1
|
Iacovacci V, Diller E, Ahmed D, Menciassi A. Medical Microrobots. Annu Rev Biomed Eng 2024; 26:561-591. [PMID: 38594937 DOI: 10.1146/annurev-bioeng-081523-033131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Scientists around the world have long aimed to produce miniature robots that can be controlled inside the human body to aid doctors in identifying and treating diseases. Such microrobots hold the potential to access hard-to-reach areas of the body through the natural lumina. Wireless access has the potential to overcome drawbacks of systemic therapy, as well as to enable completely new minimally invasive procedures. The aim of this review is fourfold: first, to provide a collection of valuable anatomical and physiological information on the target working environments together with engineering tools for the design of medical microrobots; second, to provide a comprehensive updated survey of the technological state of the art in relevant classes of medical microrobots; third, to analyze currently available tracking and closed-loop control strategies compatible with the in-body environment; and fourth, to explore the challenges still in place, to steer and inspire future research.
Collapse
Affiliation(s)
- Veronica Iacovacci
- Department of Excellence Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
- BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy; ,
| | - Eric Diller
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Robotics Institute, University of Toronto, Toronto, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - Daniel Ahmed
- Acoustic Robotics Systems Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Rüschlikon, Switzerland
| | - Arianna Menciassi
- Department of Excellence Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
- BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy; ,
| |
Collapse
|
2
|
Tanaka T, Imai R, Takeshima H. Split-based elevational localization of photoacoustic guidewire tip by 1D array probe using spatial impulse response. Phys Med Biol 2024; 69:065013. [PMID: 38344935 DOI: 10.1088/1361-6560/ad27fe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/09/2024] [Indexed: 03/20/2024]
Abstract
Objective. Photoacoustic emitters on the tip of a therapeutic device have been intensively studied for echo-guided intervention purposes. In this study, a novel method for localizing the guidewire tip emitter in the elevation direction using a 1D array probe is proposed to resolve the issue of the tip potentially deviating from the ultrasound-imaged plane.Approach. Our method uses the 'interference split' that appears when the emitter is off-plane. Here, a point source from the emitter splits into two points in images. Based on the split, 'split-based elevation localization (SEL)' is introduced to estimate the absolute elevation position of the emitter. Additionally, 'Signed SEL' incorporates an asymmetric feature into the 1D probe to obtain the sign of the elevation localization. An attenuative coupler is attached to the half side of the probe to control the interference split. In SEL and Signed SEL, we propose a modeled split matching (MSM) algorithm to localize the tip position. MSM performs pattern matching of a measured split waveform with modeled split waveforms corresponding to all emitter positions in a region of interest. The modeled waveforms are precalculated using the spatial impulse response. The proposed method is numerically and experimentally validated.Main results. Numerical simulations for time-domain wave propagation clearly demonstrated the interference split phenomena. In the experimental validation with a vessel-mimicking phantom, the proposed methods successfully estimated the elevation positions,yb.SEL exhibited a root-mean-squared error (RMSE) of 2.0 mm for the range of 0 mm ≤yb≤ 30 mm, while Signed SEL estimated the absolute position with an RMSE of 2.4 mm and the sign with an accuracy of 80.8% for the range of -30 mm ≤yb≤ 30 mm.Significance.These results suggest that the proposed method could provide approximate tip positions and help sonographers track it by fanning the probe.
Collapse
Affiliation(s)
- Tomohiko Tanaka
- Innovative Technology Laboratory, FUJIFILM Healthcare Corporation, Tokyo, Japan
| | - Ryo Imai
- Research & Development Group, Hitachi, Ltd, Tokyo, Japan
| | - Hirozumi Takeshima
- Innovative Technology Laboratory, FUJIFILM Healthcare Corporation, Tokyo, Japan
| |
Collapse
|
3
|
Malamal G, Schwab HM, Panicker MR. Enhanced Needle Visualization With Reflection Tuned Apodization Based on the Radon Transform for Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1482-1493. [PMID: 37721881 DOI: 10.1109/tuffc.2023.3316284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
In ultrasound (US)-guided interventions, accurately tracking and visualizing needles during in-plane insertions are significant challenges due to strong directional specular reflections. These reflections violate the geometrical delay and apodization estimations in the conventional delay and sum beamforming (DASB) degrading the visualization of needles. This study proposes a novel reflection tuned apodization (RTA) to address this issue and facilitate needle enhancement through DASB. The method leverages both temporal and angular information derived from the Radon transforms of the radio frequency (RF) data from plane-wave imaging to filter the specular reflections from the needle and their directivity. The directivity information is translated into apodization center maps through time-to-space mapping in the Radon domain, which is subsequently integrated into DASB. We assess the influence of needle angulations, projection angles in the Radon transform, needle gauge sizes, and the presence of multiple specular interfaces on the approach. The analysis shows that the method surpasses conventional DASB in enhancing the image quality of needle interfaces while preserving the diffuse scattering from the surrounding tissues without significant computational overhead. The work offers promising prospects for improved outcomes in US-guided interventions and better insights into characterizing US reflections with Radon transforms.
Collapse
|
4
|
Malamal G, Panicker MR. On the physics of ultrasound transmission for in-plane needle tracking in guided interventions. Biomed Phys Eng Express 2023; 9. [PMID: 36898145 DOI: 10.1088/2057-1976/acc338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/10/2023] [Indexed: 03/12/2023]
Abstract
Objective.In ultrasound (US) guided interventions, the accurate visualization and tracking of needles is a critical challenge, particularly during in-plane insertions. An inaccurate identification and localization of needles lead to severe inadvertent complications and increased procedure times. This is due to the inherent specular reflections from the needle with directivity depending on the angle of incidence of the US beam, and the needle inclination.Approach.Though several methods have been proposed for improved needle visualization, a detailed study emphasizing the physics of specular reflections resulting from the interaction of transmitted US beam with the needle remains to be explored. In this work, we discuss the properties of specular reflections from planar and spherical wave US transmissions respectively through multi-angle plane wave (PW) and synthetic transmit aperture (STA) techniques for in-plane needle insertion angles between 15°-50°.Main Results.The qualitative and quantitative results from simulations and experiments reveal that the spherical waves enable better visualization and characterization of needles than planar wavefronts. The needle visibility in PW transmissions is severely degraded by the receive aperture weighting during image reconstruction than STA due to greater deviation in reflection directivity. It is also observed that the spherical wave characteristics starts to alter to planar characteristics due to wave divergence at large needle insertion depths.Significance.The study highlights that synergistic transmit-receive imaging schemes addressing the physical properties of reflections from the transmit wavefronts are imperative for the precise imaging of needle interfaces and hence have strong potential in elevating the quality of outcomes from US guided interventional practices.
