1
|
Tomecki R, Drazkowska K, Kobylecki K, Tudek A. SKI complex: A multifaceted cytoplasmic RNA exosome cofactor in mRNA metabolism with links to disease, developmental processes, and antiviral responses. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1795. [PMID: 37384835 DOI: 10.1002/wrna.1795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 07/01/2023]
Abstract
RNA stability and quality control are integral parts of gene expression regulation. A key factor shaping eukaryotic transcriptomes, mainly via 3'-5' exoribonucleolytic trimming or degradation of diverse transcripts in nuclear and cytoplasmic compartments, is the RNA exosome. Precise exosome targeting to various RNA molecules requires strict collaboration with specialized auxiliary factors, which facilitate interactions with its substrates. The predominant class of cytoplasmic RNA targeted by the exosome are protein-coding transcripts, which are carefully scrutinized for errors during translation. Normal, functional mRNAs are turned over following protein synthesis by the exosome or by Xrn1 5'-3'-exonuclease, acting in concert with Dcp1/2 decapping complex. In turn, aberrant transcripts are eliminated by dedicated surveillance pathways, triggered whenever ribosome translocation is impaired. Cytoplasmic 3'-5' mRNA decay and surveillance are dependent on the tight cooperation between the exosome and its evolutionary conserved co-factor-the SKI (superkiller) complex (SKIc). Here, we summarize recent findings from structural, biochemical, and functional studies of SKIc roles in controlling cytoplasmic RNA metabolism, including links to various cellular processes. Mechanism of SKIc action is illuminated by presentation of its spatial structure and details of its interactions with exosome and ribosome. Furthermore, contribution of SKIc and exosome to various mRNA decay pathways, usually converging on recycling of ribosomal subunits, is delineated. A crucial physiological role of SKIc is emphasized by describing association between its dysfunction and devastating human disease-a trichohepatoenteric syndrome (THES). Eventually, we discuss SKIc functions in the regulation of antiviral defense systems, cell signaling and developmental transitions, emerging from interdisciplinary investigations. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Rafal Tomecki
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karolina Drazkowska
- Laboratory of Epitranscriptomics, Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Kamil Kobylecki
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Tudek
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Yadav VK, Claeys Bouuaert C. Mechanism and Control of Meiotic DNA Double-Strand Break Formation in S. cerevisiae. Front Cell Dev Biol 2021; 9:642737. [PMID: 33748134 PMCID: PMC7968521 DOI: 10.3389/fcell.2021.642737] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
Developmentally programmed formation of DNA double-strand breaks (DSBs) by Spo11 initiates a recombination mechanism that promotes synapsis and the subsequent segregation of homologous chromosomes during meiosis. Although DSBs are induced to high levels in meiosis, their formation and repair are tightly regulated to minimize potentially dangerous consequences for genomic integrity. In S. cerevisiae, nine proteins participate with Spo11 in DSB formation, but their molecular functions have been challenging to define. Here, we describe our current view of the mechanism of meiotic DSB formation based on recent advances in the characterization of the structure and function of DSB proteins and discuss regulatory pathways in the light of recent models.
Collapse
Affiliation(s)
| | - Corentin Claeys Bouuaert
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| |
Collapse
|
3
|
Structural and functional characterization of the Spo11 core complex. Nat Struct Mol Biol 2021; 28:92-102. [PMID: 33398171 PMCID: PMC7855791 DOI: 10.1038/s41594-020-00534-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/08/2020] [Indexed: 12/19/2022]
Abstract
Spo11, which makes DNA double-strand breaks (DSBs) essential for meiotic recombination, has long been recalcitrant to biochemical study. We provide molecular analysis of S. cerevisiae Spo11 purified with partners Rec102, Rec104 and Ski8. Rec102 and Rec104 jointly resemble the B subunit of archaeal Topoisomerase VI, with Rec104 occupying a position similar to the Top6B GHKL-type ATPase domain. Unexpectedly, the Spo11 complex is monomeric (1:1:1:1 stoichiometry), consistent with dimerization controlling DSB formation. Reconstitution of DNA binding reveals topoisomerase-like preferences for duplex-duplex junctions and bent DNA. Spo11 also binds noncovalently but with high affinity to DNA ends mimicking cleavage products, suggesting a mechanism to cap DSB ends. Mutations that reduce DNA binding in vitro attenuate DSB formation, alter DSB processing, and reshape the DSB landscape in vivo. Our data reveal structural and functional similarities between the Spo11 core complex and Topo VI, but also highlight differences reflecting their distinct biological roles.
