1
|
Wagner MG, Minesinger GM, Falk KL, Kutlu AZ, Kisting MA, Speidel MA, Ziemlewicz TJ, Hinshaw JL, Swietlik JF, Lee FT, Laeseke PF. Evaluation of targeting accuracy of cone beam CT guided histotripsy in an in vivo porcine model. Int J Hyperthermia 2025; 42:2455138. [PMID: 39842812 PMCID: PMC11784921 DOI: 10.1080/02656736.2025.2455138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/25/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
PURPOSE The application of histotripsy, an emerging noninvasive, non-ionizing, and non-thermal tumor treatment, is currently limited by the inherent limitations of diagnostic ultrasound as the sole targeting modality. This study evaluates the feasibility and accuracy of cone beam computed tomography (CBCT) guidance for histotripsy treatments in an in vivo porcine model. MATERIALS AND METHODS Histotripsy treatments were performed in the liver of seven healthy swine under the guidance of a C-arm CBCT system that was calibrated to the robotic arm of the histotripsy system. For each treatment, pseudotumors (small histotripsy treatments of 15 mm) were created using conventional US guidance to serve as targets for subsequent CBCT guided treatments. A pretreatment CBCT with intravenous contrast was acquired for each swine and the center of the pseudotumor was selected as the target. The robotic arm automatically aligned the transducer to the selected target location. Ultrasound based aberration offset correction was performed when possible, and a 25 mm diameter treatment was performed. A post-treatment CBCT with intravenous contrast was then acquired to evaluate coverage, treatment size, and distance between the pseudotumor target and actual treatment zone center. RESULTS Treatments were technically successful and pseudotumors were completely covered in all seven treatments (7/7). The average treatment diameter was 39.3 ± 4.2 mm. The center-to-center distance between pseudotumor and actual treatments was 3.8 ± 1.3 mm. CONCLUSION CBCT provides accurate targeting for histotripsy treatment in vivo. While future work is required to assess safety and efficacy in the presence of obstructions, the proposed approach could supplement ultrasound imaging for targeting.
Collapse
Affiliation(s)
- Martin G. Wagner
- Department of Radiology, University of Wisconsin, 600 Highland Ave, Madison, WI 53792
- Department of Medical Physics, University of Wisconsin, 600 Highland Ave, Madison, WI 53792
| | - Grace M. Minesinger
- Department of Medical Physics, University of Wisconsin, 600 Highland Ave, Madison, WI 53792
| | - Katrina L. Falk
- Department of Radiology, University of Wisconsin, 600 Highland Ave, Madison, WI 53792
- Department of Biomedical Engineering, University of Wisconsin, 600 Highland Ave, Madison, WI 53792
| | - Ayca Z. Kutlu
- Department of Radiology, University of Wisconsin, 600 Highland Ave, Madison, WI 53792
| | - Meridith A. Kisting
- Department of Radiology, University of Wisconsin, 600 Highland Ave, Madison, WI 53792
| | - Michael A. Speidel
- Department of Medical Physics, University of Wisconsin, 600 Highland Ave, Madison, WI 53792
- Department of Medicine, University of Wisconsin, 600 Highland Ave, Madison, WI 53792
| | - Timothy J. Ziemlewicz
- Department of Radiology, University of Wisconsin, 600 Highland Ave, Madison, WI 53792
| | - J. Louis Hinshaw
- Department of Radiology, University of Wisconsin, 600 Highland Ave, Madison, WI 53792
| | - John F. Swietlik
- Department of Radiology, University of Wisconsin, 600 Highland Ave, Madison, WI 53792
| | - Fred T. Lee
- Department of Radiology, University of Wisconsin, 600 Highland Ave, Madison, WI 53792
| | - Paul F. Laeseke
- Department of Radiology, University of Wisconsin, 600 Highland Ave, Madison, WI 53792
- Department of Biomedical Engineering, University of Wisconsin, 600 Highland Ave, Madison, WI 53792
| |
Collapse
|
2
|
