1
|
Mahling R, Hovey L, Isbell HM, Marx DC, Miller MS, Kilpatrick AM, Weaver LD, Yoder JB, Kim EH, Andresen CNJ, Li S, Shea MA. Na V1.2 EFL domain allosterically enhances Ca 2+ binding to sites I and II of WT and pathogenic calmodulin mutants bound to the channel CTD. Structure 2021; 29:1339-1356.e7. [PMID: 33770503 PMCID: PMC8458505 DOI: 10.1016/j.str.2021.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 12/23/2020] [Accepted: 03/03/2021] [Indexed: 11/23/2022]
Abstract
Neuronal voltage-gated sodium channel NaV1.2 C-terminal domain (CTD) binds calmodulin (CaM) constitutively at its IQ motif. A solution structure (6BUT) and other NMR evidence showed that the CaM N domain (CaMN) is structurally independent of the C-domain (CaMC) whether CaM is bound to the NaV1.2IQp (1,901-1,927) or NaV1.2CTD (1,777-1,937) with or without calcium. However, in the CaM + NaV1.2CTD complex, the Ca2+ affinity of CaMN was more favorable than in free CaM, while Ca2+ affinity for CaMC was weaker than in the CaM + NaV1.2IQp complex. The CTD EF-like (EFL) domain allosterically widened the energetic gap between CaM domains. Cardiomyopathy-associated CaM mutants (N53I(N54I), D95V(D96V), A102V(A103V), E104A(E105A), D129G(D130G), and F141L(F142L)) all bound the NaV1.2 IQ motif favorably under resting (apo) conditions and bound calcium normally at CaMN sites. However, only N53I and A102V bound calcium at CaMC sites at [Ca2+] < 100 μM. Thus, they are expected to respond like wild-type CaM to Ca2+ spikes in excitable cells.
Collapse
Affiliation(s)
- Ryan Mahling
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Liam Hovey
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Holly M Isbell
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Dagan C Marx
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Mark S Miller
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Adina M Kilpatrick
- Department of Physics and Astronomy, Drake University, Des Moines, IA 50311-4516, USA
| | - Lisa D Weaver
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Jesse B Yoder
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Elaine H Kim
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Corinne N J Andresen
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Shuxiang Li
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Madeline A Shea
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA.
| |
Collapse
|
2
|
Bombardi L, Pedretti M, Conter C, Dominici P, Astegno A. Distinct Calcium Binding and Structural Properties of Two Centrin Isoforms from Toxoplasma gondii. Biomolecules 2020; 10:E1142. [PMID: 32759683 PMCID: PMC7465447 DOI: 10.3390/biom10081142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 11/16/2022] Open
Abstract
Centrins are calcium (Ca2+)-binding proteins that have been implicated in several regulatory functions. In the protozoan parasite Toxoplasma gondii, the causative agent of toxoplasmosis, three isoforms of centrin have been identified. While increasing information is now available that links the function of centrins with defined parasite biological processes, knowledge is still limited on the metal-binding and structural properties of these proteins. Herein, using biophysical and structural approaches, we explored the Ca2+ binding abilities and the subsequent effects of Ca2+ on the structure of a conserved (TgCEN1) and a more divergent (TgCEN2) centrin isoform from T. gondii. Our data showed that TgCEN1 and TgCEN2 possess diverse molecular features, suggesting that they play nonredundant roles in parasite physiology. TgCEN1 binds two Ca2+ ions with high/medium affinity, while TgCEN2 binds one Ca2+ with low affinity. TgCEN1 undergoes significant Ca2+-dependent conformational changes that expose hydrophobic patches, supporting a role as a Ca2+ sensor in toxoplasma. In contrast, Ca2+ binding has a subtle influence on conformational features of TgCEN2 without resulting in hydrophobic exposure, suggesting a different Ca2+ relay mode for this isoform. Furthermore, TgCEN1 displays a Ca2+-dependent ability to self-assemble, while TgCEN2 did not. We discuss our findings in the context of Ca2+ signaling in toxoplasma.