Collapse
|
4
|
Keidel A, Conti E, Falk S. Purification and Reconstitution of the S. cerevisiae TRAMP and Ski Complexes for Biochemical and Structural Studies. Methods Mol Biol 2020; 2062:491-513. [PMID: 31768992 DOI: 10.1007/978-1-4939-9822-7_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The RNA exosome is a macromolecular machine that degrades a large variety of RNAs from their 3'-end. It comprises the major 3'-to-5' exonuclease in the cell, completely degrades erroneous and overly abundant RNAs, and is also involved in the precise processing of RNAs. To degrade transcripts both specifically and efficiently the exosome functions together with compartment-specific cofactors. In the yeast S. cerevisiae, the exosome associates with the Ski complex in the cytoplasm and with Mtr4 alone or with Mtr4 as part of the TRAMP complex in the nucleus. Here we describe how to produce, purify, and assemble the Ski and TRAMP complexes from S. cerevisiae.
Collapse
Affiliation(s)
- Achim Keidel
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Elena Conti
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany.
| | - Sebastian Falk
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany.
- Max Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Marcin W, Neira JL, Bravo J. The carboxy-terminal domain of Erb1 is a seven-bladed ß-propeller that binds RNA. PLoS One 2015; 10:e0123463. [PMID: 25880847 PMCID: PMC4400149 DOI: 10.1371/journal.pone.0123463] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/04/2015] [Indexed: 11/19/2022] Open
Abstract
Erb1 (Eukaryotic Ribosome Biogenesis 1) protein is essential for the maturation of the ribosomal 60S subunit. Functional studies in yeast and mammalian cells showed that altogether with Nop7 and Ytm1 it forms a stable subcomplex called PeBoW that is crucial for a correct rRNA processing. The exact function of the protein within the process remains unknown. The N-terminal region of the protein includes a well conserved region shown to be involved in PeBoW complex formation whereas the carboxy-terminal half was predicted to contain seven WD40 repeats. This first structural report on Erb1 from yeast describes the architecture of a seven-bladed β-propeller domain that revealed a characteristic extra motif formed by two α-helices and a β-strand that insert within the second WD repeat. We performed analysis of molecular surface and crystal packing, together with multiple sequence alignment and comparison of the structure with other β-propellers, in order to identify areas that are more likely to mediate protein-protein interactions. The abundance of many positively charged residues on the surface of the domain led us to investigate whether the propeller of Erb1 might be involved in RNA binding. Three independent assays confirmed that the protein interacted in vitro with polyuridilic acid (polyU), thus suggesting a possible role of the domain in rRNA rearrangement during ribosome biogenesis.
Collapse
Affiliation(s)
- Wegrecki Marcin
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, c/ Jaime Roig 11, 46010 Valencia, Spain
| | - Jose Luis Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Avda. del Ferrocarril s/n, 03202 Elche (Alicante), Spain
- Instituto de Biocomputación y Física de los Sistemas Complejos (BIFI), 50009 Zaragoza, Spain
| | - Jeronimo Bravo
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, c/ Jaime Roig 11, 46010 Valencia, Spain
- * E-mail:
| |
Collapse
|
6
|
Halbach F, Reichelt P, Rode M, Conti E. The yeast ski complex: crystal structure and RNA channeling to the exosome complex. Cell 2013; 154:814-26. [PMID: 23953113 DOI: 10.1016/j.cell.2013.07.017] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 05/13/2013] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
Abstract
The Ski complex is a conserved multiprotein assembly required for the cytoplasmic functions of the exosome, including RNA turnover, surveillance, and interference. Ski2, Ski3, and Ski8 assemble in a tetramer with 1:1:2 stoichiometry. The crystal structure of an S. cerevisiae 370 kDa core complex shows that Ski3 forms an array of 33 TPR motifs organized in N-terminal and C-terminal arms. The C-terminal arm of Ski3 and the two Ski8 subunits position the helicase core of Ski2 centrally within the complex, enhancing RNA binding. The Ski3 N-terminal arm and the Ski2 insertion domain allosterically modulate the ATPase and helicase activities of the complex. Biochemical data suggest that the Ski complex can thread RNAs directly to the exosome, coupling the helicase and the exoribonuclease through a continuous RNA channel. Finally, we identify a Ski8-binding motif common to Ski3 and Spo11, rationalizing the moonlighting properties of Ski8 in mRNA decay and meiosis.
