1
|
Kim J, Kim J, Lee DK, Shin EJ, Chang JH. High-Intensity focused ultrasound linear array and system for dermatology treatment. ULTRASONICS 2025; 145:107477. [PMID: 39332247 DOI: 10.1016/j.ultras.2024.107477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
Dermatological lesions are typically located just a few millimeters below the surface of the skin, which constrains the efficacy of optical-based therapeutic methods such as photothermal and photodynamic therapy due to limited therapeutic depth caused by optical scattering. As an alternative, high-intensity focused ultrasound (HIFU) has been explored for its potential to treat a variety of dermatological conditions because it offers greater flexibility in terms of treatment depth. Since dermatological lesions have a small thickness ranging from 1.5 to 2.0 mm, high-frequency ultrasound (3-10 MHz or higher) is preferred as the focal area is proportional to the operating frequency. However, due to the difficulty in fabricating HIFU array transducers at this frequency range, the majority of HIFU treatments for dermatology rely on single element transducers. Despite the advantages of HIFU, single-element-based HIFU systems are limited in prevalent use for dermatology treatment due to their fixed focal length and mechanical movement for treatment, which can be time-consuming and unsuitable for treating multiple lesions. To address this, we present a newly developed HIFU linear array and 128-channel driving electronics specifically designed for dermatology treatment. This array consists of 128 elements, has a center frequency of 3.7 MHz, an elevation focal length of 28 mm, and an F-number of 1.27 in the elevation direction. The array has a footprint of 71.6 mm by 22 mm. Experiments using a tissue-mimicking phantom have demonstrated that the HIFU linear array and system are capable of transmitting sufficient ultrasound energy to create coagulation inside the phantom.
Collapse
Affiliation(s)
- Juhwan Kim
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Jinwoo Kim
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Duk Kyu Lee
- The Ceramic Business Unit, Dong Il Technology, Ltd., Gyeonggi-do, Korea
| | - Eui-Ji Shin
- Department of Electronic Engineering, Sogang University, Seoul, Korea
| | - Jin Ho Chang
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea.
| |
Collapse
|
2
|
Yeats E, Lu N, Stocker G, Komaiha M, Sukovich JR, Xu Z, Hall TL. In Vivo Cavitation-Based Aberration Correction of Histotripsy in Porcine Liver. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1019-1029. [PMID: 38837932 PMCID: PMC11479660 DOI: 10.1109/tuffc.2024.3409638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Histotripsy is a noninvasive ablation technique that focuses ultrasound pulses into the body to destroy tissues via cavitation. Heterogeneous acoustic paths through tissue introduce phase errors that distort and weaken the focus, requiring additional power output from the histotripsy transducer to perform therapy. This effect, termed phase aberration, limits the safety and efficacy of histotripsy ablation. It has been shown in vitro that the phase errors from aberration can be corrected by receiving the acoustic signals emitted by cavitation. For transabdominal histotripsy in vivo, however, cavitation-based aberration correction (AC) is complicated by acoustic signal clutter and respiratory motion. This study develops a method that enables robust, effective cavitation-based AC in vivo and evaluates its efficacy in the swine liver. The method begins with a high-speed pulsing procedure to minimize the effects of respiratory motion. Then, an optimal phase correction is obtained in the presence of acoustic clutter by filtering with the singular value decomposition (SVD). This AC method reduced the power required to generate cavitation in the liver by 26% on average (range: 0%-52%) and required ~2 s for signal acquisition and processing per focus location. These results suggest that the cavitation-based method could enable fast and effective AC for transabdominal histotripsy.
Collapse
|
3
|
Yeats E, Hall TL. Aberration correction in abdominal histotripsy. Int J Hyperthermia 2023; 40:2266594. [PMID: 37813397 PMCID: PMC10637766 DOI: 10.1080/02656736.2023.2266594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
In transabdominal histotripsy, ultrasound pulses are focused on the body to noninvasively destroy soft tissues via cavitation. However, the ability to focus is limited by phase aberration, or decorrelation of the ultrasound pulses due to spatial variation in the speed of sound throughout heterogeneous tissue. Phase aberration shifts, broadens, and weakens the focus, thereby reducing the safety and efficacy of histotripsy therapy. This paper reviews and discusses aberration effects in histotripsy and in related therapeutic ultrasound techniques (e.g., high intensity focused ultrasound), with an emphasis on aberration by soft tissues. Methods for aberration correction are reviewed and can be classified into two groups: model-based methods, which use segmented images of the tissue as input to an acoustic propagation model to predict and compensate phase differences, and signal-based methods, which use a receive-capable therapy array to detect phase differences by sensing acoustic signals backpropagating from the focus. The relative advantages and disadvantages of both groups of methods are discussed. Importantly, model-based methods can correct focal shift, while signal-based methods can restore substantial focal pressure, suggesting that both methods should be combined in a 2-step approach. Aberration correction will be critical to improving histotripsy treatments and expanding the histotripsy treatment envelope to enable non-invasive, non-thermal histotripsy therapy for more patients.
