1
|
Dekio I, Sugiura Y, Hamada-Tsutsumi S, Murakami Y, Tamura H, Suematsu M. What Do We See in Spectra?: Assignment of High-Intensity Peaks of Cutibacterium and Staphylococcus Spectra of MALDI-TOF Mass Spectrometry by Interspecies Comparative Proteogenomics. Microorganisms 2021; 9:microorganisms9061243. [PMID: 34201063 PMCID: PMC8227259 DOI: 10.3390/microorganisms9061243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
Matrix-assisted laser-desorption/ionization time-of-flight (MALDI–TOF) mass spectrometry is a widely used and reliable technology to identify microbial species and subspecies. The current methodology is based on spectral fingerprinting, analyzing protein peaks, most of which are yet to be characterized. In order to deepen the understanding of these peaks and to develop a more reasonable identification workflow, we applied proteogenomic approaches to assign the high-intensity peaks of MALDI–TOF spectra of two bacterial genera. First, the 3–22 kD proteomes of 5 Cutibacterium strains were profiled by UPLC–MS/MS, and the amino acid sequences were refined by referring to their genome in the public database. Then, the sequences were converted to m/z (x-axis) values based on their molecular masses. When the interspecies comparison of calculated m/z values was well-fitted to the observed peaks, the peak assignments for the five Cutibacterium species were confirmed. Second, the peak assignments for six Staphylococcus species were performed by using the above result for Cutibacterium and referring to ribosomal subunit proteins coded on the S10-spc-alpha operon (the S10-GERMS method), a previous proteomics report by Becher et al., and comprehensive genome analysis. We successfully assigned 13 out of 15 peaks for the Cutibacterium species and 11 out of 13 peaks for the Staphylococcus species. DNA-binding protein HU, the CsbD-like protein, and 50S ribosomal protein L7/L12 were observed in common. The commonality suggests they consist of high-intensity peaks in the MALDI spectra of other bacterial species. Our workflow may lead to the development of a more accurate species identification database of MALDI–TOF mass spectrometry based on genome data.
Collapse
Affiliation(s)
- Itaru Dekio
- Department of Biochemistry & Integrative Medical Biology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (Y.S.); (M.S.)
- Correspondence: ; Tel.: +81-3-3433-1111 (ext. 3341); Fax: +81-3-5401-0125
| | - Yuki Sugiura
- Department of Biochemistry & Integrative Medical Biology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (Y.S.); (M.S.)
| | - Susumu Hamada-Tsutsumi
- Department of Environmental Bioscience, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan; (S.H.-T.); (H.T.)
| | - Yoshiyuki Murakami
- Seikakai Mildix Skin Clinic, 3rd Floor, 3-98 Senju, Adachi-ku, Tokyo 120-0034, Japan;
| | - Hiroto Tamura
- Department of Environmental Bioscience, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan; (S.H.-T.); (H.T.)
| | - Makoto Suematsu
- Department of Biochemistry & Integrative Medical Biology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (Y.S.); (M.S.)
| |
Collapse
|
2
|
Shen R, Li Y, Yu L, Wu H, Cui R, Liu S, Song Y, Wang D. Ex vivo detection of cadmium-induced renal damage by using confocal Raman spectroscopy. JOURNAL OF BIOPHOTONICS 2019; 12:e201900157. [PMID: 31407491 DOI: 10.1002/jbio.201900157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal which is harmful to environment and organisms. The reabsorption of Cd in kidney leads it to be the main damaged organ in animals under the Cd exposure. In this work, we applied confocal Raman spectroscopy to map the pathological changes in situ in normal and Cd-exposed mice kidney. The renal tissue from Cd-exposed group displayed a remarkable decreasing in the intensity of typical peaks related to mitochondria, DNA, proteins and lipids. On the contrary, the peaks of collagen in Cd-exposed group elevated significantly. The components in each tissue were identified and distinguished by principal component analysis. Furthermore, all the biological investigations in this study were consistent with the Raman spectrum detection, which revealed the progression and degree of lesion induced by Cd. The confocal Raman spectroscopy provides a new perspective for in situ monitoring of substances changes in tissues, which exhibits more comprehensive understanding of the pathogenic mechanisms of heavy metals in molecular toxicology.