Collapse
Affiliation(s)
- Gayathri Malamal
- Center for Computational Imaging, Dept. of Electrical Engineering, Indian Institute of Technology Palakkad, India
| | | |
Collapse
|
5
|
Orlando N, Snir J, Barker K, D'Souza D, Velker V, Mendez LC, Fenster A, Hoover DA. A power Doppler ultrasound method for improving intraoperative tip localization for visually obstructed needles in interstitial prostate brachytherapy. Med Phys 2023; 50:2649-2661. [PMID: 36846880 DOI: 10.1002/mp.16336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 12/15/2022] [Accepted: 01/10/2023] [Indexed: 03/01/2023] Open
Abstract
PURPOSE High-dose-rate (HDR) interstitial brachytherapy (BT) is a common treatment technique for localized intermediate to high-risk prostate cancer. Transrectal ultrasound (US) imaging is typically used for guiding needle insertion, including localization of the needle tip which is critical for treatment planning. However, image artifacts can limit needle tip visibility in standard brightness (B)-mode US, potentially leading to dose delivery that deviates from the planned dose. To improve intraoperative tip visualization in visually obstructed needles, we propose a power Doppler (PD) US method which utilizes a novel wireless mechanical oscillator, validated in phantom experiments and clinical HDR-BT cases as part of a feasibility clinical trial. METHODS Our wireless oscillator contains a DC motor housed in a 3D printed case and is powered by rechargeable battery allowing the device to be operated by one person with no additional equipment required in the operating room. The oscillator end-piece features a cylindrical shape designed for BT applications to fit on top of the commonly used cylindrical needle mandrins. Phantom validation was completed using tissue-equivalent agar phantoms with the clinical US system and both plastic and metal needles. Our PD method was tested using a needle implant pattern matching a standard HDR-BT procedure as well as an implant pattern designed to maximize needle shadowing artifacts. Needle tip localization accuracy was assessed using the clinical method based on ideal reference needles as well as a comparison to computed tomography (CT) as a gold standard. Clinical validation was completed in five patients who underwent standard HDR-BT as part of a feasibility clinical trial. Needle tips positions were identified using B-mode US and PD US with perturbation from our wireless oscillator. RESULTS Absolute mean ± standard deviation tip error for B-mode alone, PD alone, and B-mode combined with PD was respectively: 0.3 ± 0.3 mm, 0.6 ± 0.5 mm, and 0.4 ± 0.2 mm for the mock HDR-BT needle implant; 0.8 ± 1.7 mm, 0.4 ± 0.6 mm, and 0.3 ± 0.5 mm for the explicit shadowing implant with plastic needles; and 0.5 ± 0.2 mm, 0.5 ± 0.3 mm, and 0.6 ± 0.2 mm for the explicit shadowing implant with metal needles. The total mean absolute tip error for all five patients in the feasibility clinical trial was 0.9 ± 0.7 mm using B-mode US alone and 0.8 ± 0.5 mm when including PD US, with increased benefit observed for needles classified as visually obstructed. CONCLUSIONS Our proposed PD needle tip localization method is easy to implement and requires no modifications or additions to the standard clinical equipment or workflow. We have demonstrated decreased tip localization error and variation for visually obstructed needles in both phantom and clinical cases, including providing the ability to visualize needles previously not visible using B-mode US alone. This method has the potential to improve needle visualization in challenging cases without burdening the clinical workflow, potentially improving treatment accuracy in HDR-BT and more broadly in any minimally invasive needle-based procedure.
Collapse
Affiliation(s)
- Nathan Orlando
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada
| | - Jonatan Snir
- London Health Sciences Centre, London, Ontario, Canada
| | - Kevin Barker
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - David D'Souza
- London Health Sciences Centre, London, Ontario, Canada.,Department of Oncology, Western University, London, Ontario, Canada
| | - Vikram Velker
- London Health Sciences Centre, London, Ontario, Canada.,Department of Oncology, Western University, London, Ontario, Canada
| | - Lucas C Mendez
- London Health Sciences Centre, London, Ontario, Canada.,Department of Oncology, Western University, London, Ontario, Canada
| | - Aaron Fenster
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada.,Department of Oncology, Western University, London, Ontario, Canada
| | - Douglas A Hoover
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,London Health Sciences Centre, London, Ontario, Canada.,Department of Oncology, Western University, London, Ontario, Canada
| |
Collapse
|
6
|
Baker C, Xochicale M, Lin FY, Mathews S, Joubert F, Shakir DI, Miles R, Mosse CA, Zhao T, Liang W, Kunpalin Y, Dromey B, Mistry T, Sebire NJ, Zhang E, Ourselin S, Beard PC, David AL, Desjardins AE, Vercauteren T, Xia W. Intraoperative Needle Tip Tracking with an Integrated Fibre-Optic Ultrasound Sensor. SENSORS (BASEL, SWITZERLAND) 2022; 22:9035. [PMID: 36501738 PMCID: PMC9739176 DOI: 10.3390/s22239035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Ultrasound is an essential tool for guidance of many minimally-invasive surgical and interventional procedures, where accurate placement of the interventional device is critical to avoid adverse events. Needle insertion procedures for anaesthesia, fetal medicine and tumour biopsy are commonly ultrasound-guided, and misplacement of the needle may lead to complications such as nerve damage, organ injury or pregnancy loss. Clear visibility of the needle tip is therefore critical, but visibility is often precluded by tissue heterogeneities or specular reflections from the needle shaft. This paper presents the in vitro and ex vivo accuracy of a new, real-time, ultrasound needle tip tracking system for guidance of fetal interventions. A fibre-optic, Fabry-Pérot interferometer hydrophone is integrated into an intraoperative needle and used to localise the needle tip within a handheld ultrasound field. While previous, related work has been based on research ultrasound systems with bespoke transmission sequences, the new system-developed under the ISO 13485 Medical Devices quality standard-operates as an adjunct to a commercial ultrasound imaging system and therefore provides the image quality expected in the clinic, superimposing a cross-hair onto the ultrasound image at the needle tip position. Tracking accuracy was determined by translating the needle tip to 356 known positions in the ultrasound field of view in a tank of water, and by comparison to manual labelling of the the position of the needle in B-mode US images during an insertion into an ex vivo phantom. In water, the mean distance between tracked and true positions was 0.7 ± 0.4 mm with a mean repeatability of 0.3 ± 0.2 mm. In the tissue phantom, the mean distance between tracked and labelled positions was 1.1 ± 0.7 mm. Tracking performance was found to be independent of needle angle. The study demonstrates the performance and clinical compatibility of ultrasound needle tracking, an essential step towards a first-in-human study.