Collapse
Affiliation(s)
- Ellen Yeats
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
| | - Timothy L. Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
4
|
Preston C, Alvarez AM, Allard M, Barragan A, Witte RS. Acoustoelectric Time-Reversal for Ultrasound Phase-Aberration Correction. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:854-864. [PMID: 37405897 PMCID: PMC10493188 DOI: 10.1109/tuffc.2023.3292595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Acoustoelectric imaging (AEI) is a technique that combines ultrasound (US) with radio frequency recording to detect and map local current source densities. This study demonstrates a new method called acoustoelectric time reversal (AETR), which uses AEI of a small current source to correct for phase aberrations through a skull or other US-aberrating layers with applications to brain imaging and therapy. Simulations conducted at three different US frequencies (0.5, 1.5, and 2.5 MHz) were performed through media layered with different sound speeds and geometries to induce aberrations of the US beam. Time delays of the acoustoelectric (AE) signal from a monopole within the medium were calculated for each element to enable corrections using AETR. Uncorrected aberrated beam profiles were compared with those after applying AETR corrections, which demonstrated a strong recovery (29%-100%) of lateral resolution and increases in focal pressure up to 283%. To further demonstrate the practical feasibility of AETR, we further conducted bench-top experiments using a 2.5 MHz linear US array to perform AETR through 3-D-printed aberrating objects. These experiments restored lost lateral restoration up to 100% for the different aberrators and increased focal pressure up to 230% after applying AETR corrections. Cumulatively, these results highlight AETR as a powerful tool for correcting focal aberrations in the presence of a local current source with applications to AEI, US imaging, neuromodulation, and therapy.
Collapse
|
5
|
Yeats E, Lu N, Sukovich JR, Xu Z, Hall TL. Soft Tissue Aberration Correction for Histotripsy Using Acoustic Emissions From Cavitation Cloud Nucleation and Collapse. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1182-1193. [PMID: 36759271 PMCID: PMC10082475 DOI: 10.1016/j.ultrasmedbio.2023.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/01/2022] [Accepted: 01/03/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVE Phase aberration from soft tissue limits the efficacy of histotripsy, a therapeutic ultrasound technique based on acoustic cavitation. Previous work has shown that the acoustic emissions from cavitation can serve as "point sources" for aberration correction (AC). This study compared the efficacy of soft tissue AC for histotripsy using acoustic cavitation emissions (ACE) from bubble cloud nucleation and collapse. METHODS A 750-kHz, receive-capable histotripsy array was pulsed to generate cavitation in ex vivo porcine liver through an intervening abdominal wall. Received ACE signals were used to determine the arrival time differences to the focus and compute corrective delays. Corrections from single pulses and from the median of multiple pulses were tested. DISCUSSION On average, ACE AC obtained 96% ± 3% of the pressure amplitude obtained by hydrophone-based correction (compared with 71% ± 5% without AC). Both nucleation- and collapse-based corrections obtained >96% of the hydrophone-corrected pressure when using medians of ≥10 pulses. When using single-pulse corrections, nucleation obtained a range of 49%-99% of the hydrophone-corrected pressure, while collapse obtained 95%-99%. CONCLUSION The results suggest that (i) ACE AC can recover nearly all pressure amplitude lost owing to soft tissue aberration and that (ii) the collapse signal permits robust AC using a small number of pulses.
