1
|
Ramalli A, Boni E, Giangrossi C, Mattesini P, Dallai A, Liebgott H, Tortoli P. Real-Time 3-D Spectral Doppler Analysis With a Sparse Spiral Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1742-1751. [PMID: 33444135 DOI: 10.1109/tuffc.2021.3051628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
2-D sparse arrays may push the development of low-cost 3-D systems, not needing to control thousands of elements by expensive application-specific integrated circuits (ASICs). However, there is still some concern about their suitability in applications, such as Doppler investigation, which inherently involve poor signal-to-noise ratios (SNRs). In this article, a novel real-time 3-D pulsed-wave (PW) Doppler system, based on a 256-element 2-D spiral array, is presented. Coded transmission (TX) and matched filtering were implemented to improve the system SNR. Standard sonograms as well as multigate spectral Doppler (MSD) profiles, along lines that can be arbitrarily located in different planes, are presented. The performance of the system was assessed quantitatively on experimental data obtained from a straight tube flow phantom. An SNR increase of 11.4 dB was measured by transmitting linear chirps instead of standard sinusoidal bursts. For a qualitative assessment of the system performance in more realistic conditions, an anthropomorphic phantom of the carotid arteries was used. Finally, real-time B-mode and MSD images were obtained from healthy volunteers.
Collapse
|
2
|
Giangrossi C, Meacci V, Ricci S, Matera R, Boni E, Dallai A, Tortoli P. Virtual Real-Time for High PRF Multiline Vector Doppler on ULA-OP 256. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:624-631. [PMID: 32813652 DOI: 10.1109/tuffc.2020.3017940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The recent development of high-frame-rate (HFR) imaging/Doppler methods based on the transmission of plane or diverging waves has proposed new challenges to echographic data management and display. Due to the huge amount of data that need to be processed at very high speed, the pulse repetition frequency (PRF) is typically limited to hundreds hertz or few kilohertz. In Doppler applications, a PRF limitation may result unacceptable since it inherently translates to a corresponding limitation in the maximum detectable velocity. In this article, the ULA-OP 256 implementation of a novel ultrasound modality, called virtual real-time (VRT), is described. First, for a given HFR RT modality, the scanner displays the processed results while saving channel data into an internal buffer. Then, ULA-OP 256 switches to VRT mode, according to which the raw data stored in the buffer are immediately reprocessed by the same hardware used in RT. In the two phases, the ULA-OP 256 calculation power can be differently distributed to increase the acquisition frame rate or the quality of processing results. VRT was here used to extend the PRF limit in a multiline vector Doppler (MLVD) application. In RT, the PRF was maximized at the expense of the display quality; in VRT, data were reprocessed at a lower rate in a high-quality display format, which provides more detailed flow information. Experiments are reported in which the MLVD technique is shown capable of working at 16-kHz PRF, so that flow jet velocities higher up to 3 m/s can be detected.
Collapse
|
3
|
van Knippenberg L, van Sloun RJG, Shulepov S, Bouwman RA, Mischi M. An Angle-Independent Cross-Sectional Doppler Method for Flow Estimation in the Common Carotid Artery. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:1513-1524. [PMID: 32086206 DOI: 10.1109/tuffc.2020.2975315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The Doppler ultrasound is the most common technique for noninvasive quantification of blood flow, which, in turn, is of major clinical importance for the assessment of the cardiovascular condition. In this article, a method is proposed in which the vessel is imaged in the short axis, which has the advantage of capturing the whole flow profile while measuring the vessel area simultaneously. This view is easier to obtain than the longitudinal image that is currently used in flow velocity estimation, reducing operator dependence. However, the Doppler angle in cross-sectional images is unknown since the vessel wall can no longer be used to estimate the flow direction. The proposed method to estimate the Doppler angle in these images is based on the elliptical intersection between a cylindrical vessel and the ultrasound plane. The parameters of this ellipse (major axis, minor axis, and rotation) are used to estimate the Doppler angle by solving a least-squares problem. Theoretical feasibility was shown in a geometrical model, after which the Doppler angle was estimated in simulated ultrasound images generated in Field II, yielding a mean error within 4°. In vitro, across 15 short-axis measurements with a wide variety of Doppler angles, errors in the flow estimates were below 10%, and in vivo, the average velocities in systole obtained from longitudinal ( v=69.1 cm/s) and cross-sectional ( v=66.5 cm/s) acquisitions were in agreement. Further research is required to validate these results on a larger population.