Sandilos G, Butchy MV, Koneru M, Gongalla S, Sensenig R, Hong YK. Histotripsy - hype or hope? Review of innovation and future implications. J Gastrointest Surg 2024; 28:1370-1375. [PMID: 38862075 DOI: 10.1016/j.gassur.2024.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/18/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Histotripsy is a novel, ultrasound-based ablative technique that was recently approved by the Food and Drug Administration for hepatic targets. It has several promising additional theoretical applications that need to be further investigated. Its basis as a nonthermal cavitational technology presents a unique advantage over existing thermal ablation techniques in maximizing local effects while minimizing adjacent tissue destruction. This review discusses the technical basis and current preclinical and clinical data surrounding histotripsy. METHODS This was a comprehensive review of the literature surrounding histotripsy and the clinical landscape of existing ablative techniques using the PubMed database. A technical summary of histotripsy's physics and cellular effect was described. Moreover, data from recent clinical trials, including Hope4Liver, and future implications regarding its application in various benign and malignant conditions were discussed. RESULTS Preclinical data demonstrated the efficacy of histotripsy ablation in various organ systems with minimal tissue destruction when examined at the histologic level. The first prospective clinical trial involving histotripsy in hepatocellular carcinoma and liver metastases, Hope4Liver, demonstrated a primary efficacy of 95.5% with minimal complications (6.8%). This efficacy was replicated in similar trials involving the treatment of benign prostatic hypertrophy. DISCUSSION In addition to the noninvasive ability to ablate lesions in the liver, histotripsy offers additional therapeutic potential. Early data suggest a potential complementary therapeutic effect when combining histotripsy with existing immunologic therapies because of the technology's theoretical ability to sensitize tumors to adaptive immunity. As with most novel therapies, the effect of histotripsy on the oncologic therapeutic landscape remains uncertain.
Collapse
Affiliation(s)
- Georgianna Sandilos
- Division of Surgical Oncology, Department of Surgery, Cooper University Hospital, Cooper University Health Care, Camden, NJ, United States
| | - Margaret Virginia Butchy
- Division of Surgical Oncology, Department of Surgery, Cooper University Hospital, Cooper University Health Care, Camden, NJ, United States
| | - Manisha Koneru
- Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Shivsai Gongalla
- Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Richard Sensenig
- Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Young Ki Hong
- Division of Surgical Oncology, Department of Surgery, Cooper University Hospital, Cooper University Health Care, Camden, NJ, United States.
| |
Collapse
|
3
|
Ponomarchuk E, Tsysar S, Kvashennikova A, Chupova D, Pestova P, Danilova N, Malkov P, Buravkov S, Khokhlova V. Pilot Study on Boiling Histotripsy Treatment of Human Leiomyoma Ex Vivo. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1255-1261. [PMID: 38762389 DOI: 10.1016/j.ultrasmedbio.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/20/2024]
Abstract
OBJECTIVE As an alternative to surgical excision and magnetic resonance-guided thermal high-intensity focused ultrasound ablation of uterine leiomyoma, this work was aimed at pilot feasibility demonstration of use of ultrasound-guided boiling histotripsy for non-invasive non-thermal fractionation of human uterine leiomyoma ex vivo. METHODS A custom-made sector ultrasound transducer of 1.5-MHz operating frequency and nominal f-number F# = 0.75 was used to produce a volumetric lesion (two layers of 5 × 5 foci with a 1 mm step) in surgically resected human leiomyoma ex vivo. A sequence of 10 ms pulses (P+/P-/As = 157/-25/170 MPa in situ) with 1% duty cycle was delivered N = 30 times per focus under B-mode guidance. The treatment outcome was evaluated via B-mode imaging and histologically with hematoxylin and eosin and Masson's trichrome staining. RESULTS The treatment was successfully performed in less than 30 min and resulted in formation of a rectangular lesion visualized on B-mode images during the sonication as an echogenic region, which sustained for about 10 min post-treatment. Histology revealed loss of cellular structure, necrotic debris and globules of degenerated collagen in the target volume surrounded by injured smooth muscle cells. CONCLUSION The pilot experiment described here indicates that boiling histotripsy is feasible for non-invasive mechanical disintegration of human uterine leiomyoma ex vivo under B-mode guidance, encouraging further investigation and optimization of this potential clinical application of boiling histotripsy.