Collapse
Affiliation(s)
- Ellen Yeats
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Ning Lu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan R Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Kim H, Song I, Kang J, Yoo Y. Phase aberration correction for ultrasound imaging guided extracorporeal shock wave therapy (ESWT): Feasibility study. ULTRASONICS 2023; 132:107011. [PMID: 37071943 DOI: 10.1016/j.ultras.2023.107011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/27/2022] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Image guidance of extracorporeal shock wave therapy (ESWT) is important to enhance its efficacy while lowering pain in patients. Real-time ultrasound imaging is an appropriate modality for image guidance, but its image quality substantially reduces due to severe phase aberration from the different speed of sound between soft tissues and a gel pad, which is utilized to control a therapeutic focal point in ESWT. This paper presents a phase aberration correction method for improving image quality in the ultrasound imaging guided ESWT. To correct an error from phase aberration, a time delay based on a two-layer model with different speeds of sound is calculated for dynamic receive beamforming. For the phantom and in vivo studies, a rubber type gel pad (i.e., 1400 m/s) with a specific thickness (3 or 5-cm) was placed on the top of soft tissue and full scanline RF data were acquired. In the phantom study, with phase aberration correction, image quality was highly increased compared to image reconstructions with a fixed speed of sound (i.e., 1540 or 1400 m/s), i.e., 1.1 vs. 2.2 and 1.3 mm in -6dB lateral resolution and 0.64 vs. 0.61 and 0.56 in contrast-to-noise ratio (CNR), respectively. From an in vivo musculoskeletal (MSK) imaging, the phase aberration correction method provided a clearly improved depiction of muscle fibers in a rectus femoris region. These results indicate that the proposed method enables effective imaging guidance of ESWT by improving image quality of ultrasound imaging in real-time.
Collapse
Affiliation(s)
- Hongnam Kim
- Department of Electronic Engineering, Sogang University, Seoul 04107, Korea
| | - Ilseob Song
- Medical Solutions Institute, Sogang University, Seoul 04107, Korea
| | - Jinbum Kang
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States.
| | - Yangmo Yoo
- Department of Electronic Engineering, Sogang University, Seoul 04107, Korea; Medical Solutions Institute, Sogang University, Seoul 04107, Korea; Department of Biomedical Engineering, Sogang University, Seoul 04107, Korea.
| |
Collapse
|
7
|
Williams RP, Simon JC, Khokhlova VA, Sapozhnikov OA, Khokhlova TD. The histotripsy spectrum: differences and similarities in techniques and instrumentation. Int J Hyperthermia 2023; 40:2233720. [PMID: 37460101 PMCID: PMC10479943 DOI: 10.1080/02656736.2023.2233720] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/15/2023] [Accepted: 07/02/2023] [Indexed: 07/20/2023] Open
Abstract
Since its inception about two decades ago, histotripsy - a non-thermal mechanical tissue ablation technique - has evolved into a spectrum of methods, each with distinct potentiating physical mechanisms: intrinsic threshold histotripsy, shock-scattering histotripsy, hybrid histotripsy, and boiling histotripsy. All methods utilize short, high-amplitude pulses of focused ultrasound delivered at a low duty cycle, and all involve excitation of violent bubble activity and acoustic streaming at the focus to fractionate tissue down to the subcellular level. The main differences are in pulse duration, which spans microseconds to milliseconds, and ultrasound waveform shape and corresponding peak acoustic pressures required to achieve the desired type of bubble activity. In addition, most types of histotripsy rely on the presence of high-amplitude shocks that develop in the pressure profile at the focus due to nonlinear propagation effects. Those requirements, in turn, dictate aspects of the instrument design, both in terms of driving electronics, transducer dimensions and intensity limitations at surface, shape (primarily, the F-number) and frequency. The combination of the optimized instrumentation and the bio-effects from bubble activity and streaming on different tissues, lead to target clinical applications for each histotripsy method. Here, the differences and similarities in the physical mechanisms and resulting bioeffects of each method are reviewed and tied to optimal instrumentation and clinical applications.