Collapse
|
4
|
Qiu Y, Yang D, Zhang Q, Chen K, Dong Y, Wang WP. V Flow technology in measurement of wall shear stress of common carotid arteries in healthy adults: Feasibility and normal values. Clin Hemorheol Microcirc 2020; 74:453-462. [PMID: 31683473 DOI: 10.3233/ch-190719] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To evaluate the feasibility of vector flow imaging technique (V Flow) in measurement of wall shear stress (WSS) of common carotid arteries (CCA) in healthy adults and to provide the normal WSS values assessed by V Flow. METHODS & MATERIALS This prospective study was approved by the Ethics Committee of our University. Eighty healthy adult volunteers were included (mean age 43.3 y, 47 females, 33 males). The volunteers were classified into three groups according to their age: group I (age 20 - 39 y), group II (age 40 - 59 y) and group III (age 60 - 80 y). Mindray Resona 8 ultrasound machine and a linear array transducer (3-9 MHz) was used, equipped with the updated V Flow function. Common carotid arteries of both sides were evaluated in three segments (initial segment, middle segment and near bifurcation segment). The WSS values of CCA were measured by two independent radiologists. The intraclass correlation coefficient (ICC) of observer reliability in WSS measurement was calculated. Inter-observer reproducibility was also evaluated with the 95% Bland-Altman limits of agreement (LOA). RESULTS V Flow measurements were performed successfully in 79 volunteers (98.8 %, 79/80). The mean value of WSS in right CCA was (0.66±0.24) Pa, in left CCA was (0.66±0.18) Pa (P > 0.05). Mean WSS value had a moderately negative correlation with age group (P < 0.05). The mean WSS value of group I(mean±SD, 0.75±0.25 Pa) is larger than group II (mean±SD, 0.62±0.13 Pa) and group III (mean±SD, 0.49±0.11 Pa) (P < 0.05). The ICC of observer reliability of group I, II and III was 0.96 (95% confidence interval (95% CI) 0.92-0.98), 0.94 (95% CI 0.88-0.97), 0.93 (95% CI 0.76-0.98) respectively. The Bland-Altman plots showed that the 95% LOA were -0.17-0.12 (Pa) for group I, -0.09-0.13 (Pa) for group II and -0.08-0.10 (Pa) for group III. CONCLUSION V Flow measurement is a simple, rapid and feasible imaging method for the WSS assessment of CCA in healthy volunteers, which will probably be an important tool for assessing CCA function.
Collapse
Affiliation(s)
- Yijie Qiu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Daohui Yang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi Zhang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kailing Chen
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen-Ping Wang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Jensen J, Hoyos CAV, Traberg MS, Olesen JB, Tomov BG, Moshavegh R, Holbek S, Stuart MB, Ewertsen C, Hansen KL, Thomsen C, Nielsen MB, Jensen JA. Accuracy and Precision of a Plane Wave Vector Flow Imaging Method in the Healthy Carotid Artery. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:1727-1741. [PMID: 29735315 DOI: 10.1016/j.ultrasmedbio.2018.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 03/04/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
The objective of the study described here was to investigate the accuracy and precision of a plane wave 2-D vector flow imaging (VFI) method in laminar and complex blood flow conditions in the healthy carotid artery. The approach was to study (i) the accuracy for complex flow by comparing the velocity field from a computational fluid dynamics (CFD) simulation to VFI estimates obtained from the scan of an anthropomorphic flow phantom and from an in vivo scan; (ii) the accuracy for laminar unidirectional flow in vivo by comparing peak systolic velocities from VFI with magnetic resonance angiography (MRA); (iii) the precision of VFI estimation in vivo at several evaluation points in the vessels. The carotid artery at the bifurcation was scanned using both fast plane wave ultrasound and MRA in 10 healthy volunteers. The MRA geometry acquired from one of the volunteers was used to fabricate an anthropomorphic flow phantom, which was also scanned using the fast plane wave sequence. The same geometry was used in a CFD simulation to calculate the velocity field. Results indicated that similar flow patterns and vortices were estimated with CFD and VFI in the phantom for the carotid bifurcation. The root-mean-square difference between CFD and VFI was within 0.12 m/s for velocity estimates in the common carotid artery and the internal branch. The root-mean-square difference was 0.17 m/s in the external branch. For the 10 volunteers, the mean difference between VFI and MRA was -0.17 m/s for peak systolic velocities of laminar flow in vivo. The precision in vivo was calculated as the mean standard deviation (SD) of estimates aligned to the heart cycle and was highest in the center of the common carotid artery (SD = 3.6% for velocity magnitudes and 4.5° for angles) and lowest in the external branch and for vortices (SD = 10.2% for velocity magnitudes and 39° for angles). The results indicate that plane wave VFI measures flow precisely and that estimates are in good agreement with a CFD simulation and MRA.
