1
|
van Helvert M, Ruisch J, de Bakker JMK, Saris AECM, de Korte CL, Versluis M, Groot Jebbink E, Reijnen MMPJ. High-Frame-Rate Ultrasound Velocimetry in the Healthy Femoral Bifurcation: A Comparative Study Against 4-D Flow Magnetic Resonance Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1755-1763. [PMID: 39244482 DOI: 10.1016/j.ultrasmedbio.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 09/09/2024]
Abstract
OBJECTIVE Local flow dynamics impact atherosclerosis yet are difficult to quantify with conventional ultrasound techniques. This study investigates the performance of ultrasound vector flow imaging (US-VFI) with and without ultrasound contrast agents in the healthy femoral bifurcation. METHODS High-frame-rate ultrasound data with incremental acoustic outputs were acquired in the femoral bifurcations of 20 healthy subjects before (50V) and after contrast injection (2V, 5V and 10V). 2-D blood-velocity profiles were obtained through native blood speckle tracking (BST) and contrast tracking (echo particle image velocimetry [echoPIV]). As a reference, 4-D flow magnetic resonance imaging (4-D flow MRI) was acquired. Contrast-to-background ratio and vector correlation were used to assess the quality of the US-VFI acquisitions. Spatiotemporal velocity profiles were extracted, from which peak velocities (PSV) were compared between the modalities. Furthermore, root-mean-square error analysis was performed. RESULTS US-VFI was successful in 99% of the cases and optimal VFI quality was established with the 10V echoPIV and BST settings. A good correspondence between 10V echoPIV and BST was found, with a mean PSV difference of -0.5 cm/s (limits of agreement: -14.1-13.2). Both US-VFI techniques compared well with 4-D flow MRI, with a mean PSV difference of 1.4 cm/s (-18.7-21.6) between 10V echoPIV and MRI, and 0.3 cm/s (-23.8-24.4) between BST and MRI. Similar complex flow patterns among all modalities were observed. CONCLUSION 2-D blood-flow quantification of femoral bifurcation is feasible with echoPIV and BST. Both modalities showed good agreement compared to 4-D flow MRI. For the femoral tract the administration of contrast was not needed to increase the echogenicity of the blood for optimal image quality.
Collapse
Affiliation(s)
- Majorie van Helvert
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands; Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands; Physics of Fluids Group, TechMed Centre, University of Twente, Enschede, The Netherlands.
| | - Janna Ruisch
- Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands; Medical Ultrasound Imaging Centre, Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Joosje M K de Bakker
- Medical Ultrasound Imaging Centre, Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Anne E C M Saris
- Medical Ultrasound Imaging Centre, Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Chris L de Korte
- Physics of Fluids Group, TechMed Centre, University of Twente, Enschede, The Netherlands; Medical Ultrasound Imaging Centre, Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Michel Versluis
- Physics of Fluids Group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Erik Groot Jebbink
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands; Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| | - Michel M P J Reijnen
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands; Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| |
Collapse
|
2
|
Hoving AM, Mikhal J, Kuipers H, de Borst GJ, Slump CH. Development of an in vitro setup for flow studies in a stented carotid artery bifurcation. Med Biol Eng Comput 2024; 62:1165-1176. [PMID: 38155315 DOI: 10.1007/s11517-023-02977-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023]
Abstract
To investigate flow conditions in a double-layered carotid artery stent, a bench-top in vitro flow setup including a bifurcation phantom was designed and fabricated. The geometry of the tissue-mimicking phantom was based on healthy individuals. Two identical phantoms were created using 3D-printing techniques and molding with PVA-gel. In one of them, a clinically available CGuard double-layer stent was inserted. Measurements were performed using both continuous and pulsatile flow conditions. Blood flow studies were performed using echoPIV: a novel ultrasound-based technique combined with particle image velocimetry. A maximum deviation of 3% was visible between desired and measured flow patterns. The echoPIV measurements showed promising results on visualization and quantification of blood flow in and downstream the stent. Further research could demonstrate the effects of a double-layered stent on blood flow patterns in a carotid bifurcation in detail.
