1
|
Babaei S, Dobrucki LW, Insana MF. Power-Doppler Ultrasonic Imaging of Peripheral Perfusion in Diabetic Mice. IEEE Trans Biomed Eng 2024; 71:2421-2431. [PMID: 38442044 PMCID: PMC11292584 DOI: 10.1109/tbme.2024.3373254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
OBJECTIVE We explored the capabilities of power-Doppler ultrasonic (PD-US) imaging without contrast enhancement for monitoring changes in muscle perfusion over time. METHODS Ischemic recovery was observed in healthy and type II diabetic male and female mice with and without exercise. In separate studies, perfusion was measured during and after 5-min ischemic periods and during four-week recovery periods following irreversible femoral ligation. A goal was to assess how well PD-US estimates tracked the diabetic-related changes in endothelial function that influenced perfusion. RESULTS The average perfusion recovery time following femoral ligation increased 47% in diabetic males and 74% in diabetic females compared with non-diabetic mice. Flow-mediated dilation in conduit arteries and the reactive hyperemia index in resistive vessels each declined by one half in sedentary diabetic mice compared with sedentary non-diabetic mice. We found that exercise reduced the loss of endothelial function from diabetes in both sexes. The reproducibility of perfusion measurements was limited primarily by our ability to select the same region in muscle and to effectively filter tissue clutter. CONCLUSIONS/SIGNIFICANCE PD-US measurements can precisely follow site-specific changes in skeletal muscle perfusion related to diabetes over time, which fills the need for techniques capable of regularly monitoring atherosclerotic changes leading to ischemic vascular pathologies.
Collapse
|
2
|
Su X, Wang Y, Chu H, Jiang L, Yan Y, Qiao X, Yu J, Guo K, Zong Y, Wan M. Low-rank prior-based Fast-RPCA for clutter filtering and noise suppression in non-contrast ultrasound microvascular imaging. ULTRASONICS 2024; 142:107379. [PMID: 38981172 DOI: 10.1016/j.ultras.2024.107379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024]
Abstract
Accurate and real-time separation of blood signal from clutter and noise signals is a critical step in clinical non-contrast ultrasound microvascular imaging. Despite the widespread adoption of singular value decomposition (SVD) and robust principal component analysis (RPCA) for clutter filtering and noise suppression, the SVD's sensitivity to threshold selection, along with the RPCA's limitations in undersampling conditions and heavy computational burden often result in suboptimal performance in complex clinical applications. To address those challenges, this study presents a novel low-rank prior-based fast RPCA (LP-fRPCA) approach to enhance the adaptability and robustness of clutter filtering and noise suppression with reduced computational cost. A low-rank prior constraint is integrated into the non-convex RPCA model to achieve a robust and efficient approximation of clutter subspace, while an accelerated alternating projection iterative algorithm is developed to improve convergence speed and computational efficiency. The performance of the LP-fRPCA method was evaluated against SVD with a tissue/blood threshold (SVD1), SVD with both tissue/blood and blood/noise thresholds (SVD2), and the classical RPCA based on the alternating direction method of multipliers algorithm through phantom and in vivo non-contrast experiments on rabbit kidneys. In the slow flow phantom experiment of 0.2 mm/s, LP-fRPCA achieved an average increase in contrast ratio (CR) of 10.68 dB, 9.37 dB, and 8.66 dB compared to SVD1, SVD2, and RPCA, respectively. In the in vivo rabbit kidney experiment, the power Doppler results demonstrate that the LP-fRPCA method achieved a superior balance in the trade-off between insufficient clutter filtering and excessive suppression of blood flow. Additionally, LP-fRPCA significantly reduced the runtime of RPCA by up to 94-fold. Consequently, the LP-fRPCA method promises to be a potential tool for clinical non-contrast ultrasound microvascular imaging.
