1
|
Zhu Y, Zhang G, Zhang Q, Luo L, Ding B, Guo X, Zhang D, Tu J. Real-time passive cavitation mapping and B-mode fusion imaging via hybrid adaptive beamformer with modified diagnostic ultrasound platform. ULTRASONICS 2024; 142:107375. [PMID: 38901152 DOI: 10.1016/j.ultras.2024.107375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/15/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024]
Abstract
The implementation of real-time, convenient and high-resolution passive cavitation imaging (PCM) is crucial for ensuring the safety and effectiveness of ultrasound applications related to cavitation effects. However, the current B-mode ultrasound imaging system cannot achieve these functions. By developing a hybrid adaptive beamforming algorithm, the current work presented a real-time PCM and B-mode fusion imaging technique, using a modified diagnostic ultrasound platform enabling time-division multiplexing external triggering function. The proposed hybrid adaptive beamformer combined the advantages of delay-multiply-and-sum (DMAS) and minimum variance (MV) methods to effectively suppress the side lobe and tail-like artifacts, improving the resolution of PCM images. A high-pass filter was applied to selectively detect cavitation-specific signals while removing the interference from the tissue scatters. The system enabled synchronous visualization of tissue structure and cavitation activity under ultrasound exposure. Both numerical and experimental studies demonstrated that, compared with DAS, MV-DAS and DMAS methods, the proposed MV-DMAS algorithm performed better in both axial and lateral resolutions. This work represented a significant advancement in achieving high-quality real-time B-mode and PCM fusion imaging utilizing commercial medical ultrasound system, providing a powerful tool for synchronous monitoring and manipulating cavitation activity, which would enhance the safety and efficacy of cavitation-based applications.
Collapse
Affiliation(s)
- Yifei Zhu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Guofeng Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Qi Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Lan Luo
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Bo Ding
- Zhuhai Ecare Electronics Science & Technology Co., Ltd., Zhuhai 519041, China
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
2
|
Lyons B, Balkaran JPR, Dunn-Lawless D, Lucian V, Keller SB, O’Reilly CS, Hu L, Rubasingham J, Nair M, Carlisle R, Stride E, Gray M, Coussios C. Sonosensitive Cavitation Nuclei-A Customisable Platform Technology for Enhanced Therapeutic Delivery. Molecules 2023; 28:7733. [PMID: 38067464 PMCID: PMC10708135 DOI: 10.3390/molecules28237733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Ultrasound-mediated cavitation shows great promise for improving targeted drug delivery across a range of clinical applications. Cavitation nuclei-sound-sensitive constructs that enhance cavitation activity at lower pressures-have become a powerful adjuvant to ultrasound-based treatments, and more recently emerged as a drug delivery vehicle in their own right. The unique combination of physical, biological, and chemical effects that occur around these structures, as well as their varied compositions and morphologies, make cavitation nuclei an attractive platform for creating delivery systems tuned to particular therapeutics. In this review, we describe the structure and function of cavitation nuclei, approaches to their functionalization and customization, various clinical applications, progress toward real-world translation, and future directions for the field.
Collapse
Affiliation(s)
- Brian Lyons
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Joel P. R. Balkaran
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Darcy Dunn-Lawless
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Veronica Lucian
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Sara B. Keller
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Colm S. O’Reilly
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford OX1 3PJ, UK;
| | - Luna Hu
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Jeffrey Rubasingham
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Malavika Nair
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Robert Carlisle
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Michael Gray
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Constantin Coussios
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| |
Collapse
|
3
|
Bae S, Liu K, Pouliopoulos AN, Ji R, Konofagou EE. Real-Time Passive Acoustic Mapping With Enhanced Spatial Resolution in Neuronavigation-Guided Focused Ultrasound for Blood-Brain Barrier Opening. IEEE Trans Biomed Eng 2023; 70:2874-2885. [PMID: 37159313 PMCID: PMC10538424 DOI: 10.1109/tbme.2023.3266952] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
OBJECTIVE Passive acoustic mapping (PAM) provides the spatial information of acoustic energy emitted from microbubbles during focused ultrasound (FUS), which can be used for safety and efficacy monitoring of blood-brain barrier (BBB) opening. In our previous work with a neuronavigation-guided FUS system, only part of the cavitation signal could be monitored in real time due to the computational burden although full-burst analysis is required to detect transient and stochastic cavitation activity. In addition, the spatial resolution of PAM can be limited for a small-aperture receiving array transducer. For full-burst real-time PAM with enhanced resolution, we developed a parallel processing scheme for coherence-factor-based PAM (CF-PAM) and implemented it onto the neuronavigation-guided FUS system using a co-axial phased-array imaging transducer. METHODS Simulation and in-vitro human skull studies were conducted for the performance evaluation of the proposed method in terms of spatial resolution and processing speed. We also carried out real-time cavitation mapping during BBB opening in non-human primates (NHPs). RESULTS CF-PAM with the proposed processing scheme provided better resolution than that of traditional time-exposure-acoustics PAM with a higher processing speed than that of eigenspace-based robust Capon beamformer, which facilitated the full-burst PAM with the integration time of 10 ms at a rate of 2 Hz. In vivo feasibility of PAM with the co-axial imaging transducer was also demonstrated in two NHPs, showing the advantages of using real-time B-mode and full-burst PAM for accurate targeting and safe treatment monitoring. SIGNIFICANCE This full-burst PAM with enhanced resolution will facilitate the clinical translation of online cavitation monitoring for safe and efficient BBB opening.