Collapse
Affiliation(s)
- Felix Halbach
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried/Munich, Germany
| | | | | | | |
Collapse
|
7
|
Abuhammad A, Lowe ED, McDonough MA, Shaw Stewart PD, Kolek SA, Sim E, Garman EF. Structure of arylamineN-acetyltransferase fromMycobacterium tuberculosisdetermined by cross-seeding with the homologous protein fromM. marinum: triumph over adversity. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1433-46. [DOI: 10.1107/s0907444913015126] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/31/2013] [Indexed: 11/10/2022]
|
8
|
Inada T. Quality control systems for aberrant mRNAs induced by aberrant translation elongation and termination. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:634-42. [PMID: 23416749 DOI: 10.1016/j.bbagrm.2013.02.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 02/01/2013] [Accepted: 02/02/2013] [Indexed: 10/27/2022]
Abstract
RNA processing is an essential gene expression step and plays a crucial role to achieve diversity of gene products in eukaryotes. Various aberrant mRNAs transiently produced during RNA processing reactions are recognized and eliminated by specific quality control systems. It has been demonstrated that these mRNA quality control systems stimulate the degradation of aberrant mRNA to prevent the potentially harmful products derived from aberrant mRNAs. Recent studies on quality control systems induced by abnormal translation elongation and termination have revealed that both aberrant mRNAs and proteins are subjected to rapid degradation. In NonStop Decay (NSD) quality control system, a poly(A) tail of nonstop mRNA is translated and the synthesis of poly-lysine sequence results in translation arrest followed by co-translational degradation of aberrant nonstop protein. In No-Go Decay (NGD) quality control system, the specific amino acid sequences of the nascent polypeptide induce ribosome stalling, and the arrest products are ubiquitinated and rapidly degraded by the proteasome. In Nonfunctional rRNA Decay (NRD) quality control system, aberrant ribosomes composed of nonfunctional ribosomal RNAs are also eliminated when aberrant translation elongation complexes are formed on mRNA. I describe recent progresses on the mechanisms of quality control systems and the relationships between quality control systems. This article is part of a Special issue entitled: RNA Decay mechanisms.
Collapse
|
9
|
Rieter E, Vinke F, Bakula D, Cebollero E, Ungermann C, Proikas-Cezanne T, Reggiori F. Atg18 function in autophagy is regulated by specific sites within its β-propeller. J Cell Sci 2012; 126:593-604. [PMID: 23230146 DOI: 10.1242/jcs.115725] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a conserved degradative transport pathway. It is characterized by the formation of double-membrane autophagosomes at the phagophore assembly site (PAS). Atg18 is essential for autophagy but also for vacuole homeostasis and probably endosomal functions. This protein is basically a β-propeller, formed by seven WD40 repeats, that contains a conserved FRRG motif that binds to phosphoinositides and promotes Atg18 recruitment to the PAS, endosomes and vacuoles. However, it is unknown how Atg18 association with these organelles is regulated, as the phosphoinositides bound by this protein are present on the surface of all of them. We have investigated Atg18 recruitment to the PAS and found that Atg18 binds to Atg2 through a specific stretch of amino acids in the β-propeller on the opposite surface to the FRRG motif. As in the absence of the FRRG sequence, the inability of Atg18 to interact with Atg2 impairs its association with the PAS, causing an autophagy block. Our data provide a model whereby the Atg18 β-propeller provides organelle specificity by binding to two determinants on the target membrane.
Collapse
Affiliation(s)
- Ester Rieter
- Department of Cell Biology, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
10
|
Johnson SJ, Jackson RN. Ski2-like RNA helicase structures: common themes and complex assemblies. RNA Biol 2012; 10:33-43. [PMID: 22995828 DOI: 10.4161/rna.22101] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Ski2-like RNA helicases are large multidomain proteins involved in a variety of RNA processing and degradation events. Recent structures of Mtr4, Ski2 and Brr2 provide our first view of these intricate helicases. Here we review these structures, which reveal a conserved ring-like architecture that extends beyond the canonical RecA domains to include a winged helix and ratchet domain. Comparison of apo- and RNA-bound Mtr4 structures suggests a role for the winged helix domain as a molecular hub that coordinates RNA interacting events throughout the helicase. Unique accessory domains provide expanded diversity and functionality to each Ski2-like family member. A common theme is the integration of Ski2-like RNA helicases into larger protein assemblies. We describe the central role of Mtr4 and Ski2 in formation of complexes that activate RNA decay by the eukaryotic exosome. The current structures provide clues into what promises to be a fascinating view of these dynamic assemblies.