Collapse
Affiliation(s)
| | - Sergey Tsysar
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
| | | | - Daria Chupova
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Polina Pestova
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia Danilova
- Lomonosov Moscow State University, Medical Research and Educational Center, Moscow, Russia
| | - Pavel Malkov
- Lomonosov Moscow State University, Medical Research and Educational Center, Moscow, Russia
| | - Sergey Buravkov
- Lomonosov Moscow State University, Faculty of Fundamental Medicine, Moscow, Russia
| | - Vera Khokhlova
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
4
|
Abstract
Histotripsy is a relatively new therapeutic ultrasound technology to mechanically liquefy tissue into subcellular debris using high-amplitude focused ultrasound pulses. In contrast to conventional high-intensity focused ultrasound thermal therapy, histotripsy has specific clinical advantages: the capacity for real-time monitoring using ultrasound imaging, diminished heat sink effects resulting in lesions with sharp margins, effective removal of the treated tissue, a tissue-selective feature to preserve crucial structures, and immunostimulation. The technology is being evaluated in small and large animal models for treating cancer, thrombosis, hematomas, abscesses, and biofilms; enhancing tumor-specific immune response; and neurological applications. Histotripsy has been recently approved by the US Food and Drug Administration to treat liver tumors, with clinical trials undertaken for benign prostatic hyperplasia and renal tumors. This review outlines the physical principles of various types of histotripsy; presents major parameters of the technology and corresponding hardware and software, imaging methods, and bioeffects; and discusses the most promising preclinical and clinical applications.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA;
| | - Tatiana D Khokhlova
- Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Clifford S Cho
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Vera A Khokhlova
- Department of Acoustics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
5
|
Ponomarchuk EM, Rosnitskiy PB, Tsysar SA, Khokhlova TD, Karzova MM, Kvashennikova AV, Tumanova KD, Kadrev AV, Buravkov SV, Trakhtman PE, Starostin NN, Sapozhnikov OA, Khokhlova VA. Elastic Properties of Aging Human Hematoma Model In Vitro and Its Susceptibility to Histotripsy Liquefaction. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:927-938. [PMID: 38514363 DOI: 10.1016/j.ultrasmedbio.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/10/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
OBJECTIVE Tissue susceptibility to histotripsy disintegration has been reported to depend on its elastic properties. This work was aimed at investigation of histotripsy efficiency for liquefaction of human hematomas, depending on their stiffness and degree of retraction over time (0-10 d). METHODS As an in vitro hematoma model, anticoagulated human blood samples (200 mL) were recalcified at different temperatures. In one set of samples, the shear modulus was measured by shear wave elastography during blood clotting at 10℃, 22℃ and 37℃, and then daily during further aging. The ultrastructure of the samples was analyzed daily with scanning electron microscopy (SEM). Another set of blood samples (50-200 mL) were recalcified at 37℃ for density and retraction measurements over aging and exposed to histotripsy at varying time points. Boiling histotripsy (2.5 ms pulses) and hybrid histotripsy (0.2 ms pulses) exposures (2 MHz, 1% dc, P+/P-/As = 182/-27/207 MPa in situ) were used to produce either individual cigar-shaped or volumetric (0.8-3 mL) lesions in samples incubated for 3 h, 5 d and 10 d. The obtained lesions were sized, then the lysate aspirated under B-mode guidance was analyzed ultrastructurally and diluted in distilled water for sizing of residual fragments. RESULTS It was found that clotting time decreased from 113 to 25 min with the increase in blood temperature from 10℃ to 37℃. The shear modulus increased to 0.53 ± 0.17 kPa during clotting and remained constant within 8 d of incubation at 2℃. Sample volumes decreased by 57% because of retraction within 10 d. SEM revealed significant echinocytosis but unchanged ultrastructure of the fibrin meshwork. Liquefaction rate and lesion dimensions produced with the same histotripsy protocols correlated with the increase in the degree of retraction and were lower in retracted samples versus freshly clotted samples. More than 80% of residual fibrin fragments after histotripsy treatment were shorter than 150 µm; the maximum length was 208 µm, allowing for unobstructed aspiration of the lysate with most clinically used needles. CONCLUSION The results indicate that hematoma susceptibility to histotripsy liquefaction is not entirely determined by its stiffness, and correlates with the retraction degree.