Collapse
Affiliation(s)
- Xiao Su
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yueyuan Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hanbing Chu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Liyuan Jiang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yadi Yan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaoyang Qiao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jianjun Yu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Kaitai Guo
- School of Electronic Engineering, Xidian University, Xi'an, 710071, China
| | - Yujin Zong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
3
|
Hoyt K. Super-Resolution Ultrasound Imaging for Monitoring the Therapeutic Efficacy of a Vascular Disrupting Agent in an Animal Model of Breast Cancer. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:1099-1107. [PMID: 38411352 DOI: 10.1002/jum.16438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/01/2024] [Accepted: 02/10/2024] [Indexed: 02/28/2024]
Abstract
OBJECTIVE Evaluate the use of super-resolution ultrasound (SRUS) imaging for the early detection of tumor response to treatment using a vascular-disrupting agent (VDA). METHODS A population of 28 female nude athymic mice (Charles River Laboratories) were implanted with human breast cancer cells (MDA-MB-231, ATCC) in the mammary fat pad and allowed to grow. Ultrasound imaging was performed using a Vevo 3100 scanner (FUJIFILM VisualSonics Inc) equipped with the MX250 linear array transducer immediately before and after receiving bolus injections of a microbubble (MB) contrast agent (Definity, Lantheus Medical Imaging) via the tail vein. Following baseline ultrasound imaging, VDA drug (combretastatin A4 phosphate, CA4P, Sigma Aldrich) or control saline was injected via the placed catheter. After 4 or 24 hours, repeat ultrasound imaging along the same tumor cross-section occurred. Direct intratumoral pressure measurements were obtained using a calibrated sensor. All raw ultrasound data were saved for offline processing and SRUS image reconstruction using custom MATLAB software (MathWorks Inc). From a region encompassing the tumor space and the entire postprocessed ultrasound image sequence, time MB count (TMC) curves were generated in addition to traditional SRUS maps reflecting MB enumeration at each pixel location. Peak enhancement (PE) and wash-in rate (WIR) were extracted from these TMC curves. At termination, intratumoral microvessel density (MVD) was quantified using tomato lectin labeling of patent blood vessels. RESULTS SRUS images exhibited a clear difference between control and treated tumors. While there was no difference in any group parameters at baseline (0 hour, P > .09), both SRUS-derived PE and WIR measurements in tumors treated with VDA exhibited significant decreases by 4 (P = .03 and P = .05, respectively) and 24 hours (P = .02 and P = .01, respectively), but not in control group tumors (P > .22). Similarly, SRUS derived microvascular maps were not different at baseline (P = .81), but measures of vessel density were lower in treated tumors at both 4 and 24 hours (P < .04). An inverse relationship between intratumoral pressure and both PE and WIR parameters were found in control tumors (R2 > .09, P < .03). CONCLUSION SRUS imaging is a new modality for assessing tumor response to treatment using a VDA.
Collapse
Affiliation(s)
- Kenneth Hoyt
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
4
|
Huang Y, Chen X, Badescu E, Kuenen M, Bonnefous O, Mischi M. Adaptive higher-order singular value decomposition clutter filter for ultrafast Doppler imaging of coronary flow under non-negligible tissue motion. ULTRASONICS 2024; 140:107307. [PMID: 38579486 DOI: 10.1016/j.ultras.2024.107307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/24/2024] [Accepted: 03/23/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND AND OBJECTIVE With the development of advanced clutter-filtering techniques by singular value decomposition (SVD) and leveraging favorable acquisition settings such as open-chest imaging by a linear high-frequency probe and plane waves, several studies have shown the feasibility of cardiac flow measurements during the entire cardiac cycle, ranging from coronary flow to myocardial perfusion. When applying these techniques in a routine clinical setting, using transthoracic ultrasound imaging, new challenges emerge. Firstly, a smaller aperture is needed that can fit between ribs. Consequently, diverging waves are employed instead of plane waves to achieve an adequate field of view. Secondly, to ensure imaging at a larger depth, the maximum pulse repetition frequency has to be reduced. Lastly, in comparison to the open-chest scenario, tissue motion induced by the heartbeat is significantly stronger. The latter complicates substantially the distinction between clutter and blood signals. METHODS This study investigates a strategy to overcome these challenges by diverging wave imaging with an optimal number of tilt angles, in combination with dedicated clutter-filtering techniques. In particular, a novel, adaptive, higher-order SVD (HOSVD) clutter filter, which utilizes spatial, temporal, and angular information of the received ultrasound signals, is proposed to enhance clutter and blood separation. RESULTS When non-negligible tissue motion is present, using fewer tilt angles not only reduces the decorrelation between the received waveforms but also allows for collecting more temporal samples at a given ensemble duration, contributing to improved Doppler performance. The addition of a third angular dimension enables the application of HOSVD, providing greater flexibility in selecting blood separation thresholds from a 3-D tensor. This differs from the conventional threshold selection method in a 2-D spatiotemporal space using SVD. Exhaustive threshold search has shown a significant improvement in Contrast and Contrast-to-Noise ratio for Power Doppler images filtered with HOSVD compared to the SVD-based clutter filter. CONCLUSION With the improved settings, the obtained Power Doppler images show the feasibility of measuring coronary flow under the influence of non-negligible tissue motion in both in vitro and ex vivo.