Collapse
Affiliation(s)
- Sean J Johnson
- Department of Chemistry & Biochemistry, Utah State University, Logan, UT, USA.
| | | |
Collapse
|
11
|
Wu XH, Wang Y, Zhuo Z, Jiang F, Wu YD. Identifying the hotspots on the top faces of WD40-repeat proteins from their primary sequences by β-bulges and DHSW tetrads. PLoS One 2012; 7:e43005. [PMID: 22916195 PMCID: PMC3419727 DOI: 10.1371/journal.pone.0043005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 07/16/2012] [Indexed: 11/19/2022] Open
Abstract
The analysis of 36 available crystal structures of WD40 repeat proteins reveals widespread existence of a beta-bulge formed at the beginning of strand a and the end of strand b, termed as WDb–a bulge: among a total of 259 WD40 blades, there are 243 such β-bulges. The R1 positions in these WDb–a bulges have fair distributions of Arg, His, Ile, Leu, Lys, Met, Phe, Trp, Tyr and Val residues. These residues protrude on the top face of the WD40 proteins and can serve as hotspots for protein-protein interactions. An analysis of 29 protein complexes formed by 17 WD proteins reveals that these R1 residues, along with two other residues (R1-2 and D-1), are indeed widely involved in protein-protein interactions. Interestingly, these WDb–a bulges can be easily identified by the 4-amino acid sequences of (V, L, I), R1, R2, (V, L, I), along with some other significant amino acids. Thus, the hotspots of WD40 proteins on the top face can be readily predicted based on the primary sequences of the proteins. The literature-reported mutagenesis studies for Met30, MDV1, Tup11, COP1 and SPA1, which crystal structures are not available, can be readily understood based on the feature-based method. Applying the method, the twelve potential hotspots on the top face of Tup11 from S. japonicas have been identified. Our ITC measurements confirm seven of them, Tyr382, Arg284, Tyr426, Tyr508, Leu559, Lys575 and Ile601, are essential for recognizing Fep1. The ITC measurements further convinced that the feature-based method provides accurate prediction of hotspots on the top face.
Collapse
Affiliation(s)
- Xian-Hui Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, People’s Republic of China
- * E-mail: (XHW); (YDW)
| | - Yang Wang
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, People’s Republic of China
| | - Zhu Zhuo
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, People’s Republic of China
| | - Fan Jiang
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, People’s Republic of China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, People’s Republic of China
- College of Chemistry, Peking University, Beijing, People’s Republic of China
- * E-mail: (XHW); (YDW)
| |
Collapse
|
12
|
Klauer AA, van Hoof A. Degradation of mRNAs that lack a stop codon: a decade of nonstop progress. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:649-60. [PMID: 22740367 DOI: 10.1002/wrna.1124] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nonstop decay is the mechanism of identifying and disposing aberrant transcripts that lack in-frame stop codons. It is hypothesized that these transcripts are identified during translation when the ribosome arrives at the 3' end of the mRNA and stalls. Presumably, the ribosome stalling recruits additional cofactors, Ski7 and the exosome complex. The exosome degrades the transcript using either one of its ribonucleolytic activities, and the ribosome and the peptide are both released. Additional precautionary measures by the nonstop decay pathway may include translational repression of the nonstop transcript after translation, and proteolysis of the released peptide by the proteasome. This surveillance mechanism protects the cells from potentially harmful truncated proteins, but it may also be involved in mediating critical cellular functions of transcripts that are prone to stop codon read-through. Important advances have been made in the past decade as we learn that nonstop decay may have implications in human disease.
Collapse
Affiliation(s)
- A Alejandra Klauer
- Microbiology and Molecular Genetics, University of Texas Health Science University-Houston, Houston, TX, USA
| | | |
Collapse
|
13
|
Lubas M, Chlebowski A, Dziembowski A, Jensen TH. Biochemistry and Function of RNA Exosomes. EUKARYOTIC RNASES AND THEIR PARTNERS IN RNA DEGRADATION AND BIOGENESIS, PART A 2012; 31:1-30. [DOI: 10.1016/b978-0-12-404740-2.00001-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Chen CKM, Chan NL, Wang AHJ. The many blades of the β-propeller proteins: conserved but versatile. Trends Biochem Sci 2011; 36:553-61. [PMID: 21924917 DOI: 10.1016/j.tibs.2011.07.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 07/14/2011] [Accepted: 07/18/2011] [Indexed: 11/20/2022]
Abstract
The β-propeller is a highly symmetrical structure with 4-10 repeats of a four-stranded antiparallel β-sheet motif. Although β-propeller proteins with different blade numbers all adopt disc-like shapes, they are involved in a diverse set of functions, and defects in this family of proteins have been associated with human diseases. However, it has remained ambiguous how variations in blade number could alter the function of β-propellers. In addition to the regularly arranged β-propeller topology, a recently discovered β-pinwheel propeller has been found. Here, we review the structural and functional diversity of β-propeller proteins, including β-pinwheels, as well as recent advances in the typical and atypical propeller structures.