Collapse
Affiliation(s)
- Christian Baker
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
| | - Miguel Xochicale
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
| | - Fang-Yu Lin
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
| | - Sunish Mathews
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1W 7TY, UK
| | - Francois Joubert
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
| | - Dzhoshkun I. Shakir
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
| | - Richard Miles
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
| | - Charles A. Mosse
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1W 7TY, UK
| | - Tianrui Zhao
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
| | - Weidong Liang
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
| | - Yada Kunpalin
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1W 7TY, UK
- Elizabeth Garrett Anderson Institute for Women’s Health, University College London, 74 Huntley Street, London WC1E 6AU, UK
| | - Brian Dromey
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1W 7TY, UK
- Elizabeth Garrett Anderson Institute for Women’s Health, University College London, 74 Huntley Street, London WC1E 6AU, UK
| | - Talisa Mistry
- NIHR Great Ormond Street BRC and Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Neil J. Sebire
- NIHR Great Ormond Street BRC and Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Edward Zhang
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1W 7TY, UK
| | - Sebastien Ourselin
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
| | - Paul C. Beard
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1W 7TY, UK
| | - Anna L. David
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1W 7TY, UK
- Elizabeth Garrett Anderson Institute for Women’s Health, University College London, 74 Huntley Street, London WC1E 6AU, UK
| | - Adrien E. Desjardins
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1W 7TY, UK
| | - Tom Vercauteren
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
| | - Wenfeng Xia
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
| |
Collapse
|
7
|
Shi M, Zhao T, West SJ, Desjardins AE, Vercauteren T, Xia W. Improving needle visibility in LED-based photoacoustic imaging using deep learning with semi-synthetic datasets. PHOTOACOUSTICS 2022; 26:100351. [PMID: 35495095 PMCID: PMC9048160 DOI: 10.1016/j.pacs.2022.100351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Photoacoustic imaging has shown great potential for guiding minimally invasive procedures by accurate identification of critical tissue targets and invasive medical devices (such as metallic needles). The use of light emitting diodes (LEDs) as the excitation light sources accelerates its clinical translation owing to its high affordability and portability. However, needle visibility in LED-based photoacoustic imaging is compromised primarily due to its low optical fluence. In this work, we propose a deep learning framework based on U-Net to improve the visibility of clinical metallic needles with a LED-based photoacoustic and ultrasound imaging system. To address the complexity of capturing ground truth for real data and the poor realism of purely simulated data, this framework included the generation of semi-synthetic training datasets combining both simulated data to represent features from the needles and in vivo measurements for tissue background. Evaluation of the trained neural network was performed with needle insertions into blood-vessel-mimicking phantoms, pork joint tissue ex vivo and measurements on human volunteers. This deep learning-based framework substantially improved the needle visibility in photoacoustic imaging in vivo compared to conventional reconstruction by suppressing background noise and image artefacts, achieving 5.8 and 4.5 times improvements in terms of signal-to-noise ratio and the modified Hausdorff distance, respectively. Thus, the proposed framework could be helpful for reducing complications during percutaneous needle insertions by accurate identification of clinical needles in photoacoustic imaging.
Collapse
Affiliation(s)
- Mengjie Shi
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, United Kingdom
| | - Tianrui Zhao
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, United Kingdom
| | - Simeon J. West
- Department of Anaesthesia, University College Hospital, London NW1 2BU, United Kingdom
| | - Adrien E. Desjardins
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1 W 7TY, United Kingdom
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Tom Vercauteren
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, United Kingdom
| | - Wenfeng Xia
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, United Kingdom
| |
Collapse
|
8
|
Daoud MI, Abu-Hani AF, Shtaiyat A, Ali MZ, Alazrai R. Needle detection using ultrasound B-mode and power Doppler analyses. Med Phys 2022; 49:4999-5013. [PMID: 35608237 DOI: 10.1002/mp.15725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Ultrasound is employed in needle interventions to visualize the anatomical structures and track the needle. Nevertheless, needle detection in ultrasound images is a difficult task, specifically at steep insertion angles. PURPOSE A new method is presented to enable effective needle detection using ultrasound B-mode and power Doppler analyses. METHODS A small buzzer is used to excite the needle and an ultrasound system is utilized to acquire B-mode and power Doppler images for the needle. The B-mode and power Doppler images are processed using Radon transform and local phase analysis to initially detect the axis of the needle. The detection of the needle axis is improved by processing the power Doppler image using alpha shape analysis to define a region of interest (ROI) that contains the needle. Also, a set of feature maps are extracted from the ROI in the B-mode image. The feature maps are processed using a machine learning classifier to construct a likelihood image that visualizes the posterior needle likelihoods of the pixels. Radon transform is applied to the likelihood image to achieve an improved needle axis detection. Additionally, the region in the B-mode image surrounding the needle axis is analyzed to identify the needle tip using a custom-made probabilistic approach. Our method was utilized to detect needles inserted in ex vivo animal tissues at shallow [20° -40°), moderate [40° -60°), and steep [60° -85°] angles. RESULTS Our method detected the needles with failure rates equal to 0% and mean angle, axis, and tip errors less than or equal to 0.7°, 0.6 mm, and 0.7 mm, respectively. Additionally, our method achieved favorable results compared to two recently introduced needle detection methods. CONCLUSIONS The results indicate the potential of applying our method to achieve effective needle detection in ultrasound images. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mohammad I Daoud
- Department of Computer Engineering, German Jordanian University, Amman, 11180, Jordan
| | - Ayah F Abu-Hani
- Department of Electrical and Computer Engineering, Technical University of Munich, Munich, 80333, Germany
| | - Ahmad Shtaiyat
- Department of Computer Engineering, German Jordanian University, Amman, 11180, Jordan
| | - Mostafa Z Ali
- Department of Computer Information Systems, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Rami Alazrai
- Department of Computer Engineering, German Jordanian University, Amman, 11180, Jordan
| |
Collapse
|
9
|
Latus S, Sprenger J, Neidhardt M, Schadler J, Ron A, Fitzek A, Schluter M, Breitfeld P, Heinemann A, Puschel K, Schlaefer A. Rupture Detection During Needle Insertion Using Complex OCT Data and CNNs. IEEE Trans Biomed Eng 2021; 68:3059-3067. [PMID: 33651681 DOI: 10.1109/tbme.2021.3063069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Soft tissue deformation and ruptures complicate needle placement. However, ruptures at tissue interfaces also contain information which helps physicians to navigate through different layers. This navigation task can be challenging, whenever ultrasound (US) image guidance is hard to align and externally sensed forces are superimposed by friction. METHODS We propose an experimental setup for reproducible needle insertions, applying optical coherence tomography (OCT) directly at the needle tip as well as external US and force measurements. Processing the complex OCT data is challenging as the penetration depth is limited and the data can be difficult to interpret. Using a machine learning approach, we show that ruptures can be detected in the complex OCT data without additional external guidance or measurements after training with multi-modal ground-truth from US and force. RESULTS We can detect ruptures with accuracies of 0.94 and 0.91 on homogeneous and inhomogeneous phantoms, respectively, and 0.71 for ex-situ tissues. CONCLUSION We propose an experimental setup and deep learning based rupture detection for the complex OCT data in front of the needle tip, even in deeper tissue structures without the need for US or force sensor guiding. SIGNIFICANCE This study promises a suitable approach to complement a robust robotic needle placement.