Collapse
Affiliation(s)
| | | | | | | | - Alessandra Astegno
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (L.B.); (M.P.); (C.C.); (P.D.)
| |
Collapse
|
3
|
Shi E, Zhang W, Zhao Y, Yang B. Modulation of XPC peptide on binding Tb 3+ to Euplotes octocarinatus centrin. Metallomics 2017; 9:1796-1808. [PMID: 29114686 DOI: 10.1039/c7mt00263g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Centrins are Ca2+-binding proteins found throughout eukaryotic organisms. Xeroderma pigmentosum group C protein (XPC), a dominant component of the nuclear excision repair (NER) pathway, is a critical target protein of centrins. A 22-residue peptide (K842-R863) from XPC was used to investigate the effect of metal ions (Ca2+ and Tb3+) on the peptide binding of Euplotes octocarinatus centrin (EoCen) by isothermal titration calorimetry (ITC) and fluorescence spectroscopy. ITC and tryptophan spectrofluorimetric titrations revealed that metal ions (Ca2+ and Tb3+) could enhance the affinity between EoCen and the XPC peptide, and the enhanced effects were closely related to the ion potential of metal ions. Since the ion potential of Tb3+ (e/r = 0.0325) is larger than that of Ca2+ (e/r = 0.0202), the conformational change in the protein induced by Tb3+ is larger than that induced by Ca2+, and the enhanced affinity of Tb3+ is stronger than that of Ca2+. This interaction was driven by enthalpy in the presence of EDTA and enthalpy and entropy in the presence of Ca2+ or Tb3+. Similar to that observed in the presence of EDTA, the N-terminal domain did not participate in the interaction with the XPC peptide even in the presence of metal ions. Resonance light scattering (RLS) and the band shift in native polyacrylamide gel electrophoresis (PAGE) suggested that peptide binding resulted in the dissociation of EoCen aggregates and complex formation via the monomer-peptide form. Tb3+-Sensitized emission suggested that peptide binding in turn also had an impact on the Tb3+ binding of the protein: the C-terminal domain was slightly strengthened and the N-terminal domain was weakened about 225 fold. RLS and native PAGE indicated that the self-assembly induced by Tb3+ binding to the N-terminal domain of EoCen was inhibited in the presence of the XPC peptide. This study elucidates the molecular mechanism of EoCen function in the cellular context.
Collapse
Affiliation(s)
- Enxian Shi
- Institute of Molecular Science, Key Laboratory of Chemical Biology of Molecular Engineering of Education Ministry, Shanxi University, Taiyuan 030006, P. R. China. and Department of Pharmacy, Shanxi Medical University, Taiyuan 030001, P. R. China
| | - Wenlong Zhang
- Institute of Molecular Science, Key Laboratory of Chemical Biology of Molecular Engineering of Education Ministry, Shanxi University, Taiyuan 030006, P. R. China.
| | - Yaqin Zhao
- Institute of Molecular Science, Key Laboratory of Chemical Biology of Molecular Engineering of Education Ministry, Shanxi University, Taiyuan 030006, P. R. China.
| | - Binsheng Yang
- Institute of Molecular Science, Key Laboratory of Chemical Biology of Molecular Engineering of Education Ministry, Shanxi University, Taiyuan 030006, P. R. China.
| |
Collapse
|
4
|
Shi E, Zhang W, Zhao Y, Yang B. Binding of Euplotes octocarinatus centrin to peptide from xeroderma pigmentosum group C protein (XPC). RSC Adv 2017. [DOI: 10.1039/c7ra03079g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Trp is buried in the hydrophobic cavity, the peptide folds into an α-helix, and the interaction is enthalpically driven from ITC.