Collapse
|
4
|
Haworth KJ, Salido NG, Lafond M, Escudero DS, Holland CK. Passive Cavitation Imaging Artifact Reduction Using Data-Adaptive Spatial Filtering. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:498-509. [PMID: 37018086 PMCID: PMC10335845 DOI: 10.1109/tuffc.2023.3264832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Passive cavitation imaging (PCI) with a clinical diagnostic array results in poor axial localization of bubble activity due to the size of the point spread function (PSF). The objective of this study was to determine if data-adaptive spatial filtering improved PCI beamforming performance relative to standard frequency-domain delay, sum, and integrate (DSI) or robust Capon beamforming (RCB). The overall goal was to improve source localization and image quality without sacrificing computation time. Spatial filtering was achieved by applying a pixel-based mask to DSI- or RCB-beamformed images. The masks were derived from DSI, RCB, or phase or amplitude coherence factors (ACFs) using both receiver operating characteristic (ROC) and precision-recall (PR) curve analyses. Spatially filtered passive cavitation images were formed from cavitation emissions based on two simulated sources densities and four source distribution patterns mimicking cavitation emissions induced by an EkoSonic catheter. Beamforming performance was assessed via binary classifier metrics. The difference in sensitivity, specificity, and area under the ROC curve (AUROC) differed by no more than 11% across all algorithms for both source densities and all source patterns. The computational time required for each of the three spatially filtered DSIs was two orders of magnitude less than that required for time-domain RCB and thus this data-adaptive spatial filtering strategy for PCI beamforming is preferable given the similar binary classification performance.
Collapse
|
5
|
Bendjador H, Foiret J, Wodnicki R, Stephens DN, Krut Z, Park EY, Gazit Z, Gazit D, Pelled G, Ferrara KW. A theranostic 3D ultrasound imaging system for high resolution image-guided therapy. Theranostics 2022; 12:4949-4964. [PMID: 35836805 PMCID: PMC9274734 DOI: 10.7150/thno.71221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/14/2022] [Indexed: 01/12/2023] Open
Abstract
Microbubble contrast agents are a diagnostic tool with broad clinical impact and an increasing number of indications. Many therapeutic applications have also been identified. Yet, technologies for ultrasound guidance of microbubble-mediated therapy are limited. In particular, arrays that are capable of implementing and imaging microbubble-based therapy in three dimensions in real-time are lacking. We propose a system to perform and monitor microbubble-based therapy, capable of volumetric imaging over a large field-of-view. To propel the promise of the theranostic treatment strategies forward, we have designed and tested a unique array and system for 3D ultrasound guidance of microbubble-based therapeutic protocols based on the frequency, temporal and spatial requirements. Methods: Four 256-channel plane wave scanners (Verasonics, Inc, WA, USA) were combined to control a 1024-element planar array with 1.3 and 2.5 MHz therapeutic and imaging transmissions, respectively. A transducer aperture of ~40×15 mm was selected and Field II was applied to evaluate the point spread function. In vitro experiments were performed on commercial and custom phantoms to assess the spatial resolution, image contrast and microbubble-enhanced imaging capabilities. Results: We found that a 2D array configuration with 64 elements separated by λ-pitch in azimuth and 16 elements separated by 1.5λ-pitch in elevation ensured the required flexibility. This design, of 41.6 mm × 16 mm, thus provided both an extended field-of-view, up to 11 cm x 6 cm at 10 cm depth and steering of ±18° in azimuth and ±12° in elevation. At a depth of 16 cm, we achieved a volume imaging rate of 60 Hz, with a contrast ratio and resolution, respectively, of 19 dB, 0.8 mm at 3 cm and 20 dB and 2.1 mm at 12.5 cm. Conclusion: A single 2D array for both imaging and therapeutics, integrated with a 1024 channel scanner can guide microbubble-based therapy in volumetric regions of interest.
Collapse
Affiliation(s)
| | | | | | | | - Zoe Krut
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | - Zulma Gazit
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dan Gazit
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gadi Pelled
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | |
Collapse
|
6
|
Telichko AV, Lee T, Hyun D, Chowdhury SM, Bachawal S, Herickhoff CD, Paulmurugan R, Dahl JJ. Passive Cavitation Mapping by Cavitation Source Localization From Aperture-Domain Signals-Part II: Phantom and In Vivo Experiments. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1198-1212. [PMID: 33141666 PMCID: PMC8528486 DOI: 10.1109/tuffc.2020.3035709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Passive cavitation mapping (PCM) techniques typically utilize a time-exposure acoustic (TEA) approach, where the received radio frequency data are beamformed, squared, and integrated over time. Such PCM-TEA cavitation maps typically suffer from long-tail artifacts and poor axial resolution with pulse-echo diagnostic arrays. Here, we utilize a recently developed PCM technique based on cavitation source localization (CSL), which fits a hyperbolic function to the received cavitation wavefront. A filtering method based on the root-mean-square error (rmse) of the hyperbolic fit is utilized to filter out spurious signals. We apply a wavefront correction technique to the signals with poor fit quality to recover additional cavitation signals and improve cavitation localization. Validation of the PCM-CSL technique with rmse filtering and wavefront correction was conducted in experiments with a tissue-mimicking flow phantom and an in vivo mouse model of cancer. It is shown that the quality of the hyperbolic fit, necessary for the PCM-CSL, requires an rmse < 0.05 mm2 in order to accurately localize the cavitation sources. A detailed study of the wavefront correction technique was carried out, and it was shown that, when applied to experiments with high noise and interference from multiple cavitating microbubbles, it was capable of effectively correcting noisy wavefronts without introducing spurious cavitation sources, thereby improving the quality of the PCM-CSL images. In phantom experiments, the PCM-CSL was capable of precisely localizing sources on the therapy beam axis and off-axis sources. In vivo cavitation experiments showed that PMC-CSL showed a significant improvement over PCM-TEA and yielded acceptable localization of cavitation signals in mice.
Collapse
|