Collapse
Affiliation(s)
- Astrid M Hoving
- Robotics and Mechatronics Group, TechMed Centre, University of Twente, 7500 AE, Enschede, The Netherlands.
| | - Julia Mikhal
- Health Technology and Services Research Group, TechMed Centre, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Henny Kuipers
- Robotics and Mechatronics Group, TechMed Centre, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Gert J de Borst
- Department of Vascular Surgery, University Medical Centre Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Cornelis H Slump
- Robotics and Mechatronics Group, TechMed Centre, University of Twente, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
3
|
Wahyulaksana G, Wei L, Voorneveld J, Hekkert MTL, Strachinaru M, Duncker DJ, De Jong N, van der Steen AFW, Vos HJ. Higher Order Singular Value Decomposition Filter for Contrast Echocardiography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1371-1383. [PMID: 37721879 DOI: 10.1109/tuffc.2023.3316130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Assessing the coronary circulation with contrast-enhanced echocardiography has high clinical relevance. However, it is not being routinely performed in clinical practice because the current clinical tools generally cannot provide adequate image quality. The contrast agent's visibility in the myocardium is generally poor, impaired by motion and nonlinear propagation artifacts. The established multipulse contrast schemes (MPCSs) and the more experimental singular value decomposition (SVD) filter also fall short to solve these issues. Here, we propose a scheme to process amplitude modulation/amplitude-modulated pulse inversion (AM/AMPI) echoes with higher order SVD (HOSVD) instead of conventionally summing the complementary pulses. The echoes from the complementary pulses form a separate dimension in the HOSVD algorithm. Then, removing the ranks in that dimension with dominant coherent signals coming from tissue scattering would provide the contrast detection. We performed both in vitro and in vivo experiments to assess the performance of our proposed method in comparison with the current standard methods. A flow phantom study shows that HOSVD on AM pulsing exceeds the contrast-to-background ratio (CBR) of conventional AM and an SVD filter by 10 and 14 dB, respectively. In vivo porcine heart results also demonstrate that, compared to AM, HOSVD improves CBR in open-chest acquisition (up to 19 dB) and contrast ratio (CR) in closed-chest acquisition (3 dB).
Collapse
|
4
|
Engelhard S, van Helvert M, Voorneveld J, Bosch JG, Lajoinie G, Jebbink EG, Reijnen MMPJ, Versluis M. Blood Flow Quantification with High-Frame-Rate, Contrast-Enhanced Ultrasound Velocimetry in Stented Aortoiliac Arteries: In Vivo Feasibility. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1518-1527. [PMID: 35577661 DOI: 10.1016/j.ultrasmedbio.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Local flow patterns influence stent patency, while blood flow quantification in stents is challenging. The aim of this study was to investigate the feasibility of 2-D blood flow quantification using high-frame-rate, contrast-enhanced ultrasound (HFR-CEUS) and particle image velocimetry (PIV), or echoPIV, in patients with aortoiliac stents. HFR-CEUS measurements were performed at 129 locations in 62 patients. Two-dimensional blood flow velocity fields were obtained using echoPIV. Visual inspection was performed by five observers to evaluate feasibility. The contrast-to-background ratio and average vector correlation were calculated and compared between stented and native vessel segments. Flow quantification with echoPIV was feasible in 128 of 129 locations (99%), with optimal quantification in 40 of 129 locations (31%). Partial quantification was achieved in 88 of 129 locations (68%), where one or multiple limiting issues occurred (not related to the stent) including loss of correlation during systole (57/129), short vessel segments (20/129), loss of contrast during diastole (20/129) and shadow regions (20/129). The contrast-to-background ratio and vector correlation were lower downstream in the imaged blood vessel, independent of the location of the stent. In conclusion, echoPIV was feasible in stents placed in the aortoiliac region, and the stents did not adversely affect flow tracking.
Collapse
Affiliation(s)
- Stefan Engelhard
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands; Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands; Physics of Fluids Group, TechMed Centre, University of Twente, Enschede, The Netherlands.