Collapse
Affiliation(s)
- Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yuee Li
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Linghui Yu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Haining Wu
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Rong Cui
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Sha Liu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yanfeng Song
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Stojkova P, Spidlova P, Stulik J. Nucleoid-Associated Protein HU: A Lilliputian in Gene Regulation of Bacterial Virulence. Front Cell Infect Microbiol 2019; 9:159. [PMID: 31134164 PMCID: PMC6523023 DOI: 10.3389/fcimb.2019.00159] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/26/2019] [Indexed: 12/29/2022] Open
Abstract
Nucleoid-associated proteins belong to a group of small but abundant proteins in bacterial cells. These transcription regulators are responsible for many important cellular processes and also are involved in pathogenesis of bacteria. The best-known nucleoid-associated proteins, such as HU, FIS, H-NS, and IHF, are often discussed. The most important findings in research concerning HU protein are described in this mini review. Its roles in DNA compaction, shape modulation, and negative supercoiling induction have been studied intensively. HU protein regulates bacteria survival, growth, SOS response, virulence genes expression, cell division, and many other cell processes. Elucidating the mechanism of HU protein action has been the subject of many research projects. This mini review provides a comprehensive overview of the HU protein.
Collapse
Affiliation(s)
| | - Petra Spidlova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | | |
Collapse
|
4
|
|
5
|
Cheng MH, Huang YX, Li JF, Wu ZJ, Xie LJ. Characteristic variation of α-fetoprotein DNA nanometer-range irradiated by iodine-125. Cancer Biother Radiopharm 2014; 28:226-32. [PMID: 23573955 DOI: 10.1089/cbr.2012.1231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To obtain the characteristic variation of structure and functional groups of α-fetoprotein (AFP) DNA irradiated by iodine-125((125)I), the AFP antisense oligonucleotide labeled with various radioactivity dose (125)I was mixed with the AFP DNA in a simulated polymerase chain reaction temperature condition. After the mixtures were irradiated by the (125)I from 2 to 72 hours, the mutation of the biogenic conformation and functional groups of the irradiated DNA were investigated using laser Raman spectroscopy. The shifted peak and the decreased intensity of the characteristic Raman spectra were found, which demonstrated that the structure of the phosphodiester linkage was broke, the pyridine and purine bases in DNA emerged and damaged. The model of gene conformation changed from form B to form C spectrum after the nanometer-range irradiation with (125)I from 2 to 24 hours. The damage of local pyridine and purine bases gradually increased along with the accumulation of irradiation, and the bases and ribosome were finally dissociated and stacked.
Collapse
Affiliation(s)
- Mu-hua Cheng
- Department of Nuclear Medicine, Third Hospital Affiliated Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | |
Collapse
|
6
|
Kannan A, Camilloni C, Sahakyan AB, Cavalli A, Vendruscolo M. A Conformational Ensemble Derived Using NMR Methyl Chemical Shifts Reveals a Mechanical Clamping Transition That Gates the Binding of the HU Protein to DNA. J Am Chem Soc 2014; 136:2204-7. [DOI: 10.1021/ja4105396] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Arvind Kannan
- Department of Chemistry, University of Cambridge, Lensfield
Road, Cambridge CB2 1EW, U.K
| | - Carlo Camilloni
- Department of Chemistry, University of Cambridge, Lensfield
Road, Cambridge CB2 1EW, U.K
| | - Aleksandr B. Sahakyan
- Department of Chemistry, University of Cambridge, Lensfield
Road, Cambridge CB2 1EW, U.K
| | - Andrea Cavalli
- Department of Chemistry, University of Cambridge, Lensfield
Road, Cambridge CB2 1EW, U.K
| | - Michele Vendruscolo
- Department of Chemistry, University of Cambridge, Lensfield
Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
7
|
Ivanova B, Spiteller M. Coordination ability of bradykinin with ZnII- and AgI-metal ions – Experimental and theoretical study. Inorganica Chim Acta 2012. [DOI: 10.1016/j.ica.2012.06.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
8
|
Shashilov VA, Lednev IK. Advanced statistical and numerical methods for spectroscopic characterization of protein structural evolution. Chem Rev 2011; 110:5692-713. [PMID: 20593900 DOI: 10.1021/cr900152h] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Victor A Shashilov
- Aegis Analytical Corporation, 1380 Forest Park Circle, Suite 200, Lafayette, Colorado 80026, USA