Collapse
Affiliation(s)
- Yizhou Huang
- Lab. of Biomedical Diagnostics, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Xufei Chen
- Lab. of Biomedical Diagnostics, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | | | | | - Massimo Mischi
- Lab. of Biomedical Diagnostics, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
5
|
Jiang L, Chu H, Yu J, Su X, Liu J, Wu H, Wang F, Zong Y, Wan M. Clutter filtering of angular domain data for contrast-free ultrafast microvascular imaging. Phys Med Biol 2023; 69:015006. [PMID: 38041871 DOI: 10.1088/1361-6560/ad11a2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/01/2023] [Indexed: 12/04/2023]
Abstract
Objective. Contrast-free microvascular imaging is clinically valuable for the assessment of physiological status and the early diagnosis of diseases. Effective clutter filtering is essential for microvascular visualization without contrast enhancement. Singular value decomposition (SVD)-based spatiotemporal filter has been widely used to suppress clutter. However, clinical real-time imaging relies on short ensembles (dozens of frames), which limits the implementation of SVD filtering due to the large error of eigen-correlated estimations and high dependence on optimal threshold when used in such ensembles.Approach. To address the above challenges of imaging in short ensembles, two optimized filters of angular domain data are proposed in this paper: grouped angle SVD (GA-SVD) and angular-coherence-based higher-order SVD (AC-HOSVD). GA-SVD applies SVD to the concatenation of all angular data to improve clutter rejection performance in short ensembles, while AC-HOSVD applies HOSVD to the angular data tensor and utilizes angular coherence in addition to spatial and temporal features for filtering. Feasible threshold selection strategies in each feature space are provided. The clutter rejection performance of the proposed filters and SVD was evaluated with Doppler phantom andin vivostudies at different cases. Moreover, the robustness of the filters was explored under wrong singular value threshold estimation, and their computational complexity was studied.Main results. Qualitative and quantitative results indicated that GA-SVD and AC-HOSVD can effectively improve clutter rejection performance in short ensembles, especially AC-HOSVD. Notably, the proposed methods using 20 frames had similar image quality to SVD using 100 frames.In vivostudies showed that compared to SVD, GA-SVD increased the signal-to-noise-ratio (SNR) by 6.03 dB on average, and AC-HOSVD increased the SNR by 8.93 dB on average. Furthermore, AC-HOSVD remained better power Doppler image quality under non-optimal thresholds, followed by GA-SVD.Significance. The proposed filters can greatly enhance contrast-free microvascular visualization in short ensembles and have potential for different clinical translations due to the performance differences.
Collapse
Affiliation(s)
- Liyuan Jiang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Hanbing Chu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jianjun Yu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xiao Su
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jiacheng Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Haitao Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Feiqian Wang
- Ultrasound Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Yujin Zong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
6
|
Babaei S, Dai B, Abbey CK, Ambreen Y, Dobrucki WL, Insana MF. Monitoring Muscle Perfusion in Rodents During Short-Term Ischemia Using Power Doppler Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1465-1475. [PMID: 36967332 PMCID: PMC10106419 DOI: 10.1016/j.ultrasmedbio.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVE The aim of this work was to evaluate the reliability of power Doppler ultrasound (PD-US) measurements made without contrast enhancement to monitor temporal changes in peripheral blood perfusion. METHODS On the basis of pre-clinical rodent studies, we found that combinations of spatial registration and clutter filtering techniques applied to PD-US signals reproducibly tracked blood perfusion in skeletal muscle. Perfusion is monitored while modulating hindlimb blood flow. First, in invasive studies, PD-US measurements in deep muscle with laser speckle contrast imaging (LSCI) of superficial tissues made before, during and after short-term arterial clamping were compared. Then, in non-invasive studies, a pressure cuff was employed to generate longer-duration hindlimb ischemia. Here, B-mode imaging was also applied to measure flow-mediated dilation of the femoral artery while, simultaneously, PD-US was used to monitor downstream muscle perfusion to quantify reactive hyperemia. Measurements in adult male and female mice and rats, some with exercise conditioning, were included to explore biological variables. RESULTS PD-US methods are validated through comparisons with LSCI measurements. As expected, no significant differences were found between sexes or fitness levels in flow-mediated dilation or reactive hyperemia estimates, although post-ischemic perfusion was enhanced with exercise conditioning, suggesting there could be differences between the hyperemic responses of conduit and resistive vessels. CONCLUSION Overall, we found non-contrast PD-US imaging can reliably monitor relative spatiotemporal changes in muscle perfusion. This study supports the development of PD-US methods for monitoring perfusion changes in patients at risk for peripheral artery disease.