Collapse
Affiliation(s)
- Cammy K-M Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | | | | |
Collapse
|
15
|
Steiner S, Kohli J, Ludin K. Functional interactions among members of the meiotic initiation complex in fission yeast. Curr Genet 2010; 56:237-49. [PMID: 20364342 DOI: 10.1007/s00294-010-0296-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 03/11/2010] [Accepted: 03/11/2010] [Indexed: 12/11/2022]
Abstract
DNA double-strand breaks (DSBs) initiate meiotic recombination in Schizosaccharomyces pombe and in other organisms. The Rec12 protein catalyzes the formation of these DSBs in concert with a multitude of accessory proteins the role of which in this process remains to be discovered. In an all-to-all yeast two-hybrid matrix analysis, we discovered new interactions among putative members of the meiotic recombination initiation complex. We found that Rec7, an axial-element associated protein with homologies to Saccharomyces cerevisiae Rec114, is interacting with Rec24. Rec7 and Rec24 also co-immunoprecipitate in S. pombe during meiosis. An amino acid change in a conserved, C-terminal phenylalanine in Rec7, F325A interrupts the interaction with Rec24. Moreover, rec7F325A shows a recombination deficiency comparable to rec7Delta. Another interaction was detected between Rec12 and Rec14, the orthologs of which in S. cerevisiae Spo11 and Ski8 interact accordingly. Amino acid changes Rec12Q308A and Rec12R309A disrupt the interaction with Rec14, like the according amino acid changes Spo11Q376A and Spo11RE377AA loose the interaction with Ski8. Both amino acid changes in Rec12 reveal a recombination deficient rec12 (-) phenotype. We propose that both Rec7-Rec24 and Rec12-Rec14 form subcomplexes of the meiotic recombination initiation complex.
Collapse
Affiliation(s)
- Silvia Steiner
- Institute of Cell Biology, University of Bern, Switzerland
| | | | | |
Collapse
|
16
|
Schaeffer D, Clark A, Klauer AA, Tsanova B, van Hoof A. Functions of the Cytoplasmic Exosome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 702:79-90. [DOI: 10.1007/978-1-4419-7841-7_7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Tethering recombination initiation proteins in Saccharomyces cerevisiae promotes double strand break formation. Genetics 2009; 182:447-58. [PMID: 19332879 DOI: 10.1534/genetics.109.102640] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Meiotic recombination in Saccharomyces cerevisiae is initiated by the creation of DNA double strand breaks (DSBs), an event requiring 10 recombination initiation proteins. Published data indicate that these 10 proteins form three main interaction subgroups [(Spo11-Rec102-Rec104-Ski8), (Rec114-Rec107-Mei4), and (Mre11-Rad50-Xrs2)], but certain components from each subgroup may also interact. Although several of the protein-protein interactions have been defined, the mechanism for DSB formation has been challenging to define. Using a variation of the approach pioneered by others, we have tethered 8 of the 10 initiation proteins to a recombination coldspot and discovered that in addition to Spo11, 6 others (Rec102, Rec104, Ski8, Rec114, Rec107, and Mei4) promote DSB formation at the coldspot, albeit with different frequencies. Of the 8 proteins tested, only Mre11 was unable to cause DSBs even though it binds to UAS(GAL) at GAL2. Our results suggest there may be several ways that the recombination initiation proteins can associate to form a functional initiation complex that can create DSBs.
Collapse
|
18
|
Phylogenetic, structural and functional relationships between WD- and Kelch-repeat proteins. Subcell Biochem 2008; 48:6-19. [PMID: 18925367 DOI: 10.1007/978-0-387-09595-0_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The beta-propeller domain is a widespread protein organizational motif. Typically, beta-propeller proteins are encoded by repeated sequences where each repeat unit corresponds to a twisted beta-sheet structural motif; these beta-sheets are arranged in a circle around a central axis to generate the beta-propeller structure. Two superfamilies of beta-propeller proteins, the WD-repeat and Kelch-repeat families, exhibit similarities not only in structure, but, remarkably, also in the types of molecular functions they perform. While it is unlikely that WD and Kelch repeats evolved from a common ancestor, their evolution into diverse families of similar function may reflect the evolutionary advantages of the stable core beta-propeller fold. In this chapter, we examine the relationships between these two widespread protein families, emphasizing recently published work relating to the structure and function of both Kelch and WD-repeat proteins.