| | - Majorie van Helvert
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands; Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands; Physics of Fluids Group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Jason Voorneveld
- Department of Biomedical Engineering, Thorax Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Johan G Bosch
- Department of Biomedical Engineering, Thorax Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Guillaume Lajoinie
- Physics of Fluids Group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Erik Groot Jebbink
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands; Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| | - Michel M P J Reijnen
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands; Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| | - Michel Versluis
- Physics of Fluids Group, TechMed Centre, University of Twente, Enschede, The Netherlands
| |
Collapse
|
5
|
van Helvert M, Engelhard S, Voorneveld J, van der Vee M, Bosch JG, Versluis M, Groot Jebbink E, Reijnen MMPJ. High-frame-rate contrast-enhanced ultrasound particle image velocimetry in patients with a stented superficial femoral artery: a feasibility study. Eur Radiol Exp 2022; 6:32. [PMID: 35790584 PMCID: PMC9256892 DOI: 10.1186/s41747-022-00278-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/14/2022] [Indexed: 11/20/2022] Open
Abstract
Background Local blood flow affects vascular disease and outcomes of endovascular treatment, but quantifying it is challenging, especially inside stents. We assessed the feasibility of blood flow quantification in native and stented femoral arteries, using high-frame-rate (HFR) contrast-enhanced ultrasound (CEUS) particle image velocimetry (PIV), also known as echoPIV. Methods Twenty-one patients with peripheral arterial disease, recently treated with a stent in the femoral artery, were included. HFR CEUS measurements were performed in the native femoral artery and at the inflow and outflow of the stent. Two-dimensional blood flow was quantified through PIV analysis. EchoPIV recordings were visually assessed by five observers and categorised as optimal, partial, or unfeasible. To evaluate image quality and tracking performance, contrast-to-tissue ratio (CTR) and vector correlation were calculated, respectively. Results Fifty-eight locations were measured and blood flow quantification was established in 49 of them (84%). Results were optimal for 17/58 recordings (29%) and partial for 32 recordings (55%) due to loss of correlation (5/32; 16%), short vessel segment (8/32; 25%), loss of contrast (14/32; 44%), and/or shadows (18/32; 56%). In the remaining 9/58 measurements (16%) no meaningful flow information was visualised. Overall, CTR and vector correlation were lower during diastole. CTR and vector correlation were not different between stented and native vessel segments, except for a higher native CTR at the inflow during systole (p = 0.037). Conclusions Blood flow quantification is feasible in untreated and stented femoral arteries using echoPIV. Limitations remain, however, none of them related to the presence of the stent. Trial registration ClinicalTrials.gov, NCT04934501 (retrospectively registered). Supplementary Information The online version contains supplementary material available at 10.1186/s41747-022-00278-w.
Collapse
Affiliation(s)
- Majorie van Helvert
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands. .,Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands. .,Physics of Fluids Group, TechMed Centre, University of Twente, Enschede, The Netherlands.
| | - Stefan Engelhard
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands.,Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands.,Physics of Fluids Group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Jason Voorneveld
- Department of Biomedical Engineering, Thorax Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marije van der Vee
- Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands.,Physics of Fluids Group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Johan G Bosch
- Department of Biomedical Engineering, Thorax Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Michel Versluis
- Physics of Fluids Group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Erik Groot Jebbink
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands.,Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| | - Michel M P J Reijnen
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands.,Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| |
Collapse
|
6
|
Wahyulaksana G, Wei L, Schoormans J, Voorneveld J, van der Steen AFW, de Jong N, Vos HJ. Independent Component Analysis Filter for Small Vessel Contrast Imaging During Fast Tissue Motion. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2282-2292. [PMID: 35594222 DOI: 10.1109/tuffc.2022.3176742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Suppressing tissue clutter is an essential step in blood flow estimation and visualization, even when using ultrasound contrast agents. Blind source separation (BSS)-based clutter filter for high-framerate ultrasound imaging has been reported to perform better in tissue clutter suppression than the conventional frequency-based wall filter and nonlinear contrast pulsing schemes. The most notable BSS technique, singular value decomposition (SVD) has shown compelling results in cases of slow tissue motion. However, its performance degrades when the tissue motion is faster than the blood flow speed, conditions that are likely to occur when imaging the small vessels, such as in the myocardium. Independent component analysis (ICA) is another BSS technique that has been implemented as a clutter filter in the spatiotemporal domain. Instead, we propose to implement ICA in the spatial domain where motion should have less impact. In this work, we propose a clutter filter with the combination of SVD and ICA to improve the contrast-to-background ratio (CBR) in cases where tissue velocity is significantly faster than the flow speed. In an in vitro study, the range of fast tissue motion velocity was 5-25 mm/s and the range of flow speed was 1-12 mm/s. Our results show that the combination of ICA and SVD yields 7-10 dB higher CBR than SVD alone, especially in the tissue high-velocity range. The improvement is crucial for cardiac imaging where relatively fast myocardial motions are expected.