Collapse
Affiliation(s)
- Somaye Babaei
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bingze Dai
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Craig K Abbey
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Yamenah Ambreen
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wawrzyniec L Dobrucki
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael F Insana
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
7
|
Insana MF, Dai B, Babaei S, Abbey CK. Combining Spatial Registration With Clutter Filtering for Power-Doppler Imaging in Peripheral Perfusion Applications. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:3243-3254. [PMID: 36191097 PMCID: PMC9741924 DOI: 10.1109/tuffc.2022.3211469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Power-Doppler ultrasonic (PD-US) imaging is sensitive to echoes from blood cell motion in the microvasculature but generally nonspecific because of difficulties with filtering nonblood-echo sources. We are studying the potential for using PD-US imaging for routine assessments of peripheral blood perfusion without contrast media. The strategy developed is based on an experimentally verified computational model of tissue perfusion that simulates typical in vivo conditions. The model considers directed and diffuse blood perfusion states in a field of moving clutter and noise. A spatial registration method is applied to minimize tissue motion prior to clutter and noise filtering. The results show that in-plane clutter motion is effectively minimized. While out-of-plane motion remains a strong source of clutter-filter leakage, those registration errors are readily minimized by straightforward modification of scanning techniques and spatial averaging.
Collapse
|
8
|
Nagaoka R, Omura M, Mozumi M, Yagi K, Hasegawa H. Investigation on application of singular value decomposition filter in element domain for extraction of ultrasonic echoes from blood cells in jugular veins. JAPANESE JOURNAL OF APPLIED PHYSICS 2022; 61:SG1011. [DOI: 10.35848/1347-4065/ac4680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Abstract
The singular value decomposition (SVD) based clutter filter is commonly applied to beamformed signals for the visualization of echo signals from flowing blood cells. In this paper, the SVD-based clutter filter is applied to signals directly acquired from ultrasonic elements before beamforming to be compared with the conventional strategy by evaluating contrast and standard deviation (SD) in the filtered images. As a result, the contrast was improved from 10.7 ± 3.6 dB to 18.3 ± 4.6 dB, and the SD was slightly improved from 3.78 ± 0.69 dB to 3.07 ± 0.74 dB in the measurement of a right jugular vein.
Collapse
|
9
|
Nagaoka R, Hasegawa H, Tamura K, Yoshida S, Hozumi N, Kobayashi K. Suppression of reflected signals from substrate as clutters for cell measurements using acoustic impedance microscopy. ULTRASONICS 2022; 118:106580. [PMID: 34555738 DOI: 10.1016/j.ultras.2021.106580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/24/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Recently, a method for estimating three-dimensional acoustic impedance profiles in cultured cells and human dermal organs was proposed by interpreting the reflected ultrasonic signal based on a 1-D transmission line model for acoustic impedance microscopy (AIM). However, AIM has a disadvantage that reflected signals from cells overlap with that from a reference substrate. Additionally, the amplitudes of the reflected signals from the specimens are significantly weaker than that from the substrate. In this paper, we proposed a new method for separation of those signals based on a concept of clutter filter, which had been developed for a color Doppler method in medical ultrasonic imaging. The proposed filter using singular value decomposition (SVD) could separate original signals into desired signals such as those from the substrate and cells. Additionally, an effect from a tilt of the substrate was investigated in this study. Separability of the proposed filter was evaluated by two investigations. First one was to evaluate the separability by estimating a correlation coefficient between the filtered signal and signal reflected from a position only with the substrate. Second one was to compare a slope of the substrate estimated from the original signal with that estimated from the filtered signals from the substrate. The experimental results showed that the proposed filter could separate signals from the substrate, and the compensation of the tilt of the substrate could improve the performance of the proposed filter.
