1
|
Glutathione S-transferasesP1 AA (105Ile) allele increases oral cancer risk, interacts strongly with c-Jun Kinase and weakly detoxifies areca-nut metabolites. Sci Rep 2020; 10:6032. [PMID: 32265484 PMCID: PMC7138809 DOI: 10.1038/s41598-020-63034-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 03/19/2020] [Indexed: 11/21/2022] Open
Abstract
The Glutathione S-transferases (GSTs) protects cellular DNA against oxidative damage. The role of GSTP1 polymorphism (A313G; Ile105Val) as a susceptibility factor in oral cancer was evaluated in a hospital-based case-control study in North-East India, because the habit of chewing raw areca-nut (RAN) with/without tobacco is common in this region. Genetic polymorphism was investigated by genotyping 445 cases and 444 controls. Individuals with the GSTP1 AA-genotype showed association with the oral cancer (OR = 3.1, 95% CI = 2.4–4.2, p = 0.0002). Even after adjusting for age, sex and habit the AA-genotype is found to be significantly associated with oral cancer (OR = 2.4, 95% CI = 1.7–3.2, p = 0.0001). A protein-protein docking analysis demonstrated that in the GG-genotype the binding geometry between c-Jun Kinase and GSTP1 was disrupted. It was validated by immunohistochemistry in human samples, showing lower c-Jun-phosphorylation and down-regulation of pro-apoptotic genes in normal oral epithelial cells with the AA-genotype. In silico docking revealed that AA-genotype weakly detoxifies the RAN/tobacco metabolites. In addition, experiments revealed a higher level of 8-Oxo-2′-deoxyguanosine induction in tumor samples with the AA-genotype. Thus, habit of using RAN/tobacco and GSTP1 AA-genotype together play a significant role in predisposition to oral cancer risk by showing higher DNA-lesions and lower c-Jun phosphorylation that may inhibit apoptosis.
Collapse
|
2
|
Balyan R, Kudugunti SK, Hamad HA, Yousef MS, Moridani MY. Bioactivation of luteolin by tyrosinase selectively inhibits glutathione S-transferase. Chem Biol Interact 2015; 240:208-18. [PMID: 26279214 DOI: 10.1016/j.cbi.2015.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 07/07/2015] [Accepted: 08/11/2015] [Indexed: 12/27/2022]
Abstract
Glutathione S-transferase (GST) plays a significant role in the metabolism and detoxification of drugs used in treatment of melanoma, resulting in a decrease in drug efficacy. Tyrosinase is an abundant enzyme found in melanoma. In this study, we used a tyrosinase targeted approach to selectively inhibit GST. In the presence of tyrosinase, luteolin (10 μM) showed 87% GST inhibition; whereas in the absence of tyrosinase, luteolin led to negligible GST inhibition. With respect to GSH, both luteolin-SG conjugate and luteolin-quinone inhibited ≥90% of GST activity via competitive reversible and irreversible mixed mechanisms with Ki of 0.74 μM and 0.02 μM, respectively. With respect to CDNB, the luteolin-SG conjugate inhibited GST activity via competitive reversible mechanism and competitively with Ki of 0.58 μM, whereas luteolin-quinone showed irreversible mixed inhibition of GST activity with Ki of 0.039 μM. Luteolin (100 μM) inhibited GST in mixed manner with Ki of 53 μM with respect to GSH and non-competitively with respect to CDNB with Ki of 38 μM. Luteolin, at a concentration range of 5-80 μM, exhibited 78-99% GST inhibition in human SK-MEL-28 cell homogenate. Among the 3 species of intact luteolin, luteolin-SG conjugate, and luteoline-quinone, only the latter two have potential as drugs with Ki < 1 μM, which is potentially achievable in-vivo as therapeutic agents. The order of GST inhibition was luteolin-quinone >> luteolin-SG conjugate >>> luteolin. In summary, our results suggest that luteolin was bioactivated by tyrosinase to form a luteolin-quinone and luteolin-glutathione conjugate, which inhibited GST. For the first time, in addition to intracellular GSH depletion, we demonstrate that luteolin acts as a selective inhibitor of GST in the presence of tyrosinase. Such strategy could potentially be used to selectively inhibit GST, a drug detoxifying enzyme, in melanoma cells.