Collapse
|
7
|
Golemati S, Cokkinos DD. Recent advances in vascular ultrasound imaging technology and their clinical implications. ULTRASONICS 2022; 119:106599. [PMID: 34624584 DOI: 10.1016/j.ultras.2021.106599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 08/26/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
In this paper recent advances in vascular ultrasound imaging technology are discussed, including three-dimensional ultrasound (3DUS), contrast-enhanced ultrasound (CEUS) and strain- (SE) and shear-wave-elastography (SWE). 3DUS imaging allows visualisation of the actual 3D anatomy and more recently of flow, and assessment of geometrical, morphological and mechanical features in the carotid artery and the aorta. CEUS involves the use of microbubble contrast agents to estimate sensitive blood flow and neovascularisation (formation of new microvessels). Recent developments include the implementation of computerised tools for automated analysis and quantification of CEUS images, and the possibility to measure blood flow velocity in the aorta. SE, which yields anatomical maps of tissue strain, is increasingly being used to investigate the vulnerability of the carotid plaque, but is also promising for the coronary artery and the aorta. SWE relies on the generation of a shear wave by remote acoustic palpation and its acquisition by ultrafast imaging, and is useful for measuring arterial stiffness. Such advances in vascular ultrasound technology, with appropriate validation in clinical trials, could positively change current management of patients with vascular disease, and improve stratification of cardiovascular risk.
Collapse
Affiliation(s)
- Spyretta Golemati
- Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | | |
Collapse
|
8
|
Chattaraj R, Hammer DA, Lee D, Sehgal CM. Multivariable Dependence of Acoustic Contrast of Fluorocarbon and Xenon Microbubbles under Flow. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2676-2691. [PMID: 34112553 PMCID: PMC8355047 DOI: 10.1016/j.ultrasmedbio.2021.04.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Microbubbles (MBs) are 1 to 10 µm gas particles stabilized by an amphiphilic shell capable of responding to biomedical ultrasound with strong acoustic signals, allowing them to be commonly used in ultrasound imaging and therapy. The composition of both the shell and the core determines their stability and acoustic properties. While there has been extensive characterization of the dissolution, oscillation, cavitation, collapse and therefore, ultrasound contrast of MBs under static conditions, few reports have examined such behavior under hydrodynamic flow. In this study, we evaluate the interplay of ultrasound parameters (five different mechanical indices [MIs]), MB shell parameter (shell stiffness), type of gas (perfluorocarbon for diagnostic imaging and xenon as a therapeutic gas), and a flow parameter (flow rate) on the ultrasound signal of phospholipid-stabilized MBs flowing through a latex tube embedded in a tissue-mimicking phantom. We find that the contrast gradient (CG), a metric of the rate of decay of contrast along the length of the tube, and the contrast peak (CP), the location where the maximum contrast is reached, depend on the conditions of flow, imaging, and MB material. For instance, while the contrast near the flow inlet of the field of view is highest for a softer shell (dipalmitoylphosphatidylcholine [DPPC], C16) than for stiffer shells (distearoylphosphatidylcholine [DSPC], C18, and dibehenoylphosphatidylcholine [DBPC], C22), the contrast decay is also faster; stiffer shells provide more resistance and hence lead to slower MB dissolution/destruction. At higher flow rates, the CG is low for a fixed length of time because each MB is exposed to ultrasound for a shorter period. The CG becomes high for low flow rates, especially at high incident pressures (high MI), causing more MB destruction closer to the inlet of the field of view. Also, the CP shifts toward the inlet at low flow rates, high MIs, and low shell stiffness. We also report the first demonstration of sustained ultrasound flow imaging of a water-soluble, therapeutic gas MB (xenon). We find that an increased MB concentration is necessary for obtaining the same signal magnitude for xenon MBs. In summary, this study builds a framework depicting how multiple variables simultaneously affect the evolution of MB ultrasound contrast under flow. Depending on the MB composition, imaging conditions, transducer positioning, and image processing, building on such a framework could potentially allow for extraction of additional diagnostic information than is commonly analyzed for physiological flow.