Collapse
|
10
|
Beigi P, Salcudean SE, Ng GC, Rohling R. Enhancement of needle visualization and localization in ultrasound. Int J Comput Assist Radiol Surg 2020; 16:169-178. [PMID: 32995981 DOI: 10.1007/s11548-020-02227-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE This scoping review covers needle visualization and localization techniques in ultrasound, where localization-based approaches mostly aim to compute the needle shaft (and tip) location while potentially enhancing its visibility too. METHODS A literature review is conducted on the state-of-the-art techniques, which could be divided into five categories: (1) signal and image processing-based techniques to augment the needle, (2) modifications to the needle and insertion to help with needle-transducer alignment and visibility, (3) changes to ultrasound image formation, (4) motion-based analysis and (5) machine learning. RESULTS Advantages, limitations and challenges of representative examples in each of the categories are discussed. Evaluation techniques performed in ex vivo, phantom and in vivo studies are discussed and summarized. CONCLUSION Greatest limitation of the majority of the literature is that they rely on original visibility of the needle in the static image. Need for additional/improved apparatus is the greatest limitation toward clinical utility in practice. SIGNIFICANCE Ultrasound-guided needle placement is performed in many clinical applications, including biopsies, treatment injections and anesthesia. Despite the wide range and long history of this technique, an ongoing challenge is needle visibility in ultrasound. A robust technique to enhance ultrasonic needle visibility, especially for steeply inserted hand-held needles, and while maintaining clinical utility requirements is needed.
Collapse
Affiliation(s)
- Parmida Beigi
- Electrical and Computer Engineering Department, University of British Columbia, Vancouver, BC, Canada.
| | - Septimiu E Salcudean
- Electrical and Computer Engineering Department, University of British Columbia, Vancouver, BC, Canada
| | - Gary C Ng
- Philips Ultrasound, Bothell, WA, USA
| | - Robert Rohling
- Electrical and Computer Engineering Department and Mechanical Engineering Department, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Aziz A, Pane S, Iacovacci V, Koukourakis N, Czarske J, Menciassi A, Medina-Sánchez M, Schmidt OG. Medical Imaging of Microrobots: Toward In Vivo Applications. ACS NANO 2020; 14:10865-10893. [PMID: 32869971 DOI: 10.1021/acsnano.0c05530] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Medical microrobots (MRs) have been demonstrated for a variety of non-invasive biomedical applications, such as tissue engineering, drug delivery, and assisted fertilization, among others. However, most of these demonstrations have been carried out in in vitro settings and under optical microscopy, being significantly different from the clinical practice. Thus, medical imaging techniques are required for localizing and tracking such tiny therapeutic machines when used in medical-relevant applications. This review aims at analyzing the state of the art of microrobots imaging by critically discussing the potentialities and limitations of the techniques employed in this field. Moreover, the physics and the working principle behind each analyzed imaging strategy, the spatiotemporal resolution, and the penetration depth are thoroughly discussed. The paper deals with the suitability of each imaging technique for tracking single or swarms of MRs and discusses the scenarios where contrast or imaging agent's inclusion is required, either to absorb, emit, or reflect a determined physical signal detected by an external system. Finally, the review highlights the existing challenges and perspective solutions which could be promising for future in vivo applications.
Collapse
Affiliation(s)
- Azaam Aziz
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Stefano Pane
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56025, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Veronica Iacovacci
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56025, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Nektarios Koukourakis
- Chair of Measurement and Sensor System Technique, School of Engineering, TU Dresden, Helmholtzstrasse 18, 01069 Dresden, Germany
- Center for Biomedical Computational Laser Systems, TU Dresden, 01062 Dresden, Germany
| | - Jürgen Czarske
- Chair of Measurement and Sensor System Technique, School of Engineering, TU Dresden, Helmholtzstrasse 18, 01069 Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, 01307 Dresden, Germany
- Center for Biomedical Computational Laser Systems, TU Dresden, 01062 Dresden, Germany
| | - Arianna Menciassi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56025, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Mariana Medina-Sánchez
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), TU Chemnitz, Reichenhainer Strasse 10, 09107 Chemnitz, Germany
- School of Science, TU Dresden, 01062 Dresden, Germany
| |
Collapse
|
12
|
Daoud MI, Abu-Hani AF, Alazrai R. Reliable and accurate needle localization in curvilinear ultrasound images using signature-based analysis of ultrasound beamformed radio frequency signals. Med Phys 2020; 47:2356-2379. [PMID: 32160309 DOI: 10.1002/mp.14126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/30/2019] [Accepted: 02/21/2020] [Indexed: 01/26/2023] Open
Abstract
PURPOSE Ultrasound imaging is used in many minimally invasive needle insertion procedures to track the advancing needle, but localizing the needle in ultrasound images can be challenging, particularly at steep insertion angles. Previous methods have been introduced to localize the needle in ultrasound images, but the majority of these methods are based on ultrasound B-mode image analysis that is affected by the needle visibility. To address this limitation, we propose a two-phase, signature-based method to achieve reliable and accurate needle localization in curvilinear ultrasound images based on the beamformed radio frequency (RF) signals that are acquired using conventional ultrasound imaging systems. METHODS In the first phase of our proposed method, the beamformed RF signals are divided into overlapping segments and these segments are processed to extract needle-specific features to identify the needle echoes. The features are analyzed using a support vector machine classifier to synthesize a quantitative image that highlights the needle. The quantitative image is processed using the Radon transform to achieve a reliable and accurate signature-based estimation of the needle axis. In the second phase, the accuracy of the needle axis estimation is improved by processing the RF samples located around the signature-based estimation of the needle axis using local phase analysis combined with the Radon transform. Moreover, a probabilistic approach is employed to identify the needle tip. The proposed method is used to localize needles with two different sizes inserted in ex vivo animal tissue specimens at various insertion angles. RESULTS Our proposed method achieved reliable and accurate needle localization for an extended range of needle insertion angles with failure rates of 0% and mean angle, axis, and tip errors smaller than or equal to 0 . 7 ∘ , 0.6 mm, and 0.7 mm, respectively. Moreover, our proposed method outperformed a recently introduced needle localization method that is based on B-mode image analysis. CONCLUSIONS These results suggest the potential of employing our signature-based method to achieve reliable and accurate needle localization during ultrasound-guided needle insertion procedures.
Collapse
Affiliation(s)
- Mohammad I Daoud
- Department of Computer Engineering, German Jordanian University, Amman, 11180, Jordan
| | - Ayah F Abu-Hani
- Department of Computer Engineering, German Jordanian University, Amman, 11180, Jordan
| | - Rami Alazrai
- Department of Computer Engineering, German Jordanian University, Amman, 11180, Jordan
| |
Collapse
|
13
|
Abstract
Ultrasound image guidance is widely used in minimally invasive procedures, including fetal surgery. In this context, maintaining visibility of medical devices is a significant challenge. Needles and catheters can readily deviate from the ultrasound imaging plane as they are inserted. When the medical device tips are not visible, they can damage critical structures, with potentially profound consequences including loss of pregnancy. In this study, we performed 3D ultrasonic tracking of a needle using a novel probe with a 1.5D array of transducer elements that was driven by a commercial ultrasound system. A fiber-optic hydrophone integrated into the needle received transmissions from the probe, and data from this sensor was processed to estimate the position of the hydrophone tip in the coordinate space of the probe. Golay coding was used to increase the signal-to-noise (SNR). The relative tracking accuracy was better than 0.4 mm in all dimensions, as evaluated using a water phantom. To obtain a preliminary indication of the clinical potential of 3D ultrasonic needle tracking, an intravascular needle insertion was performed in an in vivo pregnant sheep model. The SNR values ranged from 12 to 16 at depths of 20 to 31 mm and at an insertion angle of 49° relative to the probe surface normal. The results of this study demonstrate that 3D ultrasonic needle tracking with a fiber-optic hydrophone sensor and a 1.5D array is feasible in clinically realistic environments.