Collapse
Affiliation(s)
- Enxian Shi
- Institute of Molecular Science
- Key Laboratory of Chemical Biology of Molecular Engineering of Education Ministry
- Shanxi University
- Taiyuan 030006
- PR China
| | - Wenlong Zhang
- Institute of Molecular Science
- Key Laboratory of Chemical Biology of Molecular Engineering of Education Ministry
- Shanxi University
- Taiyuan 030006
- PR China
| | - Yaqin Zhao
- Institute of Molecular Science
- Key Laboratory of Chemical Biology of Molecular Engineering of Education Ministry
- Shanxi University
- Taiyuan 030006
- PR China
| | - Binsheng Yang
- Institute of Molecular Science
- Key Laboratory of Chemical Biology of Molecular Engineering of Education Ministry
- Shanxi University
- Taiyuan 030006
- PR China
| |
Collapse
|
5
|
Lai M, Brun D, Edelstein SJ, Le Novère N. Modulation of calmodulin lobes by different targets: an allosteric model with hemiconcerted conformational transitions. PLoS Comput Biol 2015; 11:e1004063. [PMID: 25611683 PMCID: PMC4303274 DOI: 10.1371/journal.pcbi.1004063] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 11/26/2014] [Indexed: 01/30/2023] Open
Abstract
Calmodulin is a calcium-binding protein ubiquitous in eukaryotic cells, involved in numerous calcium-regulated biological phenomena, such as synaptic plasticity, muscle contraction, cell cycle, and circadian rhythms. It exibits a characteristic dumbell shape, with two globular domains (N- and C-terminal lobe) joined by a linker region. Each lobe can take alternative conformations, affected by the binding of calcium and target proteins. Calmodulin displays considerable functional flexibility due to its capability to bind different targets, often in a tissue-specific fashion. In various specific physiological environments (e.g. skeletal muscle, neuron dendritic spines) several targets compete for the same calmodulin pool, regulating its availability and affinity for calcium. In this work, we sought to understand the general principles underlying calmodulin modulation by different target proteins, and to account for simultaneous effects of multiple competing targets, thus enabling a more realistic simulation of calmodulin-dependent pathways. We built a mechanistic allosteric model of calmodulin, based on an hemiconcerted framework: each calmodulin lobe can exist in two conformations in thermodynamic equilibrium, with different affinities for calcium and different affinities for each target. Each lobe was allowed to switch conformation on its own. The model was parameterised and validated against experimental data from the literature. In spite of its simplicity, a two-state allosteric model was able to satisfactorily represent several sets of experiments, in particular the binding of calcium on intact and truncated calmodulin and the effect of different skMLCK peptides on calmodulin's saturation curve. The model can also be readily extended to include multiple targets. We show that some targets stabilise the low calcium affinity T state while others stabilise the high affinity R state. Most of the effects produced by calmodulin targets can be explained as modulation of a pre-existing dynamic equilibrium between different conformations of calmodulin's lobes, in agreement with linkage theory and MWC-type models.
Collapse
Affiliation(s)
- Massimo Lai
- Babraham Institute, Cambridge, United Kingdom
- * E-mail:
| | - Denis Brun
- EMBL-EBI, Hinxton, United Kingdom
- Amadeus IT Group, Sophia Antipolis, France
| | | | - Nicolas Le Novère
- Babraham Institute, Cambridge, United Kingdom
- EMBL-EBI, Hinxton, United Kingdom
| |
Collapse
|
6
|
Calcium-dependent energetics of calmodulin domain interactions with regulatory regions of the Ryanodine Receptor Type 1 (RyR1). Biophys Chem 2014; 193-194:35-49. [PMID: 25145833 DOI: 10.1016/j.bpc.2014.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 01/09/2023]
Abstract
Calmodulin (CaM) allosterically regulates the homo-tetrameric human Ryanodine Receptor Type 1 (hRyR1): apo CaM activates the channel, while (Ca(2+))4-CaM inhibits it. CaM-binding RyR1 residues 1975-1999 and 3614-3643 were proposed to allow CaM to bridge adjacent RyR1 subunits. Fluorescence anisotropy titrations monitored the binding of CaM and its domains to peptides encompassing hRyR(11975-1999) or hRyR1(3614-3643). Both CaM and its C-domain associated in a calcium-independent manner with hRyR1(3614-3643) while N-domain required calcium and bound ~250-fold more weakly. Association with hRyR1(11975-1999) was weak. Both hRyR1 peptides increased the calcium-binding affinity of both CaM domains, while maintaining differences between them. These energetics support the CaM C-domain association with hRyR1(3614-3643) at low calcium, positioning CaM to respond to calcium efflux. However, the CaM N-domain affinity for hRyR(11975-1999) alone was insufficient to support CaM bridging adjacent RyR1 subunits. Other proteins or elements of the hRyR1 structure must contribute to the energetics of CaM-mediated regulation.