Collapse
Affiliation(s)
- Rajiv Balyan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Shashi K Kudugunti
- Repligen Corporation, 41 Seyon St, Bldg 1, Suite 100, Waltham, MA 02453, USA
| | - Hamzah A Hamad
- Department of Physics, College of Arts & Sciences, Southern Illinois University, Edwardsville, IL 62025, USA
| | - Mohammad S Yousef
- Department of Physics, College of Arts & Sciences, Southern Illinois University, Edwardsville, IL 62025, USA; Biophysics Department, Faculty of Science, Cairo University, Egypt
| | - Majid Y Moridani
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Clinical Chemistry and Toxicology, Department of Pathology, Medical College of Wisconsin, 9200 W. Wisconsin Avenue, Milwaukee, WI 5322, USA.
| |
Collapse
|
3
|
Boerma JS, Elias NS, Vermeulen NP, Commandeur JN. Mini-dialysis tubes as tools to prepare drug-protein adducts of P450-dependent reactive drug metabolites. J Pharm Biomed Anal 2015; 103:17-25. [DOI: 10.1016/j.jpba.2014.10.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/16/2014] [Accepted: 10/23/2014] [Indexed: 01/28/2023]
|
4
|
Quesada-Soriano I, Primavera A, Casas-Solvas JM, Téllez-Sanz R, Barón C, Vargas-Berenguel A, Lo Bello M, García-Fuentes L. Identifying and characterizing binding sites on the irreversible inhibition of human glutathione S-transferase P1-1 by S-thiocarbamoylation. Chembiochem 2012; 13:1594-604. [PMID: 22740430 DOI: 10.1002/cbic.201200210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Indexed: 11/07/2022]
Abstract
Human glutathione S-transferase P1-1 (hGST P1-1) is involved in cell detoxification processes through the conjugation of its natural substrate, reduced glutathione (GSH), with xenobiotics. GSTs are known to be overexpressed in tumors, and naturally occurring isothiocyanates, such as benzyl isothiocyanate (BITC), are effective cancer chemopreventive compounds. To identify and characterize the potential inhibitory mechanisms of GST P1-1 induced by isothiocyanate conjugates, we studied the binding of GST P1-1 and some cysteine mutants to the BITC-SG conjugate as well as to the synthetic S-(N-benzylcarbamoylmethyl)glutathione conjugate (BC-SG). We report here the inactivation of GST P1-1 through the covalent modification of two Cys47 residues per dimer and one Cys101. The evidence has been compiled by isothermal titration calorimetry (ITC) and electrospray ionization mass spectrometry (ESI-MS). ITC experiments suggest that the BITC-SG conjugate generates adducts with Cys47 and Cys101 at physiological temperatures through a corresponding kinetic process, in which the BITC moiety is covalently bound to these enzyme cysteines through an S-thiocarbamoylation reaction. ESI-MS analysis of the BITC-SG incubated enzymes indicates that although the Cys47 in each subunit is covalently attached to the BITC ligand moiety, only one of the Cys101 residues in the dimer is so attached. A plausible mechanism is given for the emergence of inactivation through the kinetic processes with both cysteines. Likewise, our molecular docking simulations suggest that steric hindrance is the reason why only one Cys101 per dimer is covalently modified by BITC-SG. No covalent inactivation of GST P1-1 with the BC-SG inhibitor has been observed. The affinities and inhibitory potencies for both conjugates are high and very similar, but slightly lower for BC-SG. Thus, we conclude that the presence of the sulfur atom from the isothiocyanate moiety in BITC-SG is crucial for its irreversible inhibition of GST P1-1.
Collapse
|
5
|
Thévenin AF, Zony CL, Bahnson BJ, Colman RF. GST pi modulates JNK activity through a direct interaction with JNK substrate, ATF2. Protein Sci 2011; 20:834-48. [PMID: 21384452 DOI: 10.1002/pro.609] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 11/11/2022]
Abstract
Human GSTpi, an important detoxification enzyme, has been shown to modulate the activity of JNKs by inhibiting apoptosis and by causing cell proliferation and tumor growth. In this work, we describe a detailed analysis of the interaction in vitro between GSTpi and JNK isoforms (both in their inactive and active, phosphorylated forms). The ability of active JNK1 or JNK2 to phosphorylate their substrate, ATF2, is inhibited by two naturally occurring GSTpi haplotypes (Ile105/Ala114, WT or haplotype A, and Val105/Val114, haplotype C). Haplotype C of GSTpi is a more potent inhibitor of JNK activity than haplotype A, yielding 75-80% and 25-45% inhibition, respectively. We show that GSTpi is not a substrate of JNK, as was earlier suggested by others. Through binding studies, we demonstrate that the interaction between GSTpi and phosphorylated, active JNKs is isoform specific, with JNK1 being the preferred isoform. In contrast, GSTpi does not interact with unphosphorylated, inactive JNKs unless a JNK substrate, ATF2, is present. We also demonstrate, for the first time, a direct interaction: between GSTpi and ATF2. GSTpi binds with similar affinity to active JNK + ATF2 and to ATF2 alone. Direct binding experiments between ATF2 and GSTpi, either alone or in the presence of glutathione analogs or phosphorylated ATF2, indicate that the xenobiotic portion of the GSTpi active site and the JNK binding domain of ATF2 are involved in this interaction. Competition between GSTpi and active JNK for the substrate ATF2 may be responsible for the inhibition of JNK catalysis by GSTpi.