Collapse
|
14
|
Daoud MI, Shtaiyat A, Zayadeen AR, Alazrai R. Accurate Needle Localization Using Two-Dimensional Power Doppler and B-Mode Ultrasound Image Analyses: A Feasibility Study. SENSORS (BASEL, SWITZERLAND) 2018; 18:E3475. [PMID: 30332743 PMCID: PMC6209937 DOI: 10.3390/s18103475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/30/2018] [Accepted: 10/09/2018] [Indexed: 01/07/2023]
Abstract
Curvilinear ultrasound transducers are commonly used in various needle insertion interventions, but localizing the needle in curvilinear ultrasound images is usually challenging. In this paper, a new method is proposed to localize the needle in curvilinear ultrasound images by exciting the needle using a piezoelectric buzzer and imaging the excited needle using a curvilinear ultrasound transducer to acquire a power Doppler image and a B-mode image. The needle-induced Doppler responses that appear in the power Doppler image are analyzed to estimate the needle axis initially and identify the candidate regions that are expected to include the needle. The candidate needle regions in the B-mode image are analyzed to improve the localization of the needle axis. The needle tip is determined by analyzing the intensity variations of the power Doppler and B-mode images around the needle axis. The proposed method is employed to localize different needles that are inserted in three ex vivo animal tissue types at various insertion angles, and the results demonstrate the capability of the method to achieve automatic, reliable and accurate needle localization. Furthermore, the proposed method outperformed two existing needle localization methods.
Collapse
Affiliation(s)
- Mohammad I Daoud
- Department of Computer Engineering, German Jordanian University, Amman 11180, Jordan.
| | - Ahmad Shtaiyat
- Department of Computer Engineering, German Jordanian University, Amman 11180, Jordan.
| | - Adnan R Zayadeen
- Ultrasound Section, Jordanian Royal Medical Services, Amman 11180, Jordan.
| | - Rami Alazrai
- Department of Computer Engineering, German Jordanian University, Amman 11180, Jordan.
| |
Collapse
|
15
|
Daoud MI, Alshalalfah AL, Ait Mohamed O, Alazrai R. A hybrid camera- and ultrasound-based approach for needle localization and tracking using a 3D motorized curvilinear ultrasound probe. Med Image Anal 2018; 50:145-166. [PMID: 30336383 DOI: 10.1016/j.media.2018.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 08/11/2018] [Accepted: 09/25/2018] [Indexed: 10/28/2022]
Abstract
Three-dimensional (3D) motorized curvilinear ultrasound probes provide an effective, low-cost tool to guide needle interventions, but localizing and tracking the needle in 3D ultrasound volumes is often challenging. In this study, a new method is introduced to localize and track the needle using 3D motorized curvilinear ultrasound probes. In particular, a low-cost camera mounted on the probe is employed to estimate the needle axis. The camera-estimated axis is used to identify a volume of interest (VOI) in the ultrasound volume that enables high needle visibility. This VOI is analyzed using local phase analysis and the random sample consensus algorithm to refine the camera-estimated needle axis. The needle tip is determined by searching the localized needle axis using a probabilistic approach. Dynamic needle tracking in a sequence of 3D ultrasound volumes is enabled by iteratively applying a Kalman filter to estimate the VOI that includes the needle in the successive ultrasound volume and limiting the localization analysis to this VOI. A series of ex vivo animal experiments are conducted to evaluate the accuracy of needle localization and tracking. The results show that the proposed method can localize the needle in individual ultrasound volumes with maximum error rates of 0.7 mm for the needle axis, 1.7° for the needle angle, and 1.2 mm for the needle tip. Moreover, the proposed method can track the needle in a sequence of ultrasound volumes with maximum error rates of 1.0 mm for the needle axis, 2.0° for the needle angle, and 1.7 mm for the needle tip. These results suggest the feasibility of applying the proposed method to localize and track the needle using 3D motorized curvilinear ultrasound probes.
Collapse
Affiliation(s)
- Mohammad I Daoud
- Department of Computer Engineering, German Jordanian University, Amman, Jordan.
| | | | - Otmane Ait Mohamed
- Department of Electrical and Computer Engineering, Concordia University, Montreal, Quebec, Canada
| | - Rami Alazrai
- Department of Computer Engineering, German Jordanian University, Amman, Jordan
| |
Collapse
|
16
|
Katayama M, Zarbatany D, Cha SS, Fatemi M, Belohlavek M. Acoustically Active Catheter for Intracardiac Navigation by Color Doppler Ultrasonography. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1888-1896. [PMID: 28595853 PMCID: PMC5515670 DOI: 10.1016/j.ultrasmedbio.2017.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/10/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
Navigation of intracardiac catheters by echocardiography is challenging because of the fundamental limitations of B-mode ultrasonography. We describe a catheter fitted with a piezoelectric crystal, which vibrates and produces an instantaneous marker in color flow Doppler scans. The navigation learning curve was explored first in six pigs. Accuracy and precision of targeting with the navigation marker "off" (i.e., B-mode imaging) and "on" were assessed in another six pigs. Paired comparisons confirmed significantly (p = 0.04) shorter mean distances achieved in each pig with the color Doppler marker. Pooled (mean ± standard deviation) distance of the catheter tip from the target crystal was 5.27 ± 1.62 mm by B-mode guidance and 3.66 ± 1.45 mm by color Doppler marker navigation. Dye injection targeted into the ischemic border zone was successful in 8 of 10 pigs. Intracardiac catheter navigation with color Doppler ultrasonography is more accurate compared with conventional guidance by B-mode imaging.
Collapse
Affiliation(s)
- Minako Katayama
- Department of Cardiovascular Diseases, Mayo Clinic, Scottsdale, Arizona, USA
| | - David Zarbatany
- Independent Engineering Consultant, Laguna Niguel, California, USA
| | - Stephen S Cha
- Department of Biostatistics, Mayo Clinic, Scottsdale, Arizona, USA
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Marek Belohlavek
- Department of Cardiovascular Diseases, Mayo Clinic, Scottsdale, Arizona, USA.