Collapse
Affiliation(s)
- Randall P Williams
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Julianna C Simon
- Graduate Program in Acoustics, The Pennsylvania State University, University Park, PA, USA
| | - Vera A Khokhlova
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
- Department of Acoustics, Physics Faculty, Moscow State University, Moscow, Russia
| | - Oleg A Sapozhnikov
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
- Department of Acoustics, Physics Faculty, Moscow State University, Moscow, Russia
| | - Tatiana D Khokhlova
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Thomas GPL, Khokhlova TD, Sapozhnikov OA, Wang YN, Totten SI, Khokhlova VA. In Vivo Aberration Correction for Transcutaneous HIFU Therapy Using a Multielement Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2955-2964. [PMID: 35981067 PMCID: PMC9714798 DOI: 10.1109/tuffc.2022.3200309] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
One of the challenges of transcutaneous high-intensity focused ultrasound (HIFU) therapies, especially ones relying heavily on shock formation, such as boiling histotripsy (BH), is the loss of focusing from aberration induced by the heterogeneities of the body wall. Here, a methodology to execute aberration correction in vivo is proposed. A custom BH system consisting of a 1.5-MHz phased array of 256 elements connected to a Verasonics V1 system is used in pulse/echo mode on a porcine model under general anesthesia. Estimation of the time shifts needed to correct for aberration in the liver and kidney is done by maximizing the value of the coherence factor on the acquired backscattered signals. As this process requires multiple pulse/echo sequences on a moving target to converge to a solution, tracking is also implemented to ensure that the same target is used between each iteration. The method was validated by comparing the acoustic power needed to generate a boiling bubble at one target with aberration correction and at another target within a 5-mm radius without aberration correction. Results show that the aberration correction effectively lowers the acoustic power required to reach boiling by up to 45%, confirming that it indeed restored formation of the nonlinear shock front at the focus.
Collapse
|
9
|
Stocker GE, Lundt JE, Sukovich JR, Miller RM, Duryea AP, Hall TL, Xu Z. A Modular, Kerf-Minimizing Approach for Therapeutic Ultrasound Phased Array Construction. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2766-2775. [PMID: 35617178 PMCID: PMC9594968 DOI: 10.1109/tuffc.2022.3178291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A novel method for fabricating a modular, kerf-minimizing histotripsy phased array was developed and tested. The method utilizes arbitrarily shaped elements, 3-D printing, water jet cutting, and a thin, 125- [Formula: see text] electrically insulating epoxy coating to maximize aperture utilization while allowing for replacement of individual transducer modules. The method was used to fabricate a 750-kHz truncated circular aperture array (165 mm ×234 mm) transducer with a focal length of 142 mm. The aperture was segmented into 260 arc-shaped modular elements, each approximately 11.5 mm ×11.5 mm, arranged in concentric rings. The resulting aperture utilization was 92%. The full-width-half-maximum (FWHM) focal zone of the array was measured to be 1.6 mm ×1.1 mm ×4.5 mm, and the FWHM electrical steering range was measured to be 38.5 mm ×33 mm 40 mm. The array was estimated to be capable of generating approximately 120-MPa peak negative pressure at the geometric focus. In addition, the array was used to ablate a 5-cm3 volume of tissue with electric focal steering.
Collapse
Affiliation(s)
- Greyson E. Stocker
- Department of Biomedical Engineering at the University of Michigan, Ann Arbor, MI 48109
| | | | - Jonathan R. Sukovich
- Department of Biomedical Engineering at the University of Michigan, Ann Arbor, MI 48109
| | | | | | - Timothy L. Hall
- Department of Biomedical Engineering at the University of Michigan, Ann Arbor, MI 48109
| | - Zhen Xu
- Department of Biomedical Engineering at the University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
10
|
Yeats E, Gupta D, Xu Z, Hall TL. Effects of phase aberration on transabdominal focusing for a large aperture, low f-number histotripsy transducer. Phys Med Biol 2022; 67:10.1088/1361-6560/ac7d90. [PMID: 35772383 PMCID: PMC9396534 DOI: 10.1088/1361-6560/ac7d90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/30/2022] [Indexed: 11/12/2022]
Abstract
Objective. Soft tissue phase aberration may be particularly severe for histotripsy due to large aperture and lowf-number transducer geometries. This study investigated how phase aberration from human abdominal tissue affects focusing of a large, strongly curved histotripsy transducer.Approach.A computational model (k-Wave) was experimentally validated withex vivoporcine abdominal tissue and used to simulate focusing a histotripsy transducer (radius: 14.2 cm,f-number: 0.62, central frequencyfc: 750 kHz) through the human abdomen. Abdominal computed tomography images from 10 human subjects were segmented to create three-dimensional acoustic property maps. Simulations were performed focusing at 3 target locations in the liver of each subject with ideal phase correction, without phase correction, and after separately matching the sound speed of water and fat to non-fat soft tissue.Main results.Experimental validation in porcine abdominal tissue showed that simulated and measured arrival time differences agreed well (average error, ∼0.10 acoustic cycles atfc). In simulations with human tissue, aberration created arrival time differences of 0.65μs (∼0.5 cycles) at the target and shifted the focus from the target by 6.8 mm (6.4 mm pre-focally along depth direction), on average. Ideal phase correction increased maximum pressure amplitude by 95%, on average. Matching the sound speed of water and fat to non-fat soft tissue decreased the average pre-focal shift by 3.6 and 0.5 mm and increased pressure amplitude by 2% and 69%, respectively.Significance.Soft tissue phase aberration of large aperture, lowf-number histotripsy transducers is substantial despite low therapeutic frequencies. Phase correction could potentially recover substantial pressure amplitude for transabdominal histotripsy. Additionally, different heterogeneity sources distinctly affect focusing quality. The water path strongly affects the focal shift, while irregular tissue boundaries (e.g. fat) dominate pressure loss.