Collapse
Affiliation(s)
- Jonas Jensen
- Center for Fast Ultrasound Imaging, Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark.
| | | | - Marie Sand Traberg
- Center for Fast Ultrasound Imaging, Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Jacob Bjerring Olesen
- Center for Fast Ultrasound Imaging, Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Borislav Gueorguiev Tomov
- Center for Fast Ultrasound Imaging, Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Ramin Moshavegh
- Center for Fast Ultrasound Imaging, Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Simon Holbek
- Center for Fast Ultrasound Imaging, Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Matthias Bo Stuart
- Center for Fast Ultrasound Imaging, Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Caroline Ewertsen
- Department of Radiology, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Carsten Thomsen
- Department of Radiology, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Jørgen Arendt Jensen
- Center for Fast Ultrasound Imaging, Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
6
|
Seo J, Pietrangelo SJ, Sodini CG, Lee HS. Motion Tolerant Unfocused Imaging of Physiological Waveforms for Blood Pressure Waveform Estimation Using Ultrasound. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:766-779. [PMID: 29733280 DOI: 10.1109/tuffc.2018.2812124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper details unfocused imaging using single-element ultrasound transducers for motion tolerant arterial blood pressure (ABP) waveform estimation. The ABP waveform is estimated based on pulse wave velocity and arterial pulsation through Doppler and M-mode ultrasound. This paper discusses approaches to mitigate the effect of increased clutter due to unfocused imaging on blood flow and diameter waveform estimation. An intensity reduction model (IRM) estimator is described to track the change of diameter, which outperforms a complex cross-correlation model (C3M) estimator in low contrast environments. An adaptive clutter filtering approach is also presented, which reduces the increased Doppler angle estimation error due to unfocused imaging. Experimental results in a flow phantom demonstrate that flow velocity and diameter waveforms can be reliably measured with wide lateral offsets of the transducer position. The distension waveform estimated from human carotid M-mode imaging using the IRM estimator shows physiological baseline fluctuations and 0.6-mm pulsatile diameter change on average, which is within the expected physiological range. These results show the feasibility of this low cost and portable ABP waveform estimation device.
Collapse
|
7
|
Ricci S, Ramalli A, Bassi L, Boni E, Tortoli P. Real-Time Blood Velocity Vector Measurement Over a 2-D Region. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:201-209. [PMID: 29389652 DOI: 10.1109/tuffc.2017.2781715] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Quantitative blood velocity measurements, as currently implemented in commercial ultrasound scanners, are based on pulsed-wave (PW) spectral Doppler and are limited to detect the axial component of the velocity in a single sample volume. On the other hand, vector Doppler methods produce angle-independent estimates by, e.g., combining the frequency shifts measured from different directions. Moreover, thanks to the transmission of plane waves, the investigation of a 2-D region is possible with high temporal resolution, but, unfortunately, the clinical use of these methods is hampered by the massive calculation power required for their real-time execution. In this paper, we present a novel approach based on the transmission of plane waves and the simultaneous reception of echoes from 16 distinct subapertures of a linear array probe, which produces eight lines distributed over a 2-D region. The method was implemented on the ULAO-OP 256 research scanner and tested both in phantom and in vivo. A continuous real-time refresh rate of 36 Hz was achieved in duplex combination with a standard B-mode at pulse repetition frequency of 8 kHz. Accuracies of -11% on velocity and of 2°on angle measurements have been obtained in phantom experiments. Accompanying movies show how the method improves the quantitative measurements of blood velocities and details the flow configurations in the carotid artery of a volunteer.
Collapse
|
8
|
Correia M, Provost J, Tanter M, Pernot M. 4D ultrafast ultrasound flow imaging:in vivoquantification of arterial volumetric flow rate in a single heartbeat. Phys Med Biol 2016; 61:L48-L61. [DOI: 10.1088/0031-9155/61/23/l48] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Jensen JA, Nikolov SI, Yu ACH, Garcia D. Ultrasound Vector Flow Imaging-Part I: Sequential Systems. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1704-1721. [PMID: 27824555 DOI: 10.1109/tuffc.2016.2600763] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper gives a review of the most important methods for blood velocity vector flow imaging (VFI) for conventional sequential data acquisition. This includes multibeam methods, speckle tracking, transverse oscillation, color flow mapping derived VFI, directional beamforming, and variants of these. The review covers both 2-D and 3-D velocity estimation and gives a historical perspective on the development along with a summary of various vector flow visualization algorithms. The current state of the art is explained along with an overview of clinical studies conducted and methods for presenting and using VFI. A number of examples of VFI images are presented, and the current limitations and potential solutions are discussed.
