel cultured spheroids indicated that plasma treatment did not enhance metastasis, and flow cytometry showed a significant modulation of S100A4 but not in any of the five other metastasis-related markers (β-catenin, E-cadherin, LEF1, SLUG, and ZEB1) investigated.
Collapse
Affiliation(s)
- Sybille Hasse
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (S.H.); tita-meder-@gmx.de (T.M.); (E.F.); (T.v.W.)
| | - Tita Meder
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (S.H.); tita-meder-@gmx.de (T.M.); (E.F.); (T.v.W.)
| | - Eric Freund
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (S.H.); tita-meder-@gmx.de (T.M.); (E.F.); (T.v.W.)
- Department of General, Visceral, Thoracic and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (S.H.); tita-meder-@gmx.de (T.M.); (E.F.); (T.v.W.)
- Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Walther-Rathenau-Str. 48, 17489 Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (S.H.); tita-meder-@gmx.de (T.M.); (E.F.); (T.v.W.)
- Correspondence:
| |
Collapse
|
19
|
Moritz J, Metelmann HR, Bekeschus S. Physical Plasma Treatment of Eight Human Cancer Cell Lines Demarcates Upregulation of CD112 as a Common Immunomodulatory Response Element. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2019.2936790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Griseti E, Merbahi N, Golzio M. Anti-Cancer Potential of Two Plasma-Activated Liquids: Implication of Long-Lived Reactive Oxygen and Nitrogen Species. Cancers (Basel) 2020; 12:E721. [PMID: 32204401 PMCID: PMC7140060 DOI: 10.3390/cancers12030721] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/23/2022] Open
Abstract
Cold atmospheric plasma-exposed culture medium may efficiently kill cancer cells in vitro. Due to the complexity of the medium obtained after plasma exposure, less complex physiological liquids, such as saline solutions and saline buffers, are gathering momentum. Among the plethora of reactive oxygen and nitrogen species (RONS) that are produced in these plasma-activated liquids, hydrogen peroxide, nitrite and nitrate appear to be mainly responsible for cytotoxic and genotoxic effects. Here, we evaluated the anti-cancer potential of plasma-activated phosphate-buffered saline (P-A PBS) and sodium chloride 0.9% (P-A NaCl), using a three-dimensional tumor model. Two epithelial cancer cell lines were used to evaluate cellular effects of either P-A PBS or P-A NaCl. Human colorectal cancer cells HCT 116 and human ovarian carcinoma, SKOV-3 were used to investigate the manner by which different cell types respond to different plasma-activated liquids treatments. Our investigations indicate that P-A PBS is more efficient than P-A NaCl mainly because RONS are produced in larger quantities. Indeed, we show that the cytotoxicity of these liquids directly correlates with the concentration of hydrogen peroxide and nitrite. Moreover, P-A PBS induced a faster-occurring and more pronounced cell death, which arose within deeper layers of the 3D multicellular spheroid models.
Collapse
Affiliation(s)
- Elena Griseti
- CNRS UMR 5089, Institut de Pharmacologie et de Biologie Structurale, IPBS, 205 Route de Narbonne, 31077 Toulouse, France;
- CNRS UMR 5213, Laboratoire des Plasmas et Conversion d’Énergie, Université Toulouse III- Paul Sabatier, LAPLACE, 118 Route de Narbonne-Bât, 3R3-31062 Toulouse, France
| | - Nofel Merbahi
- CNRS UMR 5213, Laboratoire des Plasmas et Conversion d’Énergie, Université Toulouse III- Paul Sabatier, LAPLACE, 118 Route de Narbonne-Bât, 3R3-31062 Toulouse, France
| | - Muriel Golzio
- CNRS UMR 5089, Institut de Pharmacologie et de Biologie Structurale, IPBS, 205 Route de Narbonne, 31077 Toulouse, France;
| |
Collapse
|
21
|
Bekeschus S, Eisenmann S, Sagwal SK, Bodnar Y, Moritz J, Poschkamp B, Stoffels I, Emmert S, Madesh M, Weltmann KD, von Woedtke T, Gandhirajan RK. xCT (SLC7A11) expression confers intrinsic resistance to physical plasma treatment in tumor cells. Redox Biol 2020; 30:101423. [PMID: 31931281 PMCID: PMC6957833 DOI: 10.1016/j.redox.2019.101423] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/18/2019] [Accepted: 12/30/2019] [Indexed: 12/30/2022] Open
Abstract