Collapse
|
19
|
Sanghamitra M, Talukder I, Singarapu N, Sindhu KV, Kateriya S, Goswami SK. WD-40 repeat protein SG2NA has multiple splice variants with tissue restricted and growth responsive properties. Gene 2008; 420:48-56. [PMID: 18571342 DOI: 10.1016/j.gene.2008.04.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2007] [Revised: 04/14/2008] [Accepted: 04/15/2008] [Indexed: 10/22/2022]
Abstract
SG2NA is a member of the striatin family of WD-40 repeat proteins with potential scaffolding functions. It was originally identified as a tumor antigen with increased expression during S to G2 phase of cell cycle. We report here that mouse SG2NA has at least five novel splice variants of which two are devoid of the carboxyl terminal WD-40 repeats. The variants of SG2NA are generated by alternative splicing at the exon 7-9 regions and differ in their expression profiles in various tissues tested. While the 83, 78, 38 and 35 kDa variants are present in both brain and heart, the 87 kDa form is brain specific. Also, the expression of 35 kDa variant is more in neonatal than in adult tissues. Western analysis suggests that the SG2NA isoforms differentially respond to growth stimuli. Upon serum stimulation, while the 35 kDa variant is increased, the 78 kDa form is diminished. Splicing variation of SG2NA is conserved in metazoan evolution. In embryonic chicken there are at least four variants of which one is present in brain but absent in heart. Taken together, splicing variation of SG2NA might have some critical roles in differentiation and maturation in metazoan cells.
Collapse
Affiliation(s)
- Mishra Sanghamitra
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | | | | | |
Collapse
|
20
|
Keeney S. Spo11 and the Formation of DNA Double-Strand Breaks in Meiosis. GENOME DYNAMICS AND STABILITY 2008; 2:81-123. [PMID: 21927624 PMCID: PMC3172816 DOI: 10.1007/7050_2007_026] [Citation(s) in RCA: 237] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Meiotic recombination is carried out through a specialized pathway for the formation and repair of DNA double-strand breaks made by the Spo11 protein, a relative of archaeal topoisomerase VI. This review summarizes recent studies that provide insight to the mechanism of DNA cleavage by Spo11, functional interactions of Spo11 with other proteins required for break formation, mechanisms that control the timing of recombination initiation, and evolutionary conservation and divergence of these processes.
Collapse
Affiliation(s)
- Scott Keeney
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, NY 10021 USA,
| |
Collapse
|
21
|
Abstract
The yeast Ski complex assists the exosome in the degradation of mRNA. The Ski complex consists of three components; Ski2, Ski3, and Ski8, believed to be present in a 1:1:1 stoichiometry. Measuring the mass of intact isolated endogenously expressed Ski complexes by native mass spectrometry we unambiguously demonstrate that the Ski complex has a hetero-tetrameric stoichiometry consisting of one copy of Ski2 and Ski3 and two copies of Ski8. To validate the stoichiometry of the Ski complex, we performed tandem mass spectrometry. In these experiments one Ski8 subunit was ejected concomitant with the formation of a Ski2/Ski3/Ski8 fragment, confirming the proposed stoichiometry. To probe the topology of the Ski complex we disrupted the complex and mass analyzed the thus formed subcomplexes, detecting Ski8-Ski8, Ski2-Ski3, Ski8-Ski2, and Ski8-Ski8-Ski2. Combining all data we construct an improved structural model of the Ski complex.