Collapse
Affiliation(s)
- Rajarshi Chattaraj
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel A Hammer
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chandra M Sehgal
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
9
|
Engelhard S, van Helvert M, Voorneveld J, Bosch JG, Lajoinie GPR, Versluis M, Groot Jebbink E, Reijnen MMPJ. US Velocimetry in Participants with Aortoiliac Occlusive Disease. Radiology 2021; 301:332-338. [PMID: 34427462 DOI: 10.1148/radiol.2021210454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background The accurate quantification of blood flow in aortoiliac arteries is challenging but clinically relevant because local flow patterns can influence atherosclerotic disease. Purpose To investigate the feasibility and clinical application of two-dimensional blood flow quantification using high-frame-rate contrast-enhanced US (HFR-CEUS) and particle image velocimetry (PIV), or US velocimetry, in participants with aortoiliac stenosis. Materials and Methods In this prospective study, participants with a recently diagnosed aortoiliac stenosis underwent HFR-CEUS measurements of the pre- and poststenotic vessel segments (August 2018 to July 2019). Two-dimensional quantification of blood flow was achieved by performing PIV analysis, which was based on pairwise cross-correlation of the HFR-CEUS images. Visual inspection of the entire data set was performed by five observers to evaluate the ability of the technique to enable adequate visualization of blood flow. The contrast-to-background ratio and average vector correlation were calculated. In two participants who showed flow disturbances, the flow complexity and vorticity were calculated. Results Thirty-five participants (median age, 67 years; age range, 56-84 years; 22 men) were included. Visual scoring showed that flow quantification was achieved in 41 of 42 locations. In 25 locations, one or multiple issues occurred that limited optimal flow quantification, including loss of correlation during systole (n = 12), shadow regions (n = 8), a short vessel segment in the image plane (n = 7), and loss of contrast during diastole (n = 5). In the remaining 16 locations, optimal quantification was achieved. The contrast-to-background ratio was higher during systole than during diastole (11.0 ± 2.9 vs 6.9 ± 3.4, respectively; P < .001), whereas the vector correlation was lower (0.58 ± 0.21 vs 0.47 ± 0.13; P < .001). The flow complexity and vorticity were high in regions with disturbed flow. Conclusion Blood flow quantification with US velocimetry is feasible in patients with an aortoiliac stenosis, but several challenges must be overcome before implementation into clinical practice. Clinical trial registration no. NTR6980 © RSNA, 2021 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Stefan Engelhard
- From the Department of Vascular Surgery, Rijnstate Hospital, Wagnerlaan 55, 6815 AD Arnhem, the Netherlands (S.E., M.v.H., E.G.J., M.M.P.J.R.); Multi-modality Medical Imaging Group (S.E., M.v.H., E.G.J., M.M.P.J.R.) and Physics of Fluids Group (S.E., M.v.H., G.P.R.L., M.V.), Technical Medical (TechMed) Centre, University of Twente, Enschede, the Netherlands; and Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, the Netherlands (J.V., J.G.B.)
| | - Majorie van Helvert
- From the Department of Vascular Surgery, Rijnstate Hospital, Wagnerlaan 55, 6815 AD Arnhem, the Netherlands (S.E., M.v.H., E.G.J., M.M.P.J.R.); Multi-modality Medical Imaging Group (S.E., M.v.H., E.G.J., M.M.P.J.R.) and Physics of Fluids Group (S.E., M.v.H., G.P.R.L., M.V.), Technical Medical (TechMed) Centre, University of Twente, Enschede, the Netherlands; and Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, the Netherlands (J.V., J.G.B.)
| | - Jason Voorneveld
- From the Department of Vascular Surgery, Rijnstate Hospital, Wagnerlaan 55, 6815 AD Arnhem, the Netherlands (S.E., M.v.H., E.G.J., M.M.P.J.R.); Multi-modality Medical Imaging Group (S.E., M.v.H., E.G.J., M.M.P.J.R.) and Physics of Fluids Group (S.E., M.v.H., G.P.R.L., M.V.), Technical Medical (TechMed) Centre, University of Twente, Enschede, the Netherlands; and Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, the Netherlands (J.V., J.G.B.)
| | - Johan G Bosch
- From the Department of Vascular Surgery, Rijnstate Hospital, Wagnerlaan 55, 6815 AD Arnhem, the Netherlands (S.E., M.v.H., E.G.J., M.M.P.J.R.); Multi-modality Medical Imaging Group (S.E., M.v.H., E.G.J., M.M.P.J.R.) and Physics of Fluids Group (S.E., M.v.H., G.P.R.L., M.V.), Technical Medical (TechMed) Centre, University of Twente, Enschede, the Netherlands; and Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, the Netherlands (J.V., J.G.B.)
| | - Guillaume P R Lajoinie
- From the Department of Vascular Surgery, Rijnstate Hospital, Wagnerlaan 55, 6815 AD Arnhem, the Netherlands (S.E., M.v.H., E.G.J., M.M.P.J.R.); Multi-modality Medical Imaging Group (S.E., M.v.H., E.G.J., M.M.P.J.R.) and Physics of Fluids Group (S.E., M.v.H., G.P.R.L., M.V.), Technical Medical (TechMed) Centre, University of Twente, Enschede, the Netherlands; and Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, the Netherlands (J.V., J.G.B.)