Collapse
Affiliation(s)
| | - Pavel B Rosnitskiy
- Division of Gastroenterology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Sergey A Tsysar
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana D Khokhlova
- Division of Gastroenterology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Maria M Karzova
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Alexey V Kadrev
- Department of Urology and Andrology, Medical Research and Educational Center, Lomonosov Moscow State University, Moscow, Russia; Diagnostic Ultrasound Division, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Sergey V Buravkov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Pavel E Trakhtman
- National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Nicolay N Starostin
- National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Oleg A Sapozhnikov
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia; Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Vera A Khokhlova
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia; Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Rosnitskiy PB, Khokhlova TD, Schade GR, Sapozhnikov OA, Khokhlova VA. Treatment Planning and Aberration Correction Algorithm for HIFU Ablation of Renal Tumors. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:341-353. [PMID: 38231825 PMCID: PMC11003458 DOI: 10.1109/tuffc.2024.3355390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
High-intensity focused ultrasound (HIFU) applications for thermal or mechanical ablation of renal tumors often encounter challenges due to significant beam aberration and refraction caused by oblique beam incidence, inhomogeneous tissue layers, and presence of gas and bones within the beam. These losses can be significantly mitigated through sonication geometry planning, patient positioning, and aberration correction using multielement phased arrays. Here, a sonication planning algorithm is introduced, which uses the simulations to select the optimal transducer position and evaluate the effect of aberrations and acoustic field quality at the target region after aberration correction. Optimization of transducer positioning is implemented using a graphical user interface (GUI) to visualize a segmented 3-D computed tomography (CT)-based acoustic model of the body and to select sonication geometry through a combination of manual and automated approaches. An HIFU array (1.5 MHz, 256 elements) and three renal cell carcinoma (RCC) cases with different tumor locations and patient body habitus were considered. After array positioning, the correction of aberrations was performed using a combination of backpropagation from the focus with an ordinary least squares (OLS) optimization of phases at the array elements. The forward propagation was simulated using a combination of the Rayleigh integral and k-space pseudospectral method (k-Wave toolbox). After correction, simulated HIFU fields showed tight focusing and up to threefold higher maximum pressure within the target region. The addition of OLS optimization to the aberration correction method yielded up to 30% higher maximum pressure compared to the conventional backpropagation and up to 250% higher maximum pressure compared to the ray-tracing method, particularly in strongly distorted cases.
Collapse
|
7
|
Falk KL, Laeseke PF, Kisting MA, Zlevor AM, Knott EA, Smolock AR, Bradley C, Vlaisavljevich E, Lee FT, Ziemlewicz TJ. Clinical translation of abdominal histotripsy: a review of preclinical studies in large animal models. Int J Hyperthermia 2023; 40:2272065. [PMID: 37875279 PMCID: PMC10629829 DOI: 10.1080/02656736.2023.2272065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
Histotripsy is an emerging noninvasive, non-thermal, and non-ionizing focused ultrasound (US) therapy that can be used to destroy targeted tissue. Histotripsy has evolved from early laboratory prototypes to clinical systems which have been comprehensively evaluated in the preclinical environment to ensure safe translation to human use. This review summarizes the observations and results from preclinical histotripsy studies in the liver, kidney, and pancreas. Key findings from these studies include the ability to make a clinically relevant treatment zone in each organ with maintained collagenous architecture, potentially allowing treatments in areas not currently amenable to thermal ablation. Treatments across organ capsules have proven safe, including in anticoagulated models which may expand patients eligible for treatment or eliminate the risk associated with taking patients off anti-coagulation. Treatment zones are well-defined with imaging and rapidly resorb, which may allow improved evaluation of treatment zones for residual or recurrent tumor. Understanding the effects of histotripsy in animal models will help inform physicians adopting histotripsy for human clinical use.