Collapse
Affiliation(s)
- Silvia A Synowsky
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
22
|
Srinivasan V, Netz DJ, Webert H, Mascarenhas J, Pierik AJ, Michel H, Lill R. Structure of the Yeast WD40 Domain Protein Cia1, a Component Acting Late in Iron-Sulfur Protein Biogenesis. Structure 2007; 15:1246-57. [DOI: 10.1016/j.str.2007.08.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 08/02/2007] [Accepted: 08/09/2007] [Indexed: 11/25/2022]
|
23
|
Kim TI, Cho PY, Li S, Hong ST, Choi MH, Hong SJ. Partner proteins that interact with Clonorchis sinensis WD40-repeat protein. Parasitol Res 2007; 101:1233-8. [PMID: 17618461 DOI: 10.1007/s00436-007-0625-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 05/31/2007] [Indexed: 11/30/2022]
Abstract
WD40-repeat proteins have four to eight repeat units, which have Gly-His (GH) and Trp-Asp (WD) at both termini and fold into a beta-propeller. In particular, the WD40-repeat protein of Clonorchis sinensis (CsWD1) has seven WD-repeat units and is expressed stage-specifically in metacercariae. By yeast two-hybrid screening, putative interacting protein cDNAs were cloned from a C. sinensis metacercaria cDNA library and purified further by higher stringency screening and lacZ colony-lift assay. After assessing their nucleotide and polypeptide sequences, 21 putative partner protein cDNAs were selected and assembled into 14 clones. Using YRG2 strain yeast, 12 putative partner protein clones were confirmed to interact with CsWD1 protein. These 12 proteins were grouped into functional categories, i.e., signal proteins, transporters, proteases, and muscle proteins. These results suggest that CsWD1 protein is associated with intracellular protein translocation and cell cycle control in C. sinensis metacercaria.
Collapse
Affiliation(s)
- Tae Im Kim
- Department of Parasitology, Chung-Ang University College of Medicine, Tongjak-gu, Seoul, 156-756, South Korea
| | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Jolivet S, Vezon D, Froger N, Mercier R. Non conservation of the meiotic function of the Ski8/Rec103 homolog in Arabidopsis. Genes Cells 2006; 11:615-22. [PMID: 16716192 DOI: 10.1111/j.1365-2443.2006.00972.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Meiotic recombination involves the formation and repair of DNA double-strand breaks (DSB). One of the genes required for DSB formation in the yeast Saccharomyces cerevisiae, Ski8/Rec103, is intriguing because it also plays a role in cytoplasmic RNA metabolism, a function difficult to relate to DSB formation. The meiotic role of Ski8 is conserved in several fungi, but has not been investigated outside this kingdom. We identified the Ski8 homolog in Arabidopsis thaliana and isolated two mutants. We showed that the Arabidopsis Ski8 homolog was required for normal plant development and growth, suggesting a conserved somatic function, but that it was not required for meiotic recombination or progression. The data presented here provide strong evidence that the meiotic role of Ski8 is not conserved in Arabidopsis and sequence analysis suggests that this may also be the case in a range of other species.
Collapse
Affiliation(s)
- Sylvie Jolivet
- Station de Génétique et d'Amélioration des Plantes, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Route de Saint-Cyr, 78026 Versailles cedex, France
| | | | | | | |
Collapse
|
26
|
Appleton BA, Wu P, Wiesmann C. The crystal structure of murine coronin-1: a regulator of actin cytoskeletal dynamics in lymphocytes. Structure 2006; 14:87-96. [PMID: 16407068 DOI: 10.1016/j.str.2005.09.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 08/19/2005] [Accepted: 09/18/2005] [Indexed: 12/16/2022]
Abstract
Mammalian coronin-1 is preferentially expressed in hematopoietic cells and plays a poorly understood role in the dynamic reorganization of the actin cytoskeleton. Sequence analysis of coronin-1 revealed five WD40 repeats that were predicted to form a beta propeller. They are followed by a 130 residue extension and a 30 residue leucine zipper domain that is responsible for multimerization of the protein. Here, we present the crystal structure of murine coronin-1 without the leucine zipper at 1.75 A resolution. Coronin-1 forms a seven-bladed beta propeller composed of the five predicted WD40 repeats and two additional blades that lack any homology to the canonical WD40 motif. The C-terminal extension adopts an extended conformation, packs tightly against the bottom surface of the propeller, and is likely to be required for the structural stability of the propeller. Analysis of charged and conserved surface residues delineate possible binding sites for F-actin on the beta propeller.
Collapse
Affiliation(s)
- Brent A Appleton
- Department of Protein Engineering, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | |
Collapse
|
27
|
Yu JH, Yang WH, Gulick T, Bloch KD, Bloch DB. Ge-1 is a central component of the mammalian cytoplasmic mRNA processing body. RNA (NEW YORK, N.Y.) 2005; 11:1795-802. [PMID: 16314453 PMCID: PMC1370868 DOI: 10.1261/rna.2142405] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The mRNA processing body (P-body) is a cellular structure that regulates gene expression by degrading cytoplasmic mRNA. The objective of this study was to identify and characterize novel components of the mammalian P-body. Approximately 5% of patients with the autoimmune disease primary biliary cirrhosis have antibodies directed against this structure. Serum from one of these patients was used to identify a cDNA encoding Ge-1, a 1,401-amino-acid protein. Ge-1 contains an N-terminal WD 40 motif and C-terminal domains characterized by a repeating psi(X(2-3)) motif. Ge-1 co-localized with previously identified P-body components, including proteins involved in mRNA decapping (DCP1a and DCP2) and the autoantigen GW 182. The Ge-1 C-terminal domain was necessary and sufficient to target the protein to P-bodies. Following exposure of cells to oxidative stress, Ge-1-containing P-bodies were found adjacent to TIA-containing stress granules. During the recovery period, TIA returned to the nucleus while Ge-1-containing P-bodies localized to the perinuclear region. siRNA-mediated knock-down of Ge-1 resulted in loss of P-bodies containing Ge-1, DCP1a, and DCP2. In contrast, Ge-1-containing P-bodies persisted despite knock-down of DCP2. Taken together, the results of this study show that Ge-1 is a central component of P-bodies and suggest that Ge-1 may act prior to the 5(')-decapping step in mRNA degradation.