| | - Michel Versluis
- From the Department of Vascular Surgery, Rijnstate Hospital, Wagnerlaan 55, 6815 AD Arnhem, the Netherlands (S.E., M.v.H., E.G.J., M.M.P.J.R.); Multi-modality Medical Imaging Group (S.E., M.v.H., E.G.J., M.M.P.J.R.) and Physics of Fluids Group (S.E., M.v.H., G.P.R.L., M.V.), Technical Medical (TechMed) Centre, University of Twente, Enschede, the Netherlands; and Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, the Netherlands (J.V., J.G.B.)
| | - Erik Groot Jebbink
- From the Department of Vascular Surgery, Rijnstate Hospital, Wagnerlaan 55, 6815 AD Arnhem, the Netherlands (S.E., M.v.H., E.G.J., M.M.P.J.R.); Multi-modality Medical Imaging Group (S.E., M.v.H., E.G.J., M.M.P.J.R.) and Physics of Fluids Group (S.E., M.v.H., G.P.R.L., M.V.), Technical Medical (TechMed) Centre, University of Twente, Enschede, the Netherlands; and Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, the Netherlands (J.V., J.G.B.)
| | - Michel M P J Reijnen
- From the Department of Vascular Surgery, Rijnstate Hospital, Wagnerlaan 55, 6815 AD Arnhem, the Netherlands (S.E., M.v.H., E.G.J., M.M.P.J.R.); Multi-modality Medical Imaging Group (S.E., M.v.H., E.G.J., M.M.P.J.R.) and Physics of Fluids Group (S.E., M.v.H., G.P.R.L., M.V.), Technical Medical (TechMed) Centre, University of Twente, Enschede, the Netherlands; and Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, the Netherlands (J.V., J.G.B.)
| |
Collapse
|
10
|
Voorneveld J, Keijzer LBH, Strachinaru M, Bowen DJ, Mutluer FO, van der Steen AFW, Cate FJT, de Jong N, Vos HJ, van den Bosch AE, Bosch JG. Optimization of Microbubble Concentration and Acoustic Pressure for Left Ventricular High-Frame-Rate EchoPIV in Patients. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2432-2443. [PMID: 33720832 DOI: 10.1109/tuffc.2021.3066082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High-frame-rate (HFR) echo-particle image velocimetry (echoPIV) is a promising tool for measuring intracardiac blood flow dynamics. In this study, we investigate the optimal ultrasound contrast agent (UCA: SonoVue) infusion rate and acoustic output to use for HFR echoPIV (PRF = 4900 Hz) in the left ventricle (LV) of patients. Three infusion rates (0.3, 0.6, and 1.2 ml/min) and five acoustic output amplitudes (by varying transmit voltage: 5, 10, 15, 20, and 30 V-corresponding to mechanical indices of 0.01, 0.02, 0.03, 0.04, and 0.06 at 60-mm depth) were tested in 20 patients admitted for symptoms of heart failure. We assess the accuracy of HFR echoPIV against pulsed-wave Doppler acquisitions obtained for mitral inflow and aortic outflow. In terms of image quality, the 1.2-ml/min infusion rate provided the highest contrast-to-background ratio (CBR) (3-dB improvement over 0.3 ml/min). The highest acoustic output tested resulted in the lowest CBR. Increased acoustic output also resulted in increased microbubble disruption. For the echoPIV results, the 1.2-ml/min infusion rate provided the best vector quality and accuracy; mid-range acoustic outputs (corresponding to 15-20-V transmit voltages) provided the best agreement with the pulsed-wave Doppler. Overall, the highest infusion rate (1.2 ml/min) and mid-range acoustic output amplitudes provided the best image quality and echoPIV results.
Collapse
|
11
|
Hoving AM, Voorneveld J, Mikhal J, Bosch JG, Groot Jebbink E, Slump CH. In vitro performance of echoPIV for assessment of laminar flow profiles in a carotid artery stent. J Med Imaging (Bellingham) 2021; 8:017001. [PMID: 33457445 PMCID: PMC7804295 DOI: 10.1117/1.jmi.8.1.017001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/22/2020] [Indexed: 11/14/2022] Open
Abstract
Purpose: Detailed blood flow studies may contribute to improvements in carotid artery stenting. High-frame-rate contrast-enhanced ultrasound followed by particle image velocimetry (PIV), also called echoPIV, is a technique to study blood flow patterns in detail. The performance of echoPIV in presence of a stent has not yet been studied extensively. We compared the performance of echoPIV in stented and nonstented regions in an in vitro flow setup. Approach: A carotid artery stent was deployed in a vessel-mimicking phantom. High-frame-rate contrast-enhanced ultrasound images were acquired with various settings. Signal intensities of the contrast agent, velocity values, and flow profiles were calculated. Results: The results showed decreased signal intensities and correlation coefficients inside the stent, however, PIV analysis in the stent still resulted in plausible flow vectors. Conclusions: Velocity values and laminar flow profiles can be measured in vitro in stented arteries using echoPIV.