| | | |
Collapse
|
9
|
Garnier N, Loth K, Coste F, Augustyniak R, Nadan V, Damblon C, Castaing B. An alternative flexible conformation of the E. coli HUβ2 protein: structural, dynamics, and functional aspects. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 40:117-29. [DOI: 10.1007/s00249-010-0630-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 09/15/2010] [Accepted: 09/20/2010] [Indexed: 11/29/2022]
|
10
|
The stability of the archaeal HU histone-like DNA-binding protein from Thermoplasma volcanium. Extremophiles 2008; 13:1-10. [PMID: 18818867 DOI: 10.1007/s00792-008-0190-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Accepted: 09/01/2008] [Indexed: 10/21/2022]
Abstract
The complete genome analysis of the archaeon Thermoplasma volcanium has revealed a gene assigned to encode the histone-like DNA-binding protein HU. Thermoplasma volcanium is a moderate thermophile growing around 60 degrees C and it is adaptable to aerobic and anaerobic environment and therefore it is unique as a candidate for the origin of eukaryotic nuclei in the endosymbiosis hypothesis. The HU protein is the major component of the bacterial nuclei and therefore it is an important protein to be studied. The gene for HUTvo protein (huptvo) was cloned from the genomic DNA of T. volcanium and overexpressed in Escherichia coli. A fast and efficient purification scheme was established to produce an adequate amount of bioactive protein for biochemical and biophysical studies. Highly purified HUTvo was studied for its DNA-binding activity and thermostability. As studied by circular dichroism and high-precision differential scanning microcalorimetry, the thermal unfolding of HUTvo protein is reversible and can be well described by a two-state model with dissociation of the native dimeric state into denatured monomers. The G versus T profile for HUTvo compared to the hyperthermophilic marine eubacterial counterpart from Thermotoga maritima, HUTmar, clearly shows that the archaeal protein has adopted a less efficient molecular mechanism to cope with high temperature. The molecular basis of this phenomenon is discussed.
Collapse
|
11
|
Benevides JM, Danahy J, Kawakami J, Thomas GJ. Mechanisms of Specific and Nonspecific Binding of Architectural Proteins in Prokaryotic Gene Regulation. Biochemistry 2008; 47:3855-62. [DOI: 10.1021/bi7009426] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- James M. Benevides
- School of Biological Sciences, University of Missouri—Kansas City, 5100 Rockhill Road, Kansas City, Missouri 64110-2499
| | - Jessica Danahy
- School of Biological Sciences, University of Missouri—Kansas City, 5100 Rockhill Road, Kansas City, Missouri 64110-2499
| | - Jessica Kawakami
- School of Biological Sciences, University of Missouri—Kansas City, 5100 Rockhill Road, Kansas City, Missouri 64110-2499
| | - George J. Thomas
- School of Biological Sciences, University of Missouri—Kansas City, 5100 Rockhill Road, Kansas City, Missouri 64110-2499
| |
Collapse
|
12
|
Neugebauer U, Schmid U, Baumann K, Ziebuhr W, Kozitskaya S, Holzgrabe U, Schmitt M, Popp J. The Influence of Fluoroquinolone Drugs on the Bacterial Growth of S. epidermidis Utilizing the Unique Potential of Vibrational Spectroscopy. J Phys Chem A 2007; 111:2898-906. [PMID: 17385845 DOI: 10.1021/jp0678397] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Increasing resistance of many antibiotics has made the design of new drugs necessary. To assist a target-oriented search for new structures and for the elucidation of the mode of action of existing drugs, powerful analytical techniques are required. In this work, vibrational spectroscopy is used to shed more light on the as-yet elusive interaction of gyrase inhibitors of the fluoroquinolone type with their biological target inside the Gram-positive bacterium Staphylococcus epidermidis by investigating whole-cell changes that occur as a result of the presence of the drug moxifloxacin. IR absorption and Raman spectra with excitation off resonance (lambda exc = 532 nm) and in resonance with the biological targets DNA and the aromatic amino acids of gyrase (lambda exc = 244 nm) were recorded for unperturbed bacteria and bacteria in varying drug concentrations (0.08, 0.16, 0.27, and 0.62 microg moxifloxacin/mL bacterial culture). The spectral changes caused by the action of the drug were analyzed with the help of statistical methods, such as hierarchical cluster analysis (HCA), principal component analysis (PCA), and Fisher's linear discriminant analysis (LDA) combined with variable selection. The wavenumbers mostly affected by the action of the drug could be assigned to protein and DNA moieties, supporting the proposed mechanisms of a tertiary complex of the fluoroquinolone, the enzyme gyrase, and DNA.