Collapse
Affiliation(s)
- Ellen Yeats
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States of America
| | - Dinank Gupta
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States of America
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States of America
| | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States of America
| |
Collapse
|
11
|
Zhang H, Xu M, Liu M, Song X, He F, Chen S, Ming D. Biological current source imaging method based on acoustoelectric effect: A systematic review. Front Neurosci 2022; 16:807376. [PMID: 35924223 PMCID: PMC9339687 DOI: 10.3389/fnins.2022.807376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Neuroimaging can help reveal the spatial and temporal diversity of neural activity, which is of utmost importance for understanding the brain. However, conventional non-invasive neuroimaging methods do not have the advantage of high temporal and spatial resolution, which greatly hinders clinical and basic research. The acoustoelectric (AE) effect is a fundamental physical phenomenon based on the change of dielectric conductivity that has recently received much attention in the field of biomedical imaging. Based on the AE effect, a new imaging method for the biological current source has been proposed, combining the advantages of high temporal resolution of electrical measurements and high spatial resolution of focused ultrasound. This paper first describes the mechanism of the AE effect and the principle of the current source imaging method based on the AE effect. The second part summarizes the research progress of this current source imaging method in brain neurons, guided brain therapy, and heart. Finally, we discuss the problems and future directions of this biological current source imaging method. This review explores the relevant research literature and provides an informative reference for this potential non-invasive neuroimaging method.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Minpeng Xu
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, Tianjin University, Tianjin, China
| | - Miao Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, Tianjin University, Tianjin, China
| | - Xizi Song
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, Tianjin University, Tianjin, China
| | - Feng He
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, Tianjin University, Tianjin, China
| | - Shanguang Chen
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, Tianjin University, Tianjin, China
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Dong Ming
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, Tianjin University, Tianjin, China
- *Correspondence: Dong Ming
| |
Collapse
|
12
|
Peek AT, Thomas GPL, Leotta DF, Yuldashev PV, Khokhlova VA, Khokhlova TD. Robust and durable aberrative and absorptive phantom for therapeutic ultrasound applications. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:3007. [PMID: 35649925 PMCID: PMC9071501 DOI: 10.1121/10.0010369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Phase aberration induced by soft tissue inhomogeneities often complicates high-intensity focused ultrasound (HIFU) therapies by distorting the field and, previously, we designed and fabricated a bilayer gel phantom to reproducibly mimic that effect. A surface pattern containing size scales relevant to inhomogeneities of a porcine body wall was introduced between gel materials with fat- and muscle-like acoustic properties-ballistic and polyvinyl alcohol gels. Here, the phantom design was refined to achieve relevant values of ultrasound absorption and scattering and make it more robust, facilitating frequent handling and use in various experimental arrangements. The fidelity of the interfacial surface of the fabricated phantom to the design was confirmed by three-dimensional ultrasound imaging. The HIFU field distortions-displacement of the focus, enlargement of the focal region, and reduction of focal pressure-produced by the phantom were characterized using hydrophone measurements with a 1.5 MHz 256-element HIFU array and found to be similar to those induced by an ex vivo porcine body wall. A phase correction approach was used to mitigate the aberration effect on nonlinear focal waveforms and enable boiling histotripsy treatments through the phantom or body wall. The refined phantom represents a practical tool to explore HIFU therapy systems capabilities.