Collapse
Affiliation(s)
- Astrid M Hoving
- University of Twente, TechMed Centre, Robotics and Mechatronics Group, Enschede, The Netherlands
| | - Jason Voorneveld
- Erasmus MC, Thorax Center, Department of Biomedical Engineering, Rotterdam, The Netherlands
| | - Julia Mikhal
- University of Twente, TechMed Centre, BIOS Lab-on-a-Chip Group, Enschede, The Netherlands
| | - Johan G Bosch
- Erasmus MC, Thorax Center, Department of Biomedical Engineering, Rotterdam, The Netherlands
| | - Erik Groot Jebbink
- University of Twente, TechMed Centre, Multi-Modality Medical Imaging Group, Enschede, The Netherlands
| | - Cornelis H Slump
- University of Twente, TechMed Centre, Robotics and Mechatronics Group, Enschede, The Netherlands
| |
Collapse
|
12
|
Vos HJ, Voorneveld JD, Groot Jebbink E, Leow CH, Nie L, van den Bosch AE, Tang MX, Freear S, Bosch JG. Contrast-Enhanced High-Frame-Rate Ultrasound Imaging of Flow Patterns in Cardiac Chambers and Deep Vessels. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2875-2890. [PMID: 32843233 DOI: 10.1016/j.ultrasmedbio.2020.07.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Cardiac function and vascular function are closely related to the flow of blood within. The flow velocities in these larger cavities easily reach 1 m/s, and generally complex spatiotemporal flow patterns are involved, especially in a non-physiologic state. Visualization of such flow patterns using ultrasound can be greatly enhanced by administration of contrast agents. Tracking the high-velocity complex flows is challenging with current clinical echographic tools, mostly because of limitations in signal-to-noise ratio; estimation of lateral velocities; and/or frame rate of the contrast-enhanced imaging mode. This review addresses the state of the art in 2-D high-frame-rate contrast-enhanced echography of ventricular and deep-vessel flow, from both technological and clinical perspectives. It concludes that current advanced ultrasound equipment is technologically ready for use in human contrast-enhanced studies, thus potentially leading to identification of the most clinically relevant flow parameters for quantifying cardiac and vascular function.
Collapse
Affiliation(s)
- Hendrik J Vos
- Biomedical Engineering, Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands; Medical Imaging, Department of Imaging Physics, Applied Sciences, Delft University of Technology, Delft, The Netherlands.
| | - Jason D Voorneveld
- Biomedical Engineering, Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Erik Groot Jebbink
- M3i: Multi-modality Medical Imaging Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands; Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| | - Chee Hau Leow
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Luzhen Nie
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, United Kingdom
| | | | - Meng-Xing Tang
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Steven Freear
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, United Kingdom
| | - Johan G Bosch
- Biomedical Engineering, Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Hoving AM, de Vries EE, Mikhal J, de Borst GJ, Slump CH. A Systematic Review for the Design of In Vitro Flow Studies of the Carotid Artery Bifurcation. Cardiovasc Eng Technol 2020; 11:111-127. [PMID: 31823191 PMCID: PMC7082306 DOI: 10.1007/s13239-019-00448-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/02/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE In vitro blood flow studies in carotid artery bifurcation models may contribute to understanding the influence of hemodynamics on carotid artery disease. However, the design of in vitro blood flow studies involves many steps and selection of imaging techniques, model materials, model design, and flow visualization parameters. Therefore, an overview of the possibilities and guidance for the design process is beneficial for researchers with less experience in flow studies. METHODS A systematic search to in vitro flow studies in carotid artery bifurcation models aiming at quantification and detailed flow visualization of blood flow dynamics results in inclusion of 42 articles. RESULTS Four categories of imaging techniques are distinguished: MRI, optical particle image velocimetry (PIV), ultrasound and miscellaneous techniques. Parameters for flow visualization are categorized into velocity, flow, shear-related, turbulent/disordered flow and other parameters. Model materials and design characteristics vary between study type. CONCLUSIONS A simplified three-step design process is proposed for better fitting and adequate match with the pertinent research question at hand and as guidance for less experienced flow study researchers. The three consecutive selection steps are: flow parameters, image modality, and model materials and designs. Model materials depend on the chosen imaging technique, whereas choice of flow parameters is independent from imaging technique and is therefore only determined by the goal of the study.