Collapse
Affiliation(s)
- Ryo Nagaoka
- Faculty of Engineering, Academic Assembly, University of Toyama, Toyama, Toyama 930-8555, Japan.
| | - Hideyuki Hasegawa
- Faculty of Engineering, Academic Assembly, University of Toyama, Toyama, Toyama 930-8555, Japan
| | - Kazuki Tamura
- Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Sachiko Yoshida
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Naohiro Hozumi
- Department of Electrical and Electronic Information, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | | |
Collapse
|
10
|
Chen C, Hansen HHG, Hendriks GAGM, de Korte CL. The Viability of 3-D Power Doppler Imaging Using Continuous Mechanical Translation: Simulation and Theoretical Analysis. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:3270-3282. [PMID: 34086569 DOI: 10.1109/tuffc.2021.3086564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although conventional Doppler ultrasound is widely used for quantifying blood flow, it is restricted by its low sensitivity to detect slow flow. The incorporation of ultrafast ultrasound and spatial-temporal clutter filters can not only extensively boost the Doppler sensitivity to low-velocity slow flow but also facilitate the development of advanced 3-D Doppler techniques. In this work, we propose a novel 3-D Doppler method which extends 2-D imaging to 3-D through the continuous mechanical translation of a linear transducer. The viability of this method is assessed by simulations with the aids of a theoretical model. The combination of simulations and the theoretical model provides unique insights into the inherent mechanisms involved in the performance of this 3-D Doppler method and the roles of factors, such as tissue vibration characteristics, blood flow velocity, elevational point-spread-function profile, probe translating speed, and signal energy ratios.
Collapse
|
11
|
Ozgun KA, Byram BC. Multidimensional Clutter Filtering of Aperture Domain Data for Improved Blood Flow Sensitivity. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2645-2656. [PMID: 33852387 PMCID: PMC8345228 DOI: 10.1109/tuffc.2021.3073292] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Singular value decomposition (SVD) is a valuable factorization technique used in clutter rejection filtering for power Doppler imaging. Conventionally, SVD is applied to a Casorati matrix of radio frequency data, which enables filtering based on spatial or temporal characteristics. In this article, we propose a clutter filtering method that uses a higher order SVD (HOSVD) applied to a tensor of aperture data, e.g., delayed channel data. We discuss temporal, spatial, and aperture domain features that can be leveraged in filtering and demonstrate that this multidimensional approach improves sensitivity toward blood flow. Further, we show that HOSVD remains more robust to short ensemble lengths than conventional SVD filtering. Validation of this technique is shown using Field II simulations and in vivo data.
Collapse
|
12
|
Huang C, Song P, Trzasko JD, Gong P, Lok UW, Tang S, Manduca A, Chen S. Simultaneous Noise Suppression and Incoherent Artifact Reduction in Ultrafast Ultrasound Vascular Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2075-2085. [PMID: 33513103 PMCID: PMC8154644 DOI: 10.1109/tuffc.2021.3055498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ultrasound vascular imaging based on ultrafast plane wave imaging and singular value decomposition (SVD) clutter filtering has demonstrated superior sensitivity in blood flow detection. However, ultrafast ultrasound vascular imaging is susceptible to electronic noise due to the weak penetration of unfocused waves, leading to a lower signal-to-noise ratio (SNR) at larger depths. In addition, incoherent clutter artifacts originating from strong and moving tissue scatterers that cannot be completely removed create a strong mask on top of the blood signal that obscures the vessels. Herein, a method that can simultaneously suppress the background noise and incoherent artifacts is proposed. The method divides the tilted plane or diverging waves into two subgroups. Coherent spatial compounding is performed within each subgroup, resulting in two compounded data sets. An SVD-based clutter filter is applied to each data set, followed by a correlation between the two data sets to produce a vascular image. Uncorrelated noise and incoherent artifacts can be effectively suppressed with