Collapse
|
10
|
Yiu BYS, Yu ACH. Least-Squares Multi-Angle Doppler Estimators for Plane-Wave Vector Flow Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1733-1744. [PMID: 27824557 DOI: 10.1109/tuffc.2016.2582514] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Designing robust Doppler vector estimation strategies for use in plane-wave imaging schemes based on unfocused transmissions is a topic that has yet to be studied in depth. One potential solution is to use a multi-angle Doppler estimation approach that computes flow vectors via least-squares fitting, but its performance has not been established. Here, we investigated the efficacy of multi-angle Doppler vector estimators by: 1) comparing its performance with respect to the classical dual-angle (cross-beam) Doppler vector estimator and 2) examining the working effects of multi-angle Doppler vector estimators on flow visualization quality in the context of dynamic flow path rendering. Implementing Doppler vector estimators that use different combinations of transmit (Tx) and receive (Rx) steering angles, our analysis has compared the classical dual-angle Doppler method, a 5-Tx version of dual-angle Doppler, and various multi-angle Doppler configurations based on 3 Tx and 5 Tx. Two angle spans (10°, 20°) were examined in forming the steering angles. In imaging scenarios with known flow profiles (rotating disk and straight-tube parabolic flow), the 3-Tx, 3-Rx and 5-Tx, 5-Rx multi-angle configurations produced vector estimates with smaller variability compared with the dual-angle method, and the estimation results were more consistent with the use of a 20° angle span. Flow vectors derived from multi-angle Doppler estimators were also found to be effective in rendering the expected flow paths in both rotating disk and straight-tube imaging scenarios, while the ones derived from the dual-angle estimator yielded flow paths that deviated from the expected course. These results serve to attest that using multi-angle least-squares Doppler vector estimators, flow visualization can be consistently achieved.
Collapse
|
11
|
Osmanski BF, Montaldo G, Tanter M. Out-of-plane Doppler imaging based on ultrafast plane wave imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2015; 62:625-636. [PMID: 25881341 DOI: 10.1109/tuffc.2014.006575] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Retrieving the out-of-plane blood flow velocity vector from two-dimensional transverse acquisitions of large vessels could improve the quantification of flow rate and maximum speed. The in-plane vector flow component can be computed easily using the Doppler frequency shift. The main problem is estimating the angle between the probe imaging plane and the vessel axis to derive the out-of-plane component from in-plane measurements. In this article, we study the case in which the velocity vector can be decomposed on two directions: the out-of-plane direction and the in-plane depth direction. We explore the combination of a technique called intrinsic spectral broadening with ultrafast plane wave imaging to retrieve the out-of-plane component of the flow velocity vector. Using a one-time probe calibration of this intrinsic spectral broadening, out-of-plane angle and flow speed can be recovered easily, thus avoiding approximations of a complex theoretical analysis. For the calibration step, ultrafast plane wave imaging permits a fast calibration procedure for the Doppler intrinsic spectral broadening. In vitro experimental validations are performed on a homogeneous flow phantom and a Poiseuille flow; the absolute speed was retrieved with 6% error. The potential of the technique is demonstrated in vivo on the human carotid artery. Combined with in-plane vector flow approaches, this out-of-plane Doppler imaging method paves the way to threedimensional vector flow imaging using only conventional onedimensional probe technology.
Collapse
|
12
|
Jensen J. Transverse spectral velocity estimation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:1815-1823. [PMID: 25389160 DOI: 10.1109/tuffc.2014.006488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A transverse oscillation (TO)-based method for calculating the velocity spectrum for fully transverse flow is described. Current methods yield the mean velocity at one position, whereas the new method reveals the transverse velocity spectrum as a function of time at one spatial location. A convex array probe is used along with two different estimators based on the correlation of the received signal. They can estimate the velocity spectrum as a function of time as for ordinary spectrograms, but they also work at a beam-to-flow angle of 90°. The approach is validated using simulations of pulsatile flow using the Womersly-Evans flow model. The relative bias of the mean estimated frequency is 13.6% and the mean relative standard deviation is 14.3% at 90°, where a traditional estimator yields zero velocity. Measurements have been conducted with an experimental scanner and a convex array transducer. A pump generated artificial femoral and carotid artery flow in the phantom. The estimated spectra degrade when the angle is different from 90°, but are usable down to 60° to 70°. Below this angle the traditional spectrum is best and should be used. The conventional approach can automatically be corrected for angles from 0° to 70° to give fully quantitative velocity spectra without operator intervention.