Collapse
Affiliation(s)
- Anastasia F Thévenin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | |
Collapse
|
6
|
DAI Y, ZHANG Y, QIU F, LI YY, QIU ZY. Analysis of Differentially Expressed Proteome in Urinary Exosome from Non-small Cell lung Cancer Patients. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2010. [DOI: 10.3724/sp.j.1096.2010.00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Huang YC, Misquitta S, Blond SY, Adams E, Colman RF. Catalytically active monomer of glutathione S-transferase pi and key residues involved in the electrostatic interaction between subunits. J Biol Chem 2008; 283:32880-8. [PMID: 18796433 DOI: 10.1074/jbc.m805484200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human glutathione transferase pi (GST pi) has been crystallized as a homodimer, with a subunit molecular mass of approximately 23 kDa; however, in solution the average molecular mass depends on protein concentration, approaching that of monomer at <0.03 mg/ml, concentrations typically used to measure catalytic activity of the enzyme. Electrostatic interaction at the subunit interface greatly influences the dimer-monomer equilibrium of the enzyme and is an important force for holding subunits together. Arg-70, Arg-74, Asp-90, Asp-94, and Thr-67 were selected as target sites for mutagenesis, because they are at the subunit interface. R70Q, R74Q, D90N, D94N, and T67A mutant enzymes were constructed, expressed in Escherichia coli, and purified. The construct of N-terminal His tag enzyme facilitates the purification of GST pi, resulting in a high yield of enzyme, but does not alter the kinetic parameters or secondary structure of the enzyme. Our results indicate that these mutant enzymes show no appreciable changes in K(m) for 1-chloro-2,4-dinitrobenzene and have similar CD spectra to that of wild-type enzyme. However, elimination of the charges of either Arg-70, Arg-74, Asp-90, or Asp-94 shifts the dimer-monomer equilibrium toward monomer. In addition, replacement of Asp-94 or Arg-70 causes a large increase in the K(m)(GSH), whereas substitution for Asp-90 or Arg-74 primarily results in a marked decrease in V(max). The GST pi retains substantial catalytic activity as a monomer probably because the glutathione and electrophilic substrate sites (such as for 1-chloro-2,4-dinitrobenzene) are predominantly located within each subunit.
Collapse
Affiliation(s)
- Yu-chu Huang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | | | |
Collapse
|
8
|
4-Aryl-1,3,2-oxathiazolylium-5-olate: a novel GST inhibitor to release JNK and activate c-Jun for cancer therapy. Cancer Chemother Pharmacol 2007; 62:509-15. [DOI: 10.1007/s00280-007-0632-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 10/21/2007] [Indexed: 11/25/2022]
|
9
|
Hearne JL, Colman RF. Delineation of xenobiotic substrate sites in rat glutathione S-transferase M1-1. Protein Sci 2005; 14:2526-36. [PMID: 16195544 PMCID: PMC2253307 DOI: 10.1110/ps.051651905] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Glutathione S-transferases catalyze the conjugation of glutathione with endogenous and exogenous xenobiotics. Hu and Colman (1995) proposed that there are two distinct substrate sites in rat GST M1-1, a 1-chloro-2,4-dintrobenzene (CDNB) substrate site located in the vicinity of tyrosine-115, and a monobromobimane (mBBr) substrate site. To determine whether the mBBr substrate site is distinguishable from the CDNB substrate site, we tested S-(hydroxyethyl)bimane, a nonreactive derivative of mBBr, for its ability to compete kinetically with the substrates. We find that S-(hydroxyethyl)bimane is a competitive inhibitor (K(I) = 0.36 microM) when mBBr is used as substrate, but not when CDNB is used as substrate, demonstrating that these two sites are distinct. Using site-directed mutagenesis, we have localized the mBBr substrate site to an area midway through alpha-helix 4 (residues 90-114) and have identified residues that are important in the enzymatic reaction. Substitution of alanine at positions along alpha-helix 4 reveals that mutations at positions 103, 104, and 109 exhibit a greater perturbation of the enzymatic reaction with mBBr than with CDNB as substrate. Various other substitutions at positions 103 and 104 reveal that a hydrophobic residue is necessary at each of these positions to maintain optimal affinity of the enzyme for mBBr and preserve the secondary structure of the enzyme. Substitutions at position 109 indicate that this residue is important in the enzyme's affinity for mBBr but has a minimal effect on Vmax. These results demonstrate that the promiscuity of rat GST M1-1 is in part due to at least two distinct substrate sites.