| |
Collapse
|
17
|
Rossa C, Usmani N, Sloboda R, Tavakoli M. A Hand-Held Assistant for Semiautomated Percutaneous Needle Steering. IEEE Trans Biomed Eng 2017; 64:637-648. [DOI: 10.1109/tbme.2016.2565690] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Bandaru RS, Sornes AR, Hermans J, Samset E, D'hooge J. Delay and Standard Deviation Beamforming to Enhance Specular Reflections in Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:2057-2068. [PMID: 27913326 DOI: 10.1109/tuffc.2016.2613963] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Although interventional devices, such as needles, guide wires, and catheters, are best visualized by X-ray, real-time volumetric echography could offer an attractive alternative as it avoids ionizing radiation; it provides good soft tissue contrast, and it is mobile and relatively cheap. Unfortunately, as echography is traditionally used to image soft tissue and blood flow, the appearance of interventional devices in conventional ultrasound images remains relatively poor, which is a major obstacle toward ultrasound-guided interventions. The objective of this paper was therefore to enhance the appearance of interventional devices in ultrasound images. Thereto, a modified ultrasound beamforming process using conventional-focused transmit beams is proposed that exploits the properties of received signals containing specular reflections (as arising from these devices). This new beamforming approach referred to as delay and standard deviation beamforming (DASD) was quantitatively tested using simulated as well as experimental data using a linear array transducer. Furthermore, the influence of different imaging settings (i.e., transmit focus, imaging depth, and scan angle) on the obtained image contrast was evaluated. The study showed that the image contrast of specular regions improved by 5-30 dB using DASD beamforming compared with traditional delay and sum (DAS) beamforming. The highest gain in contrast was observed when the interventional device was tilted away from being orthogonal to the transmit beam, which is a major limitation in standard DAS imaging. As such, the proposed beamforming methodology can offer an improved visualization of interventional devices in the ultrasound image with potential implications for ultrasound-guided interventions.
Collapse
|
19
|
Xia W, Ginsberg Y, West SJ, Nikitichev DI, Ourselin S, David AL, Desjardins AE. Coded excitation ultrasonic needle tracking: An in vivo study. Med Phys 2016; 43:4065. [PMID: 27370125 PMCID: PMC5207306 DOI: 10.1118/1.4953205] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 04/25/2016] [Accepted: 05/21/2016] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Accurate and efficient guidance of medical devices to procedural targets lies at the heart of interventional procedures. Ultrasound imaging is commonly used for device guidance, but determining the location of the device tip can be challenging. Various methods have been proposed to track medical devices during ultrasound-guided procedures, but widespread clinical adoption has remained elusive. With ultrasonic tracking, the location of a medical device is determined by ultrasonic communication between the ultrasound imaging probe and a transducer integrated into the medical device. The signal-to-noise ratio (SNR) of the transducer data is an important determinant of the depth in tissue at which tracking can be performed. In this paper, the authors present a new generation of ultrasonic tracking in which coded excitation is used to improve the SNR without spatial averaging. METHODS A fiber optic hydrophone was integrated into the cannula of a 20 gauge insertion needle. This transducer received transmissions from the ultrasound imaging probe, and the data were processed to obtain a tracking image of the needle tip. Excitation using Barker or Golay codes was performed to improve the SNR, and conventional bipolar excitation was performed for comparison. The performance of the coded excitation ultrasonic tracking system was evaluated in an in vivo ovine model with insertions to the brachial plexus and the uterine cavity. RESULTS Coded excitation significantly increased the SNRs of the tracking images, as compared with bipolar excitation. During an insertion to the brachial plexus, the SNR was increased by factors of 3.5 for Barker coding and 7.1 for Golay coding. During insertions into the uterine cavity, these factors ranged from 2.9 to 4.2 for Barker coding and 5.4 to 8.5 for Golay coding. The maximum SNR was 670, which was obtained with Golay coding during needle withdrawal from the brachial plexus. Range sidelobe artifacts were observed in tracking images obtained with Barker coded excitation, and they were visually absent with Golay coded excitation. The spatial tracking accuracy was unaffected by coded excitation. CONCLUSIONS Coded excitation is a viable method for improving the SNR in ultrasonic tracking without compromising spatial accuracy. This method provided SNR increases that are consistent with theoretical expectations, even in the presence of physiological motion. With the ultrasonic tracking system in this study, the SNR increases will have direct clinical implications in a broad range of interventional procedures by improving visibility of medical devices at large depths.
Collapse
Affiliation(s)
- Wenfeng Xia
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Yuval Ginsberg
- Institute for Women’s Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, United Kingdom
| | - Simeon J. West
- Department of Anaesthesia, University College Hospital, Main Theaters, Maple Bridge Link Corridor, Podium 3, 235 Euston Road, London NW1 2BU, United Kingdom
| | - Daniil I. Nikitichev
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Sebastien Ourselin
- Center for Medical Imaging Computing, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Anna L. David
- Institute for Women’s Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, United Kingdom
| | - Adrien E. Desjardins
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
20
|
Xia W, Mari JM, West SJ. In-plane ultrasonic needle tracking using a fiber-optic hydrophone. Med Phys 2015; 42:5983-91. [PMID: 26429273 PMCID: PMC5207301 DOI: 10.1118/1.4931418] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 09/01/2015] [Accepted: 09/03/2015] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Accurate and efficient guidance of needles to procedural targets is critically important during percutaneous interventional procedures. Ultrasound imaging is widely used for real-time image guidance in a variety of clinical contexts, but with this modality, uncertainties about the location of the needle tip within the image plane lead to significant complications. Whilst several methods have been proposed to improve the visibility of the needle, achieving accuracy and compatibility with current clinical practice is an ongoing challenge. In this paper, the authors present a method for directly visualizing the needle tip using an integrated fiber-optic ultrasound receiver in conjunction with the imaging probe used to acquire B-mode ultrasound images. METHODS Needle visualization and ultrasound imaging were performed with a clinical ultrasound imaging system. A miniature fiber-optic ultrasound hydrophone was integrated into a 20 gauge injection needle tip to receive transmissions from individual transducer elements of the ultrasound imaging probe. The received signals were reconstructed to create an image of the needle tip. Ultrasound B-mode imaging was interleaved with needle tip imaging. A first set of measurements was acquired in water and tissue ex vivo with a wide range of insertion angles (15°-68°) to study the accuracy and sensitivity of the tracking method. A second set was acquired in an in vivo swine model, with needle insertions to the brachial plexus. A third set was acquired in an in vivo ovine model for fetal interventions, with insertions to different locations within the uterine cavity. Two linear ultrasound imaging probes were used: a 14-5 MHz probe for the first and second sets, and a 9-4 MHz probe for the third. RESULTS During insertions in tissue ex vivo and in vivo, the imaged needle tip had submillimeter axial and lateral dimensions. The signal-to-noise (SNR) of the needle tip was found to depend on the insertion angle. With the needle tip in water, the SNR of the needle tip varied with insertion angle, attaining values of 284 at 27° and 501 at 68°. In swine tissue ex vivo, the SNR decreased from 80 at 15° to 16 at 61°. In swine tissue in vivo, the SNR varied with depth, from 200 at 17.5 mm to 48 at 26 mm, with a constant insertion angle of 40°. In ovine tissue in vivo, within the uterine cavity, the SNR varied from 46.4 at 25 mm depth to 18.4 at 32 mm depth, with insertion angles in the range of 26°-65°. CONCLUSIONS A fiber-optic ultrasound receiver integrated into the needle cannula in combination with single-element transmissions from the imaging probe allows for direct visualization of the needle tip within the ultrasound imaging plane. Visualization of the needle tip was achieved at depths and insertion angles that are encountered during nerve blocks and fetal interventions. The method presented in this paper has strong potential to improve the safety and efficiency of ultrasound-guided needle insertions.