Collapse
|
13
|
Albinsson J, Brorsson S, Ahlgren AR, Cinthio M. Improved tracking performance of Lagrangian block-matching methodologies using block expansion in the time domain: in silico, phantom and in vivo evaluations. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:2508-2520. [PMID: 25130445 DOI: 10.1016/j.ultrasmedbio.2014.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 05/06/2014] [Accepted: 05/14/2014] [Indexed: 06/03/2023]
Abstract
The aim of this study was to evaluate tracking performance when an extra reference block is added to a basic block-matching method, where the two reference blocks originate from two consecutive ultrasound frames. The use of an extra reference block was evaluated for two putative benefits: (i) an increase in tracking performance while maintaining the size of the reference blocks, evaluated using in silico and phantom cine loops; (ii) a reduction in the size of the reference blocks while maintaining the tracking performance, evaluated using in vivo cine loops of the common carotid artery where the longitudinal movement of the wall was estimated. The results indicated that tracking accuracy improved (mean = 48%, p < 0.005 [in silico]; mean = 43%, p < 0.01 [phantom]), and there was a reduction in size of the reference blocks while maintaining tracking performance (mean = 19%, p < 0.01 [in vivo]). This novel method will facilitate further exploration of the longitudinal movement of the arterial wall.
Collapse
Affiliation(s)
- John Albinsson
- Department of Biomedical Engineering, Lund University, Lund, Sweden.
| | - Sofia Brorsson
- School of Business and Engineering, PRODEA Research Group, Halmstad University, Halmstad, Sweden; Health and Welfare, Dala Sports Academy, Dalarna University, Falun, Sweden
| | - Asa Rydén Ahlgren
- Clinical Physiology and Nuclear Medicine Unit, Department of Clinical Sciences, Lund University, Malmo, Sweden
| | - Magnus Cinthio
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Yiu BYS, Lai SSM, Yu ACH. Vector projectile imaging: time-resolved dynamic visualization of complex flow patterns. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:2295-309. [PMID: 24972498 DOI: 10.1016/j.ultrasmedbio.2014.03.014] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 03/02/2014] [Accepted: 03/10/2014] [Indexed: 05/22/2023]
Abstract
Achieving non-invasive, accurate and time-resolved imaging of vascular flow with spatiotemporal fluctuations is well acknowledged to be an ongoing challenge. In this article, we present a new ultrasound-based framework called vector projectile imaging (VPI) that can dynamically render complex flow patterns over an imaging view at millisecond time resolution. VPI is founded on three principles: (i) high-frame-rate broad-view data acquisition (based on steered plane wave firings); (ii) flow vector estimation derived from multi-angle Doppler analysis (coupled with data regularization and least-squares fitting); (iii) dynamic visualization of color-encoded vector projectiles (with flow speckles displayed as adjunct). Calibration results indicated that by using three transmit angles and three receive angles (-10°, 0°, +10° for both), VPI can consistently compute flow vectors in a multi-vessel phantom with three tubes positioned at different depths (1.5, 4, 6 cm), oriented at different angles (-10°, 0°, +10°) and of different sizes (dilated diameter: 2.2, 4.4 and 6.3 mm; steady flow rate: 2.5 mL/s). The practical merit of VPI was further illustrated through an anthropomorphic flow phantom investigation that considered both healthy and stenosed carotid bifurcation geometries. For the healthy bifurcation with 1.2-Hz carotid flow pulses, VPI was able to render multi-directional and spatiotemporally varying flow patterns (using a nominal frame rate of 416 fps or 2.4-ms time resolution). In the case of stenosed bifurcations (50% eccentric narrowing), VPI enabled dynamic visualization of flow jet and recirculation zones. These findings suggest that VPI holds promise as a new tool for complex flow analysis.