Collapse
Affiliation(s)
- Jennifer L Hearne
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | | |
Collapse
|
10
|
Dirr HW, Little T, Kuhnert DC, Sayed Y. A conserved N-capping motif contributes significantly to the stabilization and dynamics of the C-terminal region of class Alpha glutathione S-transferases. J Biol Chem 2005; 280:19480-7. [PMID: 15757902 DOI: 10.1074/jbc.m413608200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Helix 9, the major structural element in the C-terminal region of class Alpha glutathione transferases, forms part of the active site of these enzymes where its dynamic properties modulate both catalytic and ligandin functions. A conserved aspartic acid N-capping motif for helix 9 was identified by sequence alignments of the C-terminal regions of class Alpha glutathione S-transferases (GSTs) and an analysis by the helix-coil algorithm AGADIR. The contribution of the N-capping motif to the stability and dynamics of the region was investigated by replacing the N-cap residue Asp-209 with a glycine in human glutathione S-transferase A1-1 (hGST A1-1) and in a peptide corresponding to its C-terminal region. Far-UV circular dichroism and AGADIR analyses indicate that, in the absence of tertiary interactions, the wild-type peptide displays a low intrinsic tendency to form a helix and that this tendency is reduced significantly by the Asp-to-Gly mutation. Disruption of the N-capping motif of helix 9 in hGST A1-1 alters the conformational dynamics of the C-terminal region and, consequently, the features of the H-site to which hydrophobic substrates (e.g. 1-chloro-2,4-dinitrobenzene (CDNB)) and nonsubstrates (e.g. 8-anilino-1-naphthalene sulfonate (ANS)) bind. Isothermal calorimetric and fluorescence data for complex formation between ANS and protein suggest that the D209G-induced perturbation in the C-terminal region prevents normal ligand-induced localization of the region at the active site, resulting in a less hydrophobic and more solvent-exposed H-site. Therefore, the catalytic efficiency of the enzyme with CDNB is diminished due to a lowered affinity for the electrophilic substrate and a lower stabilization of the transition state.
Collapse
Affiliation(s)
- Heini W Dirr
- Protein Structure-Function Research Programme, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa.
| | | | | | | |
Collapse
|
11
|
Ralat LA, Colman RF. Glutathione S-transferase Pi has at least three distinguishable xenobiotic substrate sites close to its glutathione-binding site. J Biol Chem 2004; 279:50204-13. [PMID: 15347687 DOI: 10.1074/jbc.m407445200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Benzyl isothiocyanate (BITC), present in cruciferous vegetables, is an efficient substrate of human glutathione S-transferase P1-1 (hGST P1-1). BITC also acts as an affinity label of hGST P1-1 in the absence of glutathione, yielding an enzyme inactive toward BITC as substrate. As monitored by using BITC as substrate, the dependence of k of inactivation (K(I)) of hGST P1-1 on [BITC] is hyperbolic, with K(I) = 66 +/- 7 microM. The enzyme incorporates 2 mol of BITC/mol of enzyme subunit upon complete inactivation. S-Methylglutathione and 8-anilino-1-naphthalene sulfonate (ANS) each yield partial protection against inactivation and decrease reagent incorporation, whereas S-(N-benzylthiocarbamoyl)glutathione or S-methylglutathione + ANS protects completely. Mapping of proteolytic digests of modified enzyme by using mass spectrometry reveals that Tyr(103) and Cys(47) are modified equally. S-Methylglutathione reduces modification of Cys(47), indicating this residue is at/near the glutathione binding region, whereas ANS decreases modification of Tyr(103), suggesting this residue is at/near the BITC substrate site, which is also near the binding site of ANS. The Y103F and Y103S mutant enzymes were generated, expressed, and purified. Both mutants handle substrate 1-chloro-2,4-dinitrobenzene normally; however, Y103S exhibits a 30-fold increase in K(m) for BITC and binds ANS poorly, whereas Y103F has a normal K(m) for BITC and K(d) for ANS. These results indicate that an aromatic residue at position 103 is essential for the binding of BITC and ANS. This study provides evidence for the existence of a novel xenobiotic substrate site in hGST P1-1, which can be occupied by benzyl isothiocyanate and is distinct from that of monobromobimane and 1-chloro-2,4 dinitrobenzene.
Collapse
Affiliation(s)
- Luis A Ralat
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | |
Collapse
|