Collapse
Affiliation(s)
- Katrina L Falk
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Paul F Laeseke
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Meridith A Kisting
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Annie M Zlevor
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Emily A Knott
- Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, USA
| | - Amanda R Smolock
- Department of Radiology, Division of Interventional Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Charles Bradley
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Fred T Lee
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
- Department of Urology, University of Wisconsin, Madison, Wisconsin, USA
| | | |
Collapse
|
8
|
Yeats E, Hall TL. Aberration correction in abdominal histotripsy. Int J Hyperthermia 2023; 40:2266594. [PMID: 37813397 PMCID: PMC10637766 DOI: 10.1080/02656736.2023.2266594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
In transabdominal histotripsy, ultrasound pulses are focused on the body to noninvasively destroy soft tissues via cavitation. However, the ability to focus is limited by phase aberration, or decorrelation of the ultrasound pulses due to spatial variation in the speed of sound throughout heterogeneous tissue. Phase aberration shifts, broadens, and weakens the focus, thereby reducing the safety and efficacy of histotripsy therapy. This paper reviews and discusses aberration effects in histotripsy and in related therapeutic ultrasound techniques (e.g., high intensity focused ultrasound), with an emphasis on aberration by soft tissues. Methods for aberration correction are reviewed and can be classified into two groups: model-based methods, which use segmented images of the tissue as input to an acoustic propagation model to predict and compensate phase differences, and signal-based methods, which use a receive-capable therapy array to detect phase differences by sensing acoustic signals backpropagating from the focus. The relative advantages and disadvantages of both groups of methods are discussed. Importantly, model-based methods can correct focal shift, while signal-based methods can restore substantial focal pressure, suggesting that both methods should be combined in a 2-step approach. Aberration correction will be critical to improving histotripsy treatments and expanding the histotripsy treatment envelope to enable non-invasive, non-thermal histotripsy therapy for more patients.
Collapse
Affiliation(s)
- Ellen Yeats
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
| | - Timothy L. Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
9
|
Yeats E, Lu N, Sukovich JR, Xu Z, Hall TL. Soft Tissue Aberration Correction for Histotripsy Using Acoustic Emissions From Cavitation Cloud Nucleation and Collapse. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1182-1193. [PMID: 36759271 PMCID: PMC10082475 DOI: 10.1016/j.ultrasmedbio.2023.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/01/2022] [Accepted: 01/03/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVE Phase aberration from soft tissue limits the efficacy of histotripsy, a therapeutic ultrasound technique based on acoustic cavitation. Previous work has shown that the acoustic emissions from cavitation can serve as "point sources" for aberration correction (AC). This study compared the efficacy of soft tissue AC for histotripsy using acoustic cavitation emissions (ACE) from bubble cloud nucleation and collapse. METHODS A 750-kHz, receive-capable histotripsy array was pulsed to generate cavitation in ex vivo porcine liver through an intervening abdominal wall. Received ACE signals were used to determine the arrival time differences to the focus and compute corrective delays. Corrections from single pulses and from the median of multiple pulses were tested. DISCUSSION On average, ACE AC obtained 96% ± 3% of the pressure amplitude obtained by hydrophone-based correction (compared with 71% ± 5% without AC). Both nucleation- and collapse-based corrections obtained >96% of the hydrophone-corrected pressure when using medians of ≥10 pulses. When using single-pulse corrections, nucleation obtained a range of 49%-99% of the hydrophone-corrected pressure, while collapse obtained 95%-99%. CONCLUSION The results suggest that (i) ACE AC can recover nearly all pressure amplitude lost owing to soft tissue aberration and that (ii) the collapse signal permits robust AC using a small number of pulses.
Collapse
Affiliation(s)
- Ellen Yeats
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Ning Lu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan R Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Williams RP, Simon JC, Khokhlova VA, Sapozhnikov OA, Khokhlova TD. The histotripsy spectrum: differences and similarities in techniques and instrumentation. Int J Hyperthermia 2023; 40:2233720. [PMID: 37460101 PMCID: PMC10479943 DOI: 10.1080/02656736.2023.2233720] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/15/2023] [Accepted: 07/02/2023] [Indexed: 07/20/2023] Open
Abstract
Since its inception about two decades ago, histotripsy - a non-thermal mechanical tissue ablation technique - has evolved into a spectrum of methods, each with distinct potentiating physical mechanisms: intrinsic threshold histotripsy, shock-scattering histotripsy, hybrid histotripsy, and boiling histotripsy. All methods utilize short, high-amplitude pulses of focused ultrasound delivered at a low duty cycle, and all involve excitation of violent bubble activity and acoustic streaming at the focus to fractionate tissue down to the subcellular level. The main differences are in pulse duration, which spans microseconds to milliseconds, and ultrasound waveform shape and corresponding peak acoustic pressures required to achieve the desired type of bubble activity. In addition, most types of histotripsy rely on the presence of high-amplitude shocks that develop in the pressure profile at the focus due to nonlinear propagation effects. Those requirements, in turn, dictate aspects of the instrument design, both in terms of driving electronics, transducer dimensions and intensity limitations at surface, shape (primarily, the F-number) and frequency. The combination of the optimized instrumentation and the bio-effects from bubble activity and streaming on different tissues, lead to target clinical applications for each histotripsy method. Here, the differences and similarities in the physical mechanisms and resulting bioeffects of each method are reviewed and tied to optimal instrumentation and clinical applications.