Collapse
Affiliation(s)
- Wenfeng Xia
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Jean Martial Mari
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom and GePaSud, University of French Polynesia, Faa’a 98702, French Polynesia
| | - Simeon J. West
- Department of Anaesthesia, University College Hospital, Main Theatres, Maple Bridge Link Corridor, Podium 3, 235 Euston Road, London NW1 2BU, United Kingdom
| |
Collapse
|
21
|
Cabreros SS, Jimenez NM, Greer JD, Adebar TK, Okamura AM. Remote Electromagnetic Vibration of Steerable Needles for Imaging in Power Doppler Ultrasound. IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION : ICRA : [PROCEEDINGS]. IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION 2015; 2015:2244-2249. [PMID: 26413379 DOI: 10.1109/icra.2015.7139496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Robotic needle steering systems for minimally invasive medical procedures require complementary medical imaging systems to track the needles in real time. Ultrasound is a promising imaging modality because it offers relatively low-cost, real-time imaging of the needle. Previous methods applied vibration to the base of the needle using a voice coil actuator, in order to make the needle visible in power Doppler ultrasound. We propose a new method for needle tip vibration, using electromagnetic actuation of small permanent magnets placed inside the needle to improve needle tip visibility in power Doppler imaging. Robotic needle insertion experiments using artificial tissue and ex vivo porcine liver showed that the electromagnetic tip vibration method can generate a stronger Doppler response compared to the previous base vibration method, resulting in better imaging at greater needle depth in tissue. It also eliminates previous issues with vibration damping along the shaft of the needle.
Collapse
Affiliation(s)
- Sarah S Cabreros
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 USA
| | - Nina M Jimenez
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 USA
| | - Joseph D Greer
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 USA
| | - Troy K Adebar
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 USA
| | - Allison M Okamura
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 USA
| |
Collapse
|
22
|
Elsharkawy H, Maheshwari A, Farag E, Mariano ER, Rosenquist RW. Development of technologies for placement of perineural catheters. J Anesth 2015; 30:138-47. [DOI: 10.1007/s00540-015-2076-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/26/2015] [Indexed: 10/23/2022]
|
23
|
Mignon P, Poignet P, Troccaz J. Using rotation for steerable needle detection in 3D color-Doppler ultrasound images. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2015:1544-7. [PMID: 26736566 DOI: 10.1109/embc.2015.7318666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This paper demonstrates a new way to detect needles in 3D color-Doppler volumes of biological tissues. It uses rotation to generate vibrations of a needle using an existing robotic brachytherapy system. The results of our detection for color-Doppler and B-Mode ultrasound are compared to a needle location reference given by robot odometry and robot ultrasound calibration. Average errors between detection and reference are 5.8 mm on needle tip for B-Mode images and 2.17 mm for color-Doppler images. These results show that color-Doppler imaging leads to more robust needle detection in noisy environment with poor needle visibility or when needle interacts with other objects.
Collapse
|
24
|
Belohlavek M, Katayama M, Zarbatany D, Fortuin FD, Fatemi M, Nenadic IZ, McMahon EM. Acoustically active injection catheter guided by ultrasound: navigation tests in acutely ischemic porcine hearts. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:1650-9. [PMID: 24785441 PMCID: PMC4051318 DOI: 10.1016/j.ultrasmedbio.2014.02.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 05/13/2023]
Abstract
Catheters are increasingly used therapeutically and investigatively. With complex usage comes a need for more accurate intracardiac localization than traditional guidance can provide. An injection catheter navigated by ultrasound was designed and then tested in an open-chest model of acute ischemia in eight pigs. The catheter is made "acoustically active" by a piezo-electric crystal near its tip, electronically controlled, vibrating in the audio frequency range and uniquely identifiable using pulsed-wave Doppler. Another "target" crystal was sutured to the epicardium within the ischemic region. Sonomicrometry was used to measure distances between the two crystals and then compared with measurements from 2-D echocardiographic images. Complete data were obtained from seven pigs, and the correlation between sonomicrometry and ultrasound measurements was excellent (p < 0.0001, ρ = 0.9820), as was the intraclass correlation coefficient (0.96) between two observers. These initial experimental results suggest high accuracy of ultrasound navigation of the acoustically active catheter prototype located inside the beating left ventricle.
Collapse
Affiliation(s)
- Marek Belohlavek
- Division of Cardiovascular Diseases, Mayo Clinic College of Medicine, Scottsdale, Arizona, USA.
| | - Minako Katayama
- Division of Cardiovascular Diseases, Mayo Clinic College of Medicine, Scottsdale, Arizona, USA
| | - David Zarbatany
- Independent Engineering Consultant, Laguna Niguel, California, USA
| | - F David Fortuin
- Division of Cardiovascular Diseases, Mayo Clinic College of Medicine, Scottsdale, Arizona, USA
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Ivan Z Nenadic
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Eileen M McMahon
- Division of Cardiovascular Diseases, Mayo Clinic College of Medicine, Scottsdale, Arizona, USA
| |
Collapse
|
25
|
Adebar TK, Fletcher AE, Okamura AM. 3-D ultrasound-guided robotic needle steering in biological tissue. IEEE Trans Biomed Eng 2014; 61:2899-910. [PMID: 25014948 DOI: 10.1109/tbme.2014.2334309] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Robotic needle steering systems have the potential to greatly improve medical interventions, but they require new methods for medical image guidance. Three-dimensional (3-D) ultrasound is a widely available, low-cost imaging modality that may be used to provide real-time feedback to needle steering robots. Unfortunately, the poor visibility of steerable needles in standard grayscale ultrasound makes automatic segmentation of the needles impractical. A new imaging approach is proposed, in which high-frequency vibration of a steerable needle makes it visible in ultrasound Doppler images. Experiments demonstrate that segmentation from this Doppler data is accurate to within 1-2 mm. An image-guided control algorithm that incorporates the segmentation data as feedback is also described. In experimental tests in ex vivo bovine liver tissue, a robotic needle steering system implementing this control scheme was able to consistently steer a needle tip to a simulated target with an average error of 1.57 mm. Implementation of 3-D ultrasound-guided needle steering in biological tissue represents a significant step toward the clinical application of robotic needle steering.
Collapse
|
26
|
|
27
|
Huang QH, Yang Z, Hu W, Jin LW, Wei G, Li X. Linear tracking for 3-D medical ultrasound imaging. IEEE TRANSACTIONS ON CYBERNETICS 2013; 43:1747-1754. [PMID: 23757592 DOI: 10.1109/tsmcc.2012.2229270] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
As the clinical application grows, there is a rapid technical development of 3-D ultrasound imaging. Compared with 2-D ultrasound imaging, 3-D ultrasound imaging can provide improved qualitative and quantitative information for various clinical applications. In this paper, we proposed a novel tracking method for a freehand 3-D ultrasound imaging system with improved portability, reduced degree of freedom, and cost. We designed a sliding track with a linear position sensor attached, and it transmitted positional data via a wireless communication module based on Bluetooth, resulting in a wireless spatial tracking modality. A traditional 2-D ultrasound probe fixed to the position sensor on the sliding track was used to obtain real-time B-scans, and the positions of the B-scans were simultaneously acquired when moving the probe along the track in a freehand manner. In the experiments, the proposed method was applied to ultrasound phantoms and real human tissues. The results demonstrated that the new system outperformed a previously developed freehand system based on a traditional six-degree-of-freedom spatial sensor in phantom and in vivo studies, indicating its merit in clinical applications for human tissues and organs.