Collapse
Affiliation(s)
- Billy Y S Yiu
- Medical Engineering Program, University of Hong Kong, Pokfulam, Hong Kong
| | - Simon S M Lai
- Medical Engineering Program, University of Hong Kong, Pokfulam, Hong Kong
| | - Alfred C H Yu
- Medical Engineering Program, University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
15
|
Fredriksen TD, Avdal J, Ekroll IK, Dahl T, Lovstakken L, Torp H. Investigations of spectral resolution and angle dependency in a 2-D tracking Doppler method. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:1161-1170. [PMID: 24960705 DOI: 10.1109/tuffc.2014.3015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
An important source of error in velocity measurements from conventional pulsed wave (PW) Doppler is the angle used for velocity calibration. Because there are great uncertainties and interobserver variability in the methods used for Doppler angle correction in the clinic today, it is desirable to develop new and more robust methods. In this work, we have investigated how a previously presented method, 2-D tracking Doppler, depends on the tracking angle. A signal model was further developed to include tracking along any angle, providing velocity spectra which showed good agreement with both experimental data and simulations. The full-width at half-maximum (FWHM) bandwidth and the peak value of predicted power spectra were calculated for varying tracking angles. It was shown that the spectra have lowest bandwidth and maximum power when the tracking angle is equal to the beam-to-flow angle. This may facilitate new techniques for velocity calibration, e.g., by manually adjusting the tracking angle, while observing the effect on the spectral display. An in vitro study was performed in which the Doppler angles were predicted by the minimum FWHM and the maximum power of the 2-D tracking Doppler spectra for 3 different flow angles. The estimated Doppler angles had an overall error of 0.24° ± 0.75° when using the minimum FWHM. With an in vivo example, it was demonstrated that the 2-D tracking Doppler method is suited for measurements in a patient with carotid stenosis.
Collapse
|
16
|
Ricci S, Bassi L, Tortoli P. Real-time vector velocity assessment through multigate Doppler and plane waves. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:314-324. [PMID: 24474137 DOI: 10.1109/tuffc.2014.6722616] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Several ultrasound (US) methods have been recently proposed to produce 2-D velocity vector fields with high temporal and spatial resolution. However, the real-time implementation in US scanners is heavily hampered by the high calculation power required. In this work, we report a real-time vector Doppler imaging method which has been integrated in an open research system. The proposed approach exploits the plane waves transmitted from two sub-arrays of a linear probe to estimate the velocity vectors in 512 sample volumes aligned along the probe axis. The method has been tested for accuracy and reproducibility through simulations and in vitro experiments. Simulations over a 0° to 90° angle range of a 0.5 m/s peak parabolic flow have yielded 0.75° bias and 1.1° standard deviation for direction measurement, and 0.6 cm/s bias with 3.1% coefficient of variation for velocity assessment. In vitro tests have supported the simulation results. Preliminary measurements on the carotid artery of a volunteer have highlighted the real-time system capability of imaging complex flow configurations in an intuitive, easy, and quick way, as shown in a sample supplementary movie. These features have allowed reproducible peak velocity measurements to be obtained, as needed for quantitative investigations on patients.
Collapse
|
17
|
Vilkomerson D, Ricci S, Tortoli P. Finding the peak velocity in a flow from its Doppler spectrum. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:2079-2088. [PMID: 24081256 DOI: 10.1109/tuffc.2013.2798] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The signal backscattered by blood cells crossing a sample volume produces a Doppler power spectrum determined by the scatterers¿ velocity distribution. Because of intrinsic spectral broadening, the peak Doppler frequency observed does not correspond to the peak velocity in the flow. Several methods have been proposed for estimating the maximum velocity component--an important clinical parameter--but these methods are approximate, based on heuristic thresholds that can be inaccurate and strongly affected by noise. Reported here is a method of modeling the Doppler power spectrum of a flow, and from that model, determining what Doppler frequency on the descending slope of the power spectrum corresponds to the peak velocity in the insonated flow. It is shown that, for a fully insonated flow with a parabolic velocity distribution, the peak velocity corresponds to the Doppler frequency at the half-power point on that slope. The method is demonstrated to be robust with regard to the effects of noise and valid for a wide range of acquisition parameters. Experimental maximum velocity measurements on steady flows with rates between 100 and 300 mL/min (peak velocity range 6.6 cm/s to 19.9 cm/s) show a mean bias error that is smaller than 1%.