Collapse
Affiliation(s)
- Alex T Peek
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, Washington 98105, USA
| | - Gilles P L Thomas
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, Washington 98105, USA
| | - Daniel F Leotta
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, Washington 98105, USA
| | | | - Vera A Khokhlova
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, Washington 98105, USA
| | - Tatiana D Khokhlova
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, Washington 98125, USA
| |
Collapse
|
13
|
Ponomarchuk EM, Rosnitskiy PB, Khokhlova TD, Buravkov SV, Tsysar SA, Karzova MM, Tumanova KD, Kunturova AV, Wang YN, Sapozhnikov OA, Trakhtman PE, Starostin NN, Khokhlova VA. Ultrastructural Analysis of Volumetric Histotripsy Bio-effects in Large Human Hematomas. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2608-2621. [PMID: 34116880 PMCID: PMC8355095 DOI: 10.1016/j.ultrasmedbio.2021.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
Large-volume soft tissue hematomas are a serious clinical problem, which, if untreated, can have severe consequences. Current treatments are associated with significant pain and discomfort. It has been reported that in an in vitro bovine hematoma model, pulsed high-intensity focused ultrasound (HIFU) ablation, termed histotripsy, can be used to rapidly and non-invasively liquefy the hematoma through localized bubble activity, enabling fine-needle aspiration. The goals of this study were to evaluate the efficiency and speed of volumetric histotripsy liquefaction using a large in vitro human hematoma model. Large human hematoma phantoms (85 cc) were formed by recalcifying blood anticoagulated with citrate phosphate dextrose/saline-adenine-glucose-mannitol solution. Typical boiling histotripsy pulses (10 or 2 ms) or hybrid histotripsy pulses using higher-amplitude and shorter pulses (0.4 ms) were delivered at 1% duty cycle while continuously translating the HIFU focus location. Histotripsy exposures were performed under ultrasound guidance with a 1.5-MHz transducer (8-cm aperture, F# = 0.75). The volume of liquefied lesions was determined by ultrasound imaging and gross inspection. Untreated hematoma samples and samples of the liquefied lesions aspirated using a fine needle were analyzed cytologically and ultrastructurally with scanning electron microscopy. All exposures resulted in uniform liquid-filled voids with sharp edges; liquefaction speed was higher for exposures with shorter pulses and higher shock amplitudes at the focus (up to 0.32, 0.68 and 2.62 mL/min for 10-, 2- and 0.4-ms pulses, respectively). Cytological and ultrastructural observations revealed completely homogenized blood cells and fibrin fragments in the lysate. Most of the fibrin fragments were less than 20 μm in length, but a number of fragments were up to 150 μm. The lysate with residual debris of that size would potentially be amenable to fine-needle aspiration without risk for needle clogging in clinical implementation.
Collapse
Affiliation(s)
- Ekaterina M Ponomarchuk
- Laboratory for Industrial and Medical Ultrasound, Physics Faculty, M. V. Lomonosov Moscow State University, Moscow, Russian Federation.
| | - Pavel B Rosnitskiy
- Laboratory for Industrial and Medical Ultrasound, Physics Faculty, M. V. Lomonosov Moscow State University, Moscow, Russian Federation
| | | | - Sergey V Buravkov
- Faculty of Fundamental Medicine, M. V. Lomonosov Moscow State University, Moscow, Russian Federation
| | - Sergey A Tsysar
- Laboratory for Industrial and Medical Ultrasound, Physics Faculty, M. V. Lomonosov Moscow State University, Moscow, Russian Federation
| | - Maria M Karzova
- Laboratory for Industrial and Medical Ultrasound, Physics Faculty, M. V. Lomonosov Moscow State University, Moscow, Russian Federation
| | - Kseniya D Tumanova
- Laboratory for Industrial and Medical Ultrasound, Physics Faculty, M. V. Lomonosov Moscow State University, Moscow, Russian Federation
| | - Anna V Kunturova
- Laboratory for Industrial and Medical Ultrasound, Physics Faculty, M. V. Lomonosov Moscow State University, Moscow, Russian Federation
| | - Y-N Wang
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Oleg A Sapozhnikov
- Laboratory for Industrial and Medical Ultrasound, Physics Faculty, M. V. Lomonosov Moscow State University, Moscow, Russian Federation; Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Pavel E Trakhtman
- National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Nicolay N Starostin
- National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Vera A Khokhlova
- Laboratory for Industrial and Medical Ultrasound, Physics Faculty, M. V. Lomonosov Moscow State University, Moscow, Russian Federation; Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| |
Collapse
|