Cold physical plasma is a partially ionized gas investigated as a new anticancer tool in selectively targeting cancer cells in monotherapy or in combination with therapeutic agents. Here, we investigated the intrinsic resistance mechanisms of tumor cells towards physical plasma treatment. When analyzing the dose-response relationship to cold plasma-derived oxidants in 11 human cancer cell lines, we identified four 'resistant' and seven 'sensitive' cell lines. We observed stable intracellular glutathione levels following plasma treatment only in the 'resistant' cell lines indicative of altered antioxidant mechanisms. Assessment of proteins involved in GSH metabolism revealed cystine-glutamate antiporter xCT (SLC7A11) to be significantly more abundant in the 'resistant' cell lines as compared to 'sensitive' cell lines. This decisive role of xCT was confirmed by pharmacological and genetic inhibition, followed by cold physical plasma treatment. Finally, microscopy analysis of ex vivo plasma-treated human melanoma punch biopsies suggested a correlation between apoptosis and basal xCT protein abundance. Taken together, our results demonstrate that xCT holds the potential as a biomarker predicting the sensitivity of tumor cells towards plasma treatment.
Collapse
Affiliation(s)
- Sander Bekeschus
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| | - Sebastian Eisenmann
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Sanjeev Kumar Sagwal
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Yana Bodnar
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Juliane Moritz
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Broder Poschkamp
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Greifswald University Medical Center, Department of General, Visceral, Thoracic and Vascular Surgery, 17475, Greifswald, Germany
| | - Ingo Stoffels
- University Hospital Essen, Department of Dermatology, Venereology, and Allergology, University of Duisburg-Essen, 45122, Essen, Germany
| | - Steffen Emmert
- Rostock University Medical Center, Clinic for Dermatology and Venereology, Strempelstr. 13, 18057, Rostock, Germany
| | - Muniswamy Madesh
- Center for Precision Medicine, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Klaus-Dieter Weltmann
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Institute for Hygiene and Environmental Medicine, Walther-Rathenau-Str. 48, 17489, Greifswald, Germany
| | - Rajesh Kumar Gandhirajan
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| |
Collapse
|
22
|
Gas Plasma-Conditioned Ringer's Lactate Enhances the Cytotoxic Activity of Cisplatin and Gemcitabine in Pancreatic Cancer In Vitro and In Ovo. Cancers (Basel) 2020; 12:cancers12010123. [PMID: 31906595 PMCID: PMC7017174 DOI: 10.3390/cancers12010123] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/19/2019] [Accepted: 12/27/2019] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer is one of the most aggressive tumor entities. Diffuse metastatic infiltration of vessels and the peritoneum restricts curative surgery. Standard chemotherapy protocols include the cytostatic drug gemcitabine with limited efficacy at considerable toxicity. In search of a more effective and less toxic treatment modality, we tested in human pancreatic cancer cells (MiaPaca and PaTuS) a novel combination therapy consisting of cytostatic drugs (gemcitabine or cisplatin) and gas plasma-conditioned Ringer’s lactate that acts via reactive oxygen species. A decrease in metabolic activity and viability, change in morphology, and cell cycle arrest was observed in vitro. The combination treatment was found to be additively toxic. The findings were validated utilizing an in ovo tumor model of solid pancreatic tumors growing on the chorion-allantois membrane of fertilized chicken eggs (TUM-CAM). The combination of the drugs (especially cisplatin) with the plasma-conditioned liquid significantly enhanced the anti-cancer effects, resulting in the induction of cell death, cell cycle arrest, and inhibition of cell growth with both of the cell lines tested. In conclusion, our novel combination approach may be a promising new avenue to increase the tolerability and efficacy of locally applied chemotherapeutic in diffuse metastatic peritoneal carcinomatosis of the pancreas.