Collapse
Affiliation(s)
- A M Hoving
- University of Twente, 7500 AE, Enschede, The Netherlands.
| | - E E de Vries
- University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - J Mikhal
- University of Twente, 7500 AE, Enschede, The Netherlands
| | - G J de Borst
- University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - C H Slump
- University of Twente, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
14
|
Determining Haemodynamic Wall Shear Stress in the Rabbit Aorta In Vivo Using Contrast-Enhanced Ultrasound Image Velocimetry. Ann Biomed Eng 2020; 48:1728-1739. [PMID: 32130594 PMCID: PMC7280334 DOI: 10.1007/s10439-020-02484-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/19/2020] [Indexed: 01/31/2023]
Abstract
Abnormal blood flow and wall shear stress (WSS) can cause and be caused by cardiovascular disease. To date, however, no standard method has been established for mapping WSS in vivo. Here we demonstrate wide-field assessment of WSS in the rabbit abdominal aorta using contrast-enhanced ultrasound image velocimetry (UIV). Flow and WSS measurements were made independent of beam angle, curvature or branching. Measurements were validated in an in silico model of the rabbit thoracic aorta with moving walls and pulsatile flow. Mean errors over a cardiac cycle for velocity and WSS were 0.34 and 1.69%, respectively. In vivo time average WSS in a straight segment of the suprarenal aorta correlated highly with simulations (PC = 0.99) with a mean deviation of 0.29 Pa or 5.16%. To assess fundamental plausibility of the measurement, UIV WSS was compared to an analytic approximation derived from the Poiseuille equation; the discrepancy was 17%. Mapping of WSS was also demonstrated in regions of arterial branching. High time average WSS (TAWSSxz = 3.4 Pa) and oscillatory flow (OSIxz = 0.3) were observed near the origin of conduit arteries. In conclusion, we have demonstrated that contrast-enhanced UIV is capable of measuring spatiotemporal variation in flow velocity, arterial wall location and hence WSS in vivo with high accuracy over a large field of view.
Collapse
|
15
|
Voorneveld J, Saaid H, Schinkel C, Radeljic N, Lippe B, Gijsen FJH, van der Steen AFW, de Jong N, Claessens T, Vos HJ, Kenjeres S, Bosch JG. 4-D Echo-Particle Image Velocimetry in a Left Ventricular Phantom. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:805-817. [PMID: 31924419 DOI: 10.1016/j.ultrasmedbio.2019.11.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/29/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Left ventricular (LV) blood flow is an inherently complex time-varying 3-D phenomenon, where 2-D quantification often ignores the effect of out-of-plane motion. In this study, we describe high frame rate 4-D echocardiographic particle image velocimetry (echo-PIV) using a prototype matrix transesophageal transducer and a dynamic LV phantom for testing the accuracy of echo-PIV in the presence of complex flow patterns. Optical time-resolved tomographic PIV (tomo-PIV) was used as a reference standard for comparison. Echo-PIV and tomo-PIV agreed on the general profile of the LV flow patterns, but echo-PIV smoothed out the smaller flow structures. Echo-PIV also underestimated the flow rates at greater imaging depths, where the PIV kernel size and transducer point spread function were large relative to the velocity gradients. We demonstrate that 4-D echo-PIV could be performed in just four heart cycles, which would require only a short breath-hold, providing promising results. However, methods for resolving high velocity gradients in regions of poor spatial resolution are required before clinical translation.
Collapse
Affiliation(s)
- Jason Voorneveld
- Department of Biomedical Engineering, Thorax Center, Erasmus MC University Medical Center, Rotterdam, the Netherlands.
| | - Hicham Saaid
- Institute Biomedical Technology, Ghent University, Ghent, Belgium
| | - Christiaan Schinkel
- Transport Phenomena Section, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology; the Netherlands
| | | | | | - Frank J H Gijsen
- Department of Biomedical Engineering, Thorax Center, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Antonius F W van der Steen
- Department of Biomedical Engineering, Thorax Center, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Nico de Jong
- Department of Biomedical Engineering, Thorax Center, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Tom Claessens
- Department of Materials, Textiles and Chemical Engineering, Ghent University, Ghent, Belgium
| | - Hendrik J Vos
- Department of Biomedical Engineering, Thorax Center, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Sasa Kenjeres
- Transport Phenomena Section, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology; the Netherlands
| | - Johan G Bosch
- Department of Biomedical Engineering, Thorax Center, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|