the correlation process, while the coherent blood signal can be preserved. The method was evaluated in wire-target simulations and phantom, in which around 7-10-dB SNR improvement was shown. Consistent results were found in a flow channel phantom with improved SNR by the proposed method (39.9 ± 0.2 dB) against conventional power Doppler (29.1 ± 0.6 dB). Last, we demonstrated the effectiveness of the method combined with block-wise SVD clutter filtering in a human liver, breast tumor, and inflammatory bowel disease data sets. The improved blood flow visualization may facilitate more reliable small vessel imaging for a wide range of clinical applications, such as cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Chengwu Huang
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Pengfei Song
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
| | - Joshua D. Trzasko
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Ping Gong
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - U-Wai Lok
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Shanshan Tang
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Armando Manduca
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905 USA
| | - Shigao Chen
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| |
Collapse
|
13
|
Zhu Y, Kim M, Hoerig C, Insana MF. Experimental Validation of Perfusion Imaging With HOSVD Clutter Filters. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:1830-1838. [PMID: 32324548 PMCID: PMC7501588 DOI: 10.1109/tuffc.2020.2989109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Novel pulsed-Doppler methods for perfusion imaging are validated using dialysis cartridges as perfusion phantoms. Techniques that were demonstrated qualitatively at 24 MHz, in vivo, are here examined quantitatively at 5 and 12.5 MHz using phantoms with the blood-mimicking fluid flow within cellulose microfibers. One goal is to explore a variety of flow states to optimize measurement sensitivity and flow accuracy. The results show that 2-3-s echo acquisitions at roughly 10 frames/s yield the highest sensitivity to flows of 1-4 mL/min. A second goal is to examine methods for setting the parameters of higher order singular value decomposition (HOSVD) clutter filters. For stationary or moving clutter, the velocity of the blood-mimicking fluid in the microfibers is consistently estimated within measurement uncertainty (mean coefficient of variation = 0.26). Power Doppler signals were equivalent for stationary and moving clutter after clutter filtering, increasing approximately 3 dB/mL/min of blood-mimicking fluid flow for 0 ≤ q ≤ 4 mL/min. Comparisons between phantom and preclinical images show that peripheral perfusion imaging can be reliably achieved without contrast enhancement.
Collapse
|
14
|
Chen Q, Yu J, Lukashova L, Latoche JD, Zhu J, Lavery L, Verdelis K, Anderson CJ, Kim K. Validation of Ultrasound Super-Resolution Imaging of Vasa Vasorum in Rabbit Atherosclerotic Plaques. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:1725-1729. [PMID: 32086204 PMCID: PMC7424774 DOI: 10.1109/tuffc.2020.2974747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Acute coronary syndromes and strokes are mainly caused by atherosclerotic plaque (AP) rupture. Abnormal increase of vasa vasorum (VV) is reported as a key evidence of plaque progression and vulnerability. However, due to their tiny size, it is still challenging to noninvasively identify VV near the major vessels. Ultrasound super resolution (USR), a technique that provides high spatial resolution beyond the acoustic diffraction limit, demonstrated an adequate spatial resolution for VV detection in early studies. However, a thorough validation of this technology in the plaque model is particularly needed in order to continue further extended preclinical studies. In this letter, we present an experiment protocol that verifies the USR technology for VV identification with subsequent histology and ex vivo micro-computed tomography ( μ CT). Deconvolution-based USR imaging was applied on two rabbits to identify the VV near the AP in the femoral artery. Histology and ex vivo μ CT imaging were performed on excised femoral tissue to validate the USR technique both pathologically and morphologically. This established validation protocol could facilitate future extended preclinical studies toward the clinical translation of USR imaging for VV identification.