Collapse
Affiliation(s)
- Jiang Hong Yu
- Department of Medicine, Havard Medical School, the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Charlestown, MA 02129, USA
| | | | | | | | | |
Collapse
|
28
|
Wang L, Lewis MS, Johnson AW. Domain interactions within the Ski2/3/8 complex and between the Ski complex and Ski7p. RNA (NEW YORK, N.Y.) 2005; 11:1291-302. [PMID: 16043509 PMCID: PMC1370812 DOI: 10.1261/rna.2060405] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The Ski complex (composed of Ski3p, Ski8p, and the DEVH ATPase Ski2p) is a central component of the 3'-5' cytoplasmic mRNA degradation pathway in yeast. Although the proteins of the complex interact with each other as well as with Ski7p to mediate degradation by exosome, a 3'-exonuclease complex, the nature of these interactions is not well understood. Here we explore interactions within the Ski complex and between the Ski complex and Ski7p using a directed two-hybrid approach combined with coimmunoprecipitation experiments. We also test the functional significance of these interactions in vivo. Our results suggest that within the Ski complex, Ski3p serves as a scaffold protein with its C terminus interacting with Ski8p, and the sub-C terminus interacting with Ski2p, while no direct interaction between Ski2p and Ski8p was found. Ski7p interacts with the Ski complex via its interaction with Ski8p and Ski3p. In addition, inactivating the Ski complex by mutating conserved residues in the DEVH helicase motif of Ski2 did not abrogate its interaction with Ski7p, indicating that Ski2p function is not necessary for this interaction.
Collapse
Affiliation(s)
- Lingna Wang
- Section of Molecular Genetics and Microbiology, The University of Texas, Austin, TX 78712-0162, USA
| | | | | |
Collapse
|
29
|
Orban TI, Izaurralde E. Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome. RNA (NEW YORK, N.Y.) 2005; 11:459-69. [PMID: 15703439 PMCID: PMC1370735 DOI: 10.1261/rna.7231505] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Accepted: 12/20/2004] [Indexed: 05/21/2023]
Abstract
RNA interference (RNAi) is a conserved RNA silencing pathway that leads to sequence-specific mRNA decay in response to the presence of double-stranded RNA (dsRNA). Long dsRNA molecules are first processed by Dicer into 21-22-nucleotide small interfering RNAs (siRNAs). The siRNAs are incorporated into a multimeric RNA-induced silencing complex (RISC) that cleaves mRNAs at a site determined by complementarity with the siRNAs. Following this initial endonucleolytic cleavage, the mRNA is degraded by a mechanism that is not completely understood. We investigated the decay pathway of mRNAs targeted by RISC in Drosophila cells. We show that 5' mRNA fragments generated by RISC cleavage are rapidly degraded from their 3' ends by the exosome, whereas the 3' fragments are degraded from their 5' ends by XRN1. Exosome-mediated decay of the 5' fragments requires the Drosophila homologs of yeast Ski2p, Ski3p, and Ski8p, suggesting that their role as regulators of exosome activity is conserved. Our findings indicate that mRNAs targeted by siRNAs are degraded from the ends generated by RISC cleavage, without undergoing decapping or deadenylation.
Collapse
|
30
|
Baker KE, Condon C. Under the Tucson sun: a meeting in the desert on mRNA decay. RNA (NEW YORK, N.Y.) 2004; 10:1680-1691. [PMID: 15496519 PMCID: PMC1370653 DOI: 10.1261/rna.7163104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Affiliation(s)
- Kristian E Baker
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, 1007 East Lowell Street, Room 403 Life Sciences South, Tucson, AZ 85745, USA.
| | | |
Collapse
|