Collapse
Affiliation(s)
- Randall P Williams
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Julianna C Simon
- Graduate Program in Acoustics, The Pennsylvania State University, University Park, PA, USA
| | - Vera A Khokhlova
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
- Department of Acoustics, Physics Faculty, Moscow State University, Moscow, Russia
| | - Oleg A Sapozhnikov
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
- Department of Acoustics, Physics Faculty, Moscow State University, Moscow, Russia
| | - Tatiana D Khokhlova
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| |
Collapse
|
11
|
Ponomarchuk EM, Hunter C, Song M, Khokhlova VA, Sapozhnikov OA, Yuldashev PV, Khokhlova TD. Mechanical damage thresholds for hematomas near gas-containing bodies in pulsed HIFU fields. Phys Med Biol 2022; 67:10.1088/1361-6560/ac96c7. [PMID: 36179703 PMCID: PMC9645587 DOI: 10.1088/1361-6560/ac96c7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/30/2022] [Indexed: 11/12/2022]
Abstract
Objective. Boiling histotripsy (BH) is a novel high intensity focused ultrasound (HIFU) application currently being developed for non-invasive mechanical fractionation of soft tissues and large hematomas. In the context of development of BH treatment planning approaches for ablating targets adjacent to gas-containing organs, this study aimed at investigation of the ultrasound pressure thresholds of atomization-induced damage to the tissue-air interface and correlation of the danger zone dimensions with spatial structure of nonlinear HIFU field parameters.Approach. A flat interface with air of freshly clotted bovine blood was used as anex vivomodel due to its homogenous structure and higher susceptibility to ultrasound-induced mechanical damage compared to soft tissues. Three 1.5 MHz transducers of differentF-numbers (0.77, 1 and 1.5) were focused at various distances before or beyond a flat clot surface, and a BH exposure was delivered either at constant, high-amplitude output level, or at gradually increasing level until a visible damage to the clot surface occurred. The HIFU pressure field parameters at the clot surface were determined through a combination of hydrophone measurements in water, forward wave propagation simulation using 'HIFU beam' software and an image source method to account for the wave reflection from the clot surface and formation of a standing wave. The iso-levels of peak negative pressure in the resulting HIFU field were correlated to the outlines of surface erosion to identify the danger zone around the BH focus.Main results. The outline of the danger zone was shown to differ from that of a typical BH lesion produced in a volume of clot material. In the prefocal area, the zone was confined within the 4 MPa contour of the incident peak-to-peak pressure; within the main focal lobe it was determined by the maximum BH lesion width, and in the postfocal area-by the transverse size of the focal lobe and position of the first postfocal pressure axial null.Significance. The incident HIFU pressure-based danger zone boundaries were outlined around the BH focus and can be superimposed onto in-treatment ultrasound image to avoid damage to adjacent gas-containing bodies.
Collapse
Affiliation(s)
| | - Christopher Hunter
- Center for Industrial and Medical Ultrasound, University of Washington, Seattle, United States of America
| | - Minho Song
- Department of Gastroenterology, University of Washington, Seattle, United States of America
| | - Vera A Khokhlova
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
- Center for Industrial and Medical Ultrasound, University of Washington, Seattle, United States of America
| | - Oleg A Sapozhnikov
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
- Center for Industrial and Medical Ultrasound, University of Washington, Seattle, United States of America
| | - Petr V Yuldashev
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana D Khokhlova
- Department of Gastroenterology, University of Washington, Seattle, United States of America
| |
Collapse
|