Collapse
|
15
|
Zhang N, Ashikuzzaman M, Rivaz H. Clutter suppression in ultrasound: performance evaluation and review of low-rank and sparse matrix decomposition methods. Biomed Eng Online 2020; 19:37. [PMID: 32466753 PMCID: PMC7254711 DOI: 10.1186/s12938-020-00778-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/07/2020] [Indexed: 11/10/2022] Open
Abstract
Vessel diseases are often accompanied by abnormalities related to vascular shape and size. Therefore, a clear visualization of vasculature is of high clinical significance. Ultrasound color flow imaging (CFI) is one of the prominent techniques for flow visualization. However, clutter signals originating from slow-moving tissue are one of the main obstacles to obtain a clear view of the vascular network. Enhancement of the vasculature by suppressing the clutters is a significant and irreplaceable step for many applications of ultrasound CFI. Currently, this task is often performed by singular value decomposition (SVD) of the data matrix. This approach exhibits two well-known limitations. First, the performance of SVD is sensitive to the proper manual selection of the ranks corresponding to clutter and blood subspaces. Second, SVD is prone to failure in the presence of large random noise in the dataset. A potential solution to these issues is using decomposition into low-rank and sparse matrices (DLSM) framework. SVD is one of the algorithms for solving the minimization problem under the DLSM framework. Many other algorithms under DLSM avoid full SVD and use approximated SVD or SVD-free ideas which may have better performance with higher robustness and less computing time. In practice, these models separate blood from clutter based on the assumption that steady clutter represents a low-rank structure and that the moving blood component is sparse. In this paper, we present a comprehensive review of ultrasound clutter suppression techniques and exploit the feasibility of low-rank and sparse decomposition schemes in ultrasound clutter suppression. We conduct this review study by adapting 106 DLSM algorithms and validating them against simulation, phantom, and in vivo rat datasets. Two conventional quality metrics, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), are used for performance evaluation. In addition, computation times required by different algorithms for generating clutter suppressed images are reported. Our extensive analysis shows that the DLSM framework can be successfully applied to ultrasound clutter suppression.
Collapse
Affiliation(s)
- Naiyuan Zhang
- Department of Electrical and Computer Engineering, Concordia, Rue Sainte-Catherine O, Montreal, Canada
| | - Md Ashikuzzaman
- Department of Electrical and Computer Engineering, Concordia, Rue Sainte-Catherine O, Montreal, Canada
| | - Hassan Rivaz
- Department of Electrical and Computer Engineering, Concordia, Rue Sainte-Catherine O, Montreal, Canada.
| |
Collapse
|
16
|
Tierney J, Baker J, Brown D, Wilkes D, Byram B. Independent Component-Based Spatiotemporal Clutter Filtering for Slow Flow Ultrasound. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:1472-1482. [PMID: 31689187 PMCID: PMC7288756 DOI: 10.1109/tmi.2019.2951465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Effective tissue clutter filtering is critical for non-contrast ultrasound imaging of slow blood flow in small vessels. Independent component analysis (ICA) has been considered by other groups for ultrasound clutter filtering in the past and was shown to be superior to principal component analysis (PCA)-based methods. However, it has not been considered specifically for slow flow applications or revisited since the onset of other slow flow-focused advancements in beamforming and tissue filtering, namely angled plane wave beamforming and full spatiotemporal singular value decomposition (SVD) (i.e., PCA-based) tissue filtering. In this work, we aim to develop a full spatiotemporal ICA-based tissue filtering technique facilitated by plane wave applications and compare it to SVD filtering. We compare ICA and SVD filtering in terms of optimal image quality in simulations and phantoms as well as in terms of optimal correlation to ground truth blood signal in simulations. Additionally, we propose an adaptive blood independent component sorting and selection method. We show that optimal and adaptive ICA can consistently separate blood from tissue better than principal component analysis (PCA)-based methods using simulations and phantoms. Additionally we demonstrate initial in vivo feasibility in ultrasound data of a liver tumor.
Collapse
|
17
|
Ashikuzzaman M, Belasso C, Kibria MG, Bergdahl A, Gauthier CJ, Rivaz H. Low Rank and Sparse Decomposition of Ultrasound Color Flow Images for Suppressing Clutter in Real-Time. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:1073-1084. [PMID: 31535988 DOI: 10.1109/tmi.2019.2941865] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, a novel technique for real-time clutter rejection in ultrasound Color Flow Imaging (CFI) is proposed. Suppressing undesired clutter signal is important because clutter prohibits an unambiguous view of the vascular network. Although conventional eigen-based filters are potentially efficient in suppressing clutter signal, their performance is highly dependent on proper selection of a clutter to blood boundary which is done manually. Herein, we resolve this limitation by formulating the clutter suppression problem as a foreground-background separation problem to extract the moving blood component. To that end, we adapt the fast Robust Matrix Completion (fRMC) algorithm, and utilize the in-face extended Frank-Wolfe method to minimize the rank of the matrix of ultrasound frames. Our method automates the clutter suppression process, which is critical for clinical use. We name the method RAPID (Robust mAtrix decomPosition for suppressIng clutter in ultrasounD) since the automation step can substantially streamline clutter suppression. The technique is validated with simulation, flow phantom and two sets of in-vivo data. RAPID code as well as most of the data in this paper can be downloaded from RAPID.sonography.ai.