Collapse
Affiliation(s)
- U Neugebauer
- Institut für Physikalische Chemie, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, Jena, 07743, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Mikhonin AV, Myshakina NS, Bykov SV, Asher SA. UV Resonance Raman Determination of Polyproline II, Extended 2.51-Helix, and β-Sheet Ψ Angle Energy Landscape in Poly-l-Lysine and Poly-l-Glutamic Acid. J Am Chem Soc 2005; 127:7712-20. [PMID: 15913361 DOI: 10.1021/ja044636s] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
UV resonance Raman (UVR) spectroscopy was used to examine the solution conformation of poly-l-lysine (PLL) and poly-l-glutamic acid (PGA) in their non-alpha-helical states. UVR measurements indicate that PLL (at pH = 2) and PGA (at pH = 9) exist mainly in a mixture of polyproline II (PPII) and a novel left-handed 2.5(1)-helical conformation, which is an extended beta-strand-like conformation with Psi approximately +170 degrees and Phi approximately -130 degrees . Both of these conformations are highly exposed to water. The energies of these conformations are very similar. We see no evidence of any disordered "random coil" states. In addition, we find that a PLL and PGA mixture at neutral pH is approximately 60% beta-sheet and contains PPII and extended 2.5(1)-helix conformations. The beta-sheet conformation shows little evidence of amide backbone hydrogen bonding to water. We also developed a method to estimate the distribution of Psi Ramachandran angles for these conformations, which we used to estimate a Psi Ramachandran angle energy landscape. We believe that these are the first experimental studies to give direct information on protein and peptide energy landscapes.
Collapse
Affiliation(s)
- Aleksandr V Mikhonin
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | |
Collapse
|
14
|
Wojtuszewski K, Mukerji I. The HU-DNA binding interaction probed with UV resonance Raman spectroscopy: structural elements of specificity. Protein Sci 2005; 13:2416-28. [PMID: 15322284 PMCID: PMC2280020 DOI: 10.1110/ps.04730204] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The Escherichia coli protein HU functions as an architectural DNA-binding protein by facilitating DNA looping or bending to form multiprotein complexes. Although HU does not recognize a specific DNA sequence, site-specific binding to a number of discontinuous, looped, or bent DNA substrates has been observed. In this study UV resonance Raman (UVRR) spectroscopy is used to identify structural elements associated with low- and high-affinity binding by examining three different HU-DNA complexes. UVRR spectra obtained with an excitation wavelength of 210 nm, which preferentially enhances protein backbone amide vibrations, indicate that HU secondary structure content increases and the protein structure becomes more rigid upon binding to DNA. The increase in alpha-helical content is attributed to the C-terminal helix, which interacts with the DNA and may play a role in binding affinity and specificity. UVRR spectra obtained with a 215 nm excitation wavelength demonstrate that Pro mode intensity at 1455 cm(-1) decreases upon complex formation. This intensity decrease is attributed to the intercalation of Pro residues between DNA base pairs to induce a bend in the DNA, as has been observed previously in the IHF-DNA and HU-DNA cocrystal structures. DNA vibrational modes are also indicative of significant base unstacking and opening of the minor groove upon protein binding, consistent with bending and distortion of the DNA. In all three complexes, A-DNA conformational features are indicated by deoxyribose-phosphate backbone modes. These and other results suggest that protein-induced bending plays an important role in HU site-specific binding and supports a model of a mutually induced fit.
Collapse
Affiliation(s)
- Kristi Wojtuszewski
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, CT 06459-0175, USA
| | | |
Collapse
|
15
|
Durney MA, Wechselberger RW, Kalodimos CG, Kaptein R, Vorgias CE, Boelens R. An alternate conformation of the hyperthermostable HU protein from Thermotoga maritima has unexpectedly high flexibility. FEBS Lett 2004; 563:49-54. [PMID: 15063721 DOI: 10.1016/s0014-5793(04)00247-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Revised: 02/26/2004] [Accepted: 02/26/2004] [Indexed: 11/23/2022]
Abstract
The homodimeric HU protein from the hyperthermophile Thermotoga maritima (HUTmar) is a model system which can yield insights into the molecular determinants of thermostability in proteins. Unusually for a thermostable protein, HUTmar exists in a structurally heterogeneous state as evidenced by the assignment of two distinct and approximately equally populated forms in solution. Relaxation measurements combined with chemical shift, hydrogen exchange, and nuclear Overhauser enhancement data confirm the main structural features of both forms. In addition, these data support a two-state model for HUTmar in which the major form closely resembles the X-ray structure while the very flexible minor form is less structured. HUTmar may therefore be a new example of the small class of hyperthermostable proteins with unexpected flexibility.
Collapse
Affiliation(s)
- Michael A Durney
- Bijvoet Center for Biomolecular Research, Universiteit Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|