Collapse
|
28
|
Zhao Y, Cachard C, Liebgott H. Automatic needle detection and tracking in 3D ultrasound using an ROI-based RANSAC and Kalman method. ULTRASONIC IMAGING 2013; 35:283-306. [PMID: 24081726 DOI: 10.1177/0161734613502004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This article proposes a robust technique for needle detection and tracking using three-dimensional ultrasound (3D US). It is difficult for radiologists to detect and follow the position of micro tools, such as biopsy needles, that are inserted in human tissues under 3D US guidance. To overcome this difficulty, we propose a method that automatically reduces the processed volume to a limited region of interest (ROI), increasing at the same time the calculation speed and the robustness of the proposed technique. First, a line filter method that enhances the contrast of the needle against the background is used to facilitate the initialization of ROI using the tubularness information of the complete US volume. Then, the random sample consensus (RANSAC) and Kalman filter (RK) algorithm is used in the ROI to detect and track the precise position of the needle. A series of numerical inhomogeneous phantoms with a needle simulated from real 3D US volumes are used to evaluate our method. The results show that the proposed method is much more robust than the RANSAC algorithm when detecting the needle, regardless of whether or not the insertion axis corresponds to an acquisition plane in the 3D US volume. The possibility of failure is also discussed in this article.
Collapse
Affiliation(s)
- Yue Zhao
- 1Creatis, Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, France
| | | | | |
Collapse
|
29
|
McMahon EM, Jiamsripong P, Katayama M, Chaliki HP, Fatemi M, Belohlavek M. Accurate guidance of a catheter by ultrasound imaging and identification of a catheter tip by pulsed-wave Doppler. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2011; 35:44-50. [PMID: 22054263 DOI: 10.1111/j.1540-8159.2011.03262.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND With the advent of numerous minimally invasive medical procedures, accurate catheter guidance has become imperative. We introduce and test an approach for catheter guidance by ultrasound imaging and pulsed-wave (PW) Doppler. METHODS A steerable catheter is fitted with a small piezoelectric crystal at its tip that actively transmits signals driven by a function generator. We call this an active-tip (AT) catheter. In a water tank, we immersed a "target" crystal and a rectangular matrix of four "reference" crystals. Two-dimensional (2D) ultrasound imaging was used for initial guidance and visualization of the catheter shaft, and then PW Doppler mode was used to identify the AT catheter tip and guide it to the simulated target that was also visible in the 2D ultrasound image. Ten guiding trials were performed from random initial positions of the AT catheter, each starting at approximately 8 cm from the target. RESULTS After the ten navigational trials, the average final distance of the catheter tip from the target was 2.4 ± 1.2 mm, and the range of distances from the trials was from a minimum of 1.0 mm to a maximum of 4.5 mm. CONCLUSIONS Although early in the development process, these quantitative in vitro results show promise for catheter guidance with ultrasound imaging and tip identification by PW Doppler.
Collapse
Affiliation(s)
- Eileen M McMahon
- Division of Cardiovascular Medicine, Mayo Clinic, Scottsdale, Arizona 85259, USA
| | | | | | | | | | | |
Collapse
|
30
|
Mung J, Han S, Yen JT. Design and in vitro evaluation of a real-time catheter localization system using time of flight measurements from seven 3.5 MHz single element ultrasound transducers towards abdominal aortic aneurysm procedures. ULTRASONICS 2011; 51:768-775. [PMID: 21524775 DOI: 10.1016/j.ultras.2011.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 02/19/2011] [Accepted: 03/06/2011] [Indexed: 05/30/2023]
Abstract
Interventional surgical instrument localization is a crucial component of minimally invasive surgery. Image guided surgery researchers are investigating devices broadly categorized as surgical localizers to provide real-time information on the instrument's 3D location and orientation only. This paper describes the implementation and in vitro evaluation of a prototype real-time nonimaging ultrasound-based catheter localizer system towards use in abdominal aortic aneurysm procedures. The catheter-tip is equipped with a single element ultrasound transducer which is tracked with an array of seven external single element transducers. The performance of the system was evaluated in a water tank and additionally in the presence of pork belly tissue and also a nitinol-dacron stent graft. The mean root mean square errors were respectively 1.94±0.06, 2.54±0.31 and 3.33±0.06 mm. In addition, this paper illustrates errors induced by transducer aperture size and suggests a method for aperture error compensation. Aperture compensation applied to the same experimental data yielded mean root mean square errors of 1.05±0.07, 2.42±0.33 and 3.23±0.07mm respectively for water; water and pork; and water, pork and stent experiments. Lastly, this paper presents a video showing free-hand movement of the catheter within the water tank with data capture at 25 frames per second.
Collapse
Affiliation(s)
- Jay Mung
- Department of Biomedical Engineering, Viterbi School of Engineering, 1042 Downey Way, Denney Research Center (DRB) 140, Los Angeles, CA 90089, USA.
| | | | | |
Collapse
|
31
|
Mung J, Vignon F, Jain A. A Non-disruptive Technology for Robust 3D Tool Tracking for Ultrasound-Guided Interventions. LECTURE NOTES IN COMPUTER SCIENCE 2011; 14:153-60. [DOI: 10.1007/978-3-642-23623-5_20] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
32
|
Reddy KE, Light ED, Rivera DJ, Kisslo JA, Smith SW. Color Doppler imaging of cardiac catheters using vibrating motors. ULTRASONIC IMAGING 2008; 30:247-250. [PMID: 19514134 PMCID: PMC2804844 DOI: 10.1177/016173460803000408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A miniature motor rotating at 11,000 rpm was attached onto the proximal end of cardiac electrophysiological (EP) catheters in order to produce vibrations at the tip that were then visualized by color Doppler on ultrasound scanners. The catheter tip was imaged within a vascular graft submerged in a water tank using the Volumetrics Medical Imaging 3D scanner, the Siemens Sonoline Antares 2D scanner and the Philips ie33 3D ultrasound scanner with TEE probe. The vibrating catheter tip was visualized in each case, although results varied with the color Doppler properties of the individual scanner.
Collapse
Affiliation(s)
- Kalyan E. Reddy
- Department of Biomedical Engineering, Duke University, Durham, NC 27708,
| | - Edward D. Light
- Department of Biomedical Engineering, Duke University, Durham, NC 27708,
| | - Danny J. Rivera
- Duke University Medical Center, DUMC 3818, Durham, NC 27710, ,
| | | | - Stephen W. Smith
- Department of Biomedical Engineering, Duke University, Durham, NC 27708,
| |
Collapse
|