Collapse
|
18
|
Pihl MJ, Marcher J, Jensen JA. Phased-array vector velocity estimation using transverse oscillations. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2012; 59:2662-2675. [PMID: 23221215 DOI: 10.1109/tuffc.2012.2507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A method for estimating the 2-D vector velocity of blood using a phased-array transducer is presented. The approach is based on the transverse oscillation (TO) method. The purposes of this work are to expand the TO method to a phased-array geometry and to broaden the potential clinical applicability of the method. A phased-array transducer has a smaller footprint and a larger field of view than a linear array, and is therefore more suited for, e.g., cardiac imaging. The method relies on suitable TO fields, and a beamforming strategy employing diverging TO beams is proposed. The implementation of the TO method using a phased-array transducer for vector velocity estimation is evaluated through simulation and flow-rig measurements are acquired using an experimental scanner. The vast number of calculations needed to perform flow simulations makes the optimization of the TO fields a cumbersome process. Therefore, three performance metrics are proposed. They are calculated based on the complex TO spectrum of the combined TO fields. It is hypothesized that the performance metrics are related to the performance of the velocity estimates. The simulations show that the squared correlation values range from 0.79 to 0.92, indicating a correlation between the performance metrics of the TO spectrum and the velocity estimates. Because these performance metrics are much more readily computed, the TO fields can be optimized faster for improved velocity estimation of both simulations and measurements. For simulations of a parabolic flow at a depth of 10 cm, a relative (to the peak velocity) bias and standard deviation of 4% and 8%, respectively, are obtained. Overall, the simulations show that the TO method implemented on a phased-array transducer is robust with relative standard deviations around 10% in most cases. The flow-rig measurements show similar results. At a depth of 9.5 cm using 32 emissions per estimate, the relative standard deviation is 9% and the relative bias is -9%. At the center of the vessel, the velocity magnitude is estimated to be 0.25 ± 0.023 m/s, compared with an expected peak velocity magnitude of 0.25 m/s, and the beam-to-flow angle is calculated to be 89.3° ± 0.77°, compared with an expected angle value between 89° and 90°. For steering angles up to ±20° degrees, the relative standard deviation is less than 20%. The results also show that a 64-element transducer implementation is feasible, but with a poorer performance compared with a 128-element transducer. The simulation and experimental results demonstrate that the TO method is suitable for use in conjunction with a phased-array transducer, and that 2-D vector velocity estimation is possible down to a depth of 15 cm.
Collapse
Affiliation(s)
- Michael J Pihl
- Center for Fast Ultrasound Imaging, Department of Electrical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | | | | |
Collapse
|
19
|
Wang M, Chen J. Volumetric Flow Measurement Using an Implantable CMUT Array. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2011; 5:214-222. [PMID: 23851472 DOI: 10.1109/tbcas.2010.2095848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This paper describes volumetric-flow velocity measurement using an implantable capacitive micromachined ultrasonic transducer (CMUT) array. The array is comprised of multiple-concentric CMUT rings for ultrasound transmission and an outmost annular CMUT array for ultrasound reception. Microelectromechanical-system (MEMS) fabrication technology allows reception CMUT on this flowmeter to be implemented with a different membrane thickness and gap height than that of transmission CMUTs, optimizing the performance of these two different kinds of devices. The silicon substrate of this 2-mm-diameter CMUT ring array was bulk micromachined to approximately 80 to 100 μm thick, minimizing tissue disruption. The blood-flow velocity was detected using pulse ultrasound Doppler by comparing the demodulated echo ultrasound with the incident ultrasound. The demodulated ultrasound signal was sampled by a pulse delayed in time domain from the transmitted burst, which corresponds to detecting the signal at a specific distance. The flow tube/vessel diameter was detected through the time-flight delay difference from near and far wall reflections, which was measured from the ultrasound pulse echo. The angle between the ultrasound beam and the flow was found by using the cross-correlation from consecutive ultrasound echoes. Artificial blood flowing through three different polymer tubes was experimented with, while keeping the same volumetric flow rate. The discrepancy in flow measurement results between this CMUT meter and a calibrated laser Doppler flowmeter is less than 5%.
Collapse
|
20
|
Cinthio M, Jansson T, Eriksson A, Ahlgren ÅR, Persson HW, Lindström K. Evaluation of an algorithm for arterial lumen diameter measurements by means of ultrasound. Med Biol Eng Comput 2010; 48:1133-40. [DOI: 10.1007/s11517-010-0660-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2009] [Accepted: 06/26/2010] [Indexed: 10/19/2022]
|
21
|
Tortoli P, Dallai A, Boni E, Francalanci L, Ricci S. An automatic angle tracking procedure for feasible vector Doppler blood velocity measurements. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:488-496. [PMID: 20133036 DOI: 10.1016/j.ultrasmedbio.2009.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 11/06/2009] [Accepted: 11/12/2009] [Indexed: 05/28/2023]
Abstract
Two-dimensional angle-independent blood velocity estimates typically combine the Doppler frequencies independently measured by two ultrasound beams with known interbeam angle. A different dual-beam approach was recently introduced in which one (reference) beam is used to identify the flow direction, and the second (measuring) beam directly estimates the true flow velocity at known beam-flow angle. In this paper, we present a procedure to automatically steer the two beams along optimal orientations so that the velocity magnitude can be measured. The operator only takes care of locating the Doppler sample volume in the region of interest and, through the extraction of appropriate parameters from the Doppler spectrum, the reference beam is automatically steered toward right orientation to the flow. The velocity magnitude is thus estimated by the measuring beam, which is automatically oriented with respect to the (known) flow direction at a suitable Doppler angle. The implementation of the new angle tracking method in the ULtrasound Advanced Open Platform (ULA-OP), connected to a linear array transducer, is reported. A series of experiments shows that the proposed method rapidly locks the flow direction and measures the velocity magnitude with low variability for a large range of initial probe orientations. In vitro tests conducted in both steady and pulsatile flow conditions produced coefficients of variability (CV) below 2.3% and 8.3%, respectively. The peak systolic velocities have also been measured in the common carotid arteries of 13 volunteers, with mean CV of 7%.