Collapse
|
23
|
ROS from Physical Plasmas: Redox Chemistry for Biomedical Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9062098. [PMID: 31687089 PMCID: PMC6800937 DOI: 10.1155/2019/9062098] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/17/2019] [Accepted: 08/25/2019] [Indexed: 12/24/2022]
Abstract
Physical plasmas generate unique mixes of reactive oxygen and nitrogen species (RONS or ROS). Only a bit more than a decade ago, these plasmas, operating at body temperature, started to be considered for medical therapy with considerably little mechanistic redox chemistry or biomedical research existing on that topic at that time. Today, a vast body of evidence is available on physical plasma-derived ROS, from their spatiotemporal resolution in the plasma gas phase to sophisticated chemical and biochemical analysis of these species once dissolved in liquids. Data from in silico analysis dissected potential reaction pathways of plasma-derived reactive species with biological membranes, and in vitro and in vivo experiments in cell and animal disease models identified molecular mechanisms and potential therapeutic benefits of physical plasmas. In 2013, the first medical plasma systems entered the European market as class IIa devices and have proven to be a valuable resource in dermatology, especially for supporting the healing of chronic wounds. The first results in cancer patients treated with plasma are promising, too. Due to the many potentials of this blooming new field ahead, there is a need to highlight the main concepts distilled from plasma research in chemistry and biology that serve as a mechanistic link between plasma physics (how and which plasma-derived ROS are produced) and therapy (what is the medical benefit). This inevitably puts cellular membranes in focus, as these are the natural interphase between ROS produced by plasmas and translation of their chemical reactivity into distinct biological responses.
Collapse
|
24
|
Bekeschus S, Freund E, Spadola C, Privat-Maldonado A, Hackbarth C, Bogaerts A, Schmidt A, Wende K, Weltmann KD, von Woedtke T, Heidecke CD, Partecke LI, Käding A. Risk Assessment of kINPen Plasma Treatment of Four Human Pancreatic Cancer Cell Lines with Respect to Metastasis. Cancers (Basel) 2019; 11:E1237. [PMID: 31450811 PMCID: PMC6769931 DOI: 10.3390/cancers11091237] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
Cold physical plasma has limited tumor growth in many preclinical models and is, therefore, suggested as a putative therapeutic option against cancer. Yet, studies investigating the cells' metastatic behavior following plasma treatment are scarce, although being of prime importance to evaluate the safety of this technology. Therefore, we investigated four human pancreatic cancer cell lines for their metastatic behavior in vitro and in chicken embryos (in ovo). Pancreatic cancer was chosen as it is particularly metastatic to the peritoneum and systemically, which is most predictive for outcome. In vitro, treatment with the kINPen plasma jet reduced pancreatic cancer cell activity and viability, along with unchanged or decreased motility. Additionally, the expression of adhesion markers relevant for metastasis was down-regulated, except for increased CD49d. Analysis of 3D tumor spheroid outgrowth showed a lack of plasma-spurred metastatic behavior. Finally, analysis of tumor tissue grown on chicken embryos validated the absence of an increase of metabolically active cells physically or chemically detached with plasma treatment. We conclude that plasma treatment is a safe and promising therapeutic option and that it does not promote metastatic behavior in pancreatic cancer cells in vitro and in ovo.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
- National Centre for Plasma Medicine (NZPM), Langenbeck-Virchow-Haus, Luisenstr. 58/59, 10117 Berlin, Germany.
| | - Eric Freund
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Chiara Spadola
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Angela Privat-Maldonado
- PLASMANT, Chemistry Department, University of Antwerp, 2610 Antwerp, Belgium
- Solid Tumor Immunology Group, Center for Oncological Research, University of Antwerp, 2610 Antwerp, Belgium
| | - Christine Hackbarth
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Annemie Bogaerts
- PLASMANT, Chemistry Department, University of Antwerp, 2610 Antwerp, Belgium
| | - Anke Schmidt
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- National Centre for Plasma Medicine (NZPM), Langenbeck-Virchow-Haus, Luisenstr. 58/59, 10117 Berlin, Germany
| | - Klaus-Dieter Weltmann
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- National Centre for Plasma Medicine (NZPM), Langenbeck-Virchow-Haus, Luisenstr. 58/59, 10117 Berlin, Germany
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- National Centre for Plasma Medicine (NZPM), Langenbeck-Virchow-Haus, Luisenstr. 58/59, 10117 Berlin, Germany
- Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Walther-Rathenau-Str. 48, 17489 Greifswald, Germany
| | - Claus-Dieter Heidecke
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Lars-Ivo Partecke
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - André Käding
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| |
Collapse
|