Collapse
|
18
|
Nayak R, Fatemi M, Alizad A. Adaptive background noise bias suppression in contrast-free ultrasound microvascular imaging. Phys Med Biol 2019; 64:245015. [PMID: 31855574 PMCID: PMC7241295 DOI: 10.1088/1361-6560/ab5879] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Non-invasive, contrast-free imaging of small vessel blood flow is diagnostically invaluable for detection, diagnosis and monitoring of disease. Recent advances in ultrafast imaging and tissue clutter-filtering have considerably improved the sensitivity of power Doppler (PD) imaging in detecting small vessel blood flow. However, suppression of tissue clutter exposes the depth-dependent time-gain compensated noise bias that noticeably degrades the PD image. We hypothesized that background suppression of PD images based on noise bias estimated from the entire clutter-filtered singular value spectrum can considerably improve flow signal visualization compared to currently existing techniques. To test our hypothesis, in vivo experiments were conducted on suspicious breast lesions in 10 subjects and deep-seated hepatic and renal microvasculatures in four healthy volunteers. Ultrasound PD images were acquired using a clinical ultrasound scanner, implemented with compounded plane wave imaging. The time gain compensated noise field was computed from the clutter-filtered Doppler ensemble (CFDE) based on its local spatio-temporal correlation, combined with low-rank signal estimation. Subsequently, the background bias in the PD images was suppressed by subtracting the estimated noise field. Background-suppressed PD images obtained using the proposed technique substantially improved visualization of the blood flow signal. The background bias in the noise suppressed PD images varied <0.6 dB, independent of depth, which otherwise increased up to 13.8 dB. Further, the results demonstrated that the proposed technique efficaciously suppressed the background noise bias associated with smaller Doppler ensembles, which are challenging due to increased overlap between blood flow and noise components in the singular value spectrum. These preliminary results demonstrate the utility of the proposed technique to improve the visualization of small vessel blood flow in contrast-free PD images. The results of this feasibility study were encouraging, and warrant further development and additional in vivo validation.
Collapse
Affiliation(s)
- Rohit Nayak
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55902, United States of America
| | | | | |
Collapse
|
19
|
Tierney J, Baker J, Borgmann A, Brown D, Byram B. Non-contrast power Doppler ultrasound imaging for early assessment of trans-arterial chemoembolization of liver tumors. Sci Rep 2019; 9:13020. [PMID: 31506503 PMCID: PMC6736854 DOI: 10.1038/s41598-019-49448-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/23/2019] [Indexed: 12/24/2022] Open
Abstract
Trans-arterial chemoembolization (TACE) is an important yet variably effective treatment for management of hepatic malignancies. Lack of response can be in part due to inability to assess treatment adequacy in real-time. Gold-standard contrast enhanced computed tomography and magnetic resonance imaging, although effective, suffer from treatment-induced artifacts that prevent early treatment evaluation. Non-contrast ultrasound is a potential solution but has historically been ineffective at detecting treatment response. Here, we propose non-contrast ultrasound with recent perfusion-focused advancements as a tool for immediate evaluation of TACE. We demonstrate initial feasibility in an 11-subject pilot study. Treatment-induced changes in tumor perfusion are detected best when combining adaptive demodulation (AD) and singular value decomposition (SVD) techniques. Using a 0.5 s (300-sample) ensemble size, AD + SVD resulted in a 7.42 dB median decrease in tumor power after TACE compared to only a 0.06 dB median decrease with conventional methods.
Collapse
Affiliation(s)
- Jaime Tierney
- Vanderbilt University, Department of Biomedical Engineering, Nashville, TN, 37232, USA.
| | - Jennifer Baker
- Vanderbilt University Medical Center, Department of Radiology, Nashville, TN, 37232, USA
| | - Anthony Borgmann
- Vanderbilt University Medical Center, Department of Radiology, Nashville, TN, 37232, USA
| | - Daniel Brown
- Vanderbilt University Medical Center, Department of Radiology, Nashville, TN, 37232, USA
| | - Brett Byram
- Vanderbilt University, Department of Biomedical Engineering, Nashville, TN, 37232, USA
| |
Collapse
|