Collapse
Affiliation(s)
- Piero Tortoli
- Department of Electronics and Telecommunications, Università degli Studi di Firenze, Florence, Italy.
| | | | | | | | | |
Collapse
|
22
|
Ricci S, Diciotti S, Francalanci L, Tortoli P. Accuracy and reproducibility of a novel dual-beam vector Doppler method. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:829-838. [PMID: 19110369 DOI: 10.1016/j.ultrasmedbio.2008.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 10/13/2008] [Accepted: 10/24/2008] [Indexed: 05/27/2023]
Abstract
Conventional Doppler ultrasound (US) investigations are limited to detect only the axial component of the blood velocity vector. A novel dual-beam method has been recently proposed in which the Doppler angle is estimated through a reference US beam, and the velocity magnitude through a measuring US beam, respectively. In this study, the performance of such a method has been assessed quantitatively through in vitro and in vivo measurements made in different experimental conditions. In vitro, more than 300 acquisitions were completed using seven transducers to insonify a straight tube phantom at different Doppler angles. In steady laminar flow conditions, the velocity magnitude was measured with mean error of -1.9% (95% confidence interval: -2.33% to -1.47%) and standard deviation of 3.4%, with respect to a reference velocity. In pulsatile flow conditions, reproducibility tests of the entire velocity waveforms provided an average coefficient of variation (CV) of 6.9%. For peak velocity measurements made at five Doppler angles and three flow rates, the intrasession and intersession CVs were in the range 0.8-3.7% and 2.9-10.6%, respectively. The peak systolic velocities (PSVs) in the common carotid arteries of 21 volunteers were estimated with 95% limits of agreement of +/- 9.6 cm/s (intersession). This analysis shows that the proposed dual-beam method is capable of overcoming the Doppler angle ambiguity by producing reliable velocity measurements over a large set of experimental conditions.
Collapse
Affiliation(s)
- Stefano Ricci
- Department of Electronics and Telecommunications, Università degli Studi di Firenze, Firenze, Italy
| | | | | | | |
Collapse
|
23
|
Carson PL, Fenster A. Anniversary paper: evolution of ultrasound physics and the role of medical physicists and the AAPM and its journal in that evolution. Med Phys 2009; 36:411-28. [PMID: 19291980 DOI: 10.1118/1.2992048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Ultrasound has been the greatest imaging modality worldwide for many years by equipment purchase value and by number of machines and examinations. It is becoming increasingly the front end imaging modality; serving often as an extension of the physician's fingers. We believe that at the other extreme, high-end systems will continue to compete with all other imaging modalities in imaging departments to be the method of choice for various applications, particularly where safety and cost are paramount. Therapeutic ultrasound, in addition to the physiotherapy practiced for many decades, is just coming into its own as a major tool in the long progression to less invasive interventional treatment. The physics of medical ultrasound has evolved over many fronts throughout its history. For this reason, a topical review, rather than a primarily chronological one is presented. A brief review of medical ultrasound imaging and therapy is presented, with an emphasis on the contributions of medical physicists, the American Association of Physicists in Medicine (AAPM) and its publications, particularly its journal Medical Physics. The AAPM and Medical Physics have contributed substantially to training of physicists and engineers, medical practitioners, technologists, and the public.
Collapse
Affiliation(s)
- Paul L Carson
- Department of Radiology, University of Michigan Health System, 3218C Medical Science I, B Wing SPC 5667, 1301 Catherine Street, Ann Arbor, Michigan 48109-5667, USA.
| | | |
Collapse
|