Collapse
|
7
|
Slavov N, Carey J, Linse S. Calmodulin transduces Ca2+ oscillations into differential regulation of its target proteins. ACS Chem Neurosci 2013; 4:601-12. [PMID: 23384199 DOI: 10.1021/cn300218d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Diverse physiological processes are regulated differentially by Ca(2+) oscillations through the common regulatory hub calmodulin. The capacity of calmodulin to combine specificity with promiscuity remains to be resolved. Here we propose a mechanism based on the molecular properties of calmodulin, its two domains with separate Ca(2+) binding affinities, and target exchange rates that depend on both target identity and Ca(2+) occupancy. The binding dynamics among Ca(2+), Mg(2+), calmodulin, and its targets were modeled with mass-action differential equations based on experimentally determined protein concentrations and rate constants. The model predicts that the activation of calcineurin and nitric oxide synthase depends nonmonotonically on Ca(2+)-oscillation frequency. Preferential activation reaches a maximum at a target-specific frequency. Differential activation arises from the accumulation of inactive calmodulin-target intermediate complexes between Ca(2+) transients. Their accumulation provides the system with hysteresis and favors activation of some targets at the expense of others. The generality of this result was tested by simulating 60 000 networks with two, four, or eight targets with concentrations and rate constants from experimentally determined ranges. Most networks exhibit differential activation that increases in magnitude with the number of targets. Moreover, differential activation increases with decreasing calmodulin concentration due to competition among targets. The results rationalize calmodulin signaling in terms of the network topology and the molecular properties of calmodulin.
Collapse
Affiliation(s)
| | | | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Zhao YQ, Yan J, Chao JB, Liang AH, Yang BS. The biochemical effect of Ser166 phosphorylation on Euplotes octocarinatus centrin. J Biol Inorg Chem 2012. [DOI: 10.1007/s00775-012-0957-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Batters C, Woodall KA, Toseland CP, Hundschell C, Veigel C. Cloning, expression, and characterization of a novel molecular motor, Leishmania myosin-XXI. J Biol Chem 2012; 287:27556-66. [PMID: 22718767 DOI: 10.1074/jbc.m112.381301] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The genome of the Leishmania parasite contains two classes of myosin. Myosin-XXI, seemingly the only myosin isoform expressed in the protozoan parasite, has been detected in both the promastigote and amastigote stages of the Leishmania life cycle. It has been suggested to perform a variety of functions, including roles in membrane anchorage, but also long-range directed movements of cargo. However, nothing is known about the biochemical or mechanical properties of this motor. Here we designed and expressed various myosin-XXI constructs using a baculovirus expression system. Both full-length (amino acids 1-1051) and minimal motor domain constructs (amino acids 1-800) featured actin-activated ATPase activity. Myosin-XXI was soluble when expressed either with or without calmodulin. In the presence of calcium (pCa 4.1) the full-length motor could bind a single calmodulin at its neck domain (probably amino acids 809-823). Calmodulin binding was required for motility but not for ATPase activity. Once bound, calmodulin remained stably attached independent of calcium concentration (pCa 3-7). In gliding filament assays, myosin-XXI moved actin filaments at ∼15 nm/s, insensitive to both salt (25-1000 mm KCl) and calcium concentrations (pCa 3-7). Calmodulin binding to the neck domain might be involved in regulating the motility of the myosin-XXI motor for its various cellular functions in the different stages of the Leishmania parasite life cycle.
Collapse
Affiliation(s)
- Christopher Batters
- Department of Cellular Physiology and Centre for Nanosciences (CeNS), Ludwig-Maximilians-Universität München, Schillerstrasse 44, 80336 München, Germany
| | | | | | | | | |
Collapse
|
10
|
Li G, Wang Z, Zhao Y, Ren L, Liang A, Yang B. The spectral studies on the effect of Glu 101 to the metal binding characteristic of Euplotes octocarinatus centrin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2007; 67:1189-93. [PMID: 17126067 DOI: 10.1016/j.saa.2006.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 10/01/2006] [Accepted: 10/05/2006] [Indexed: 05/12/2023]
Abstract
Glu is highly conserved as the first amino acid of E-helix of the EF-hand protein. In this paper, Glu 101, the first amino acid of E-helix of the third EF-hand motif in Euplotes octocarinatus centrin (EoCen) was mutated to be Lys by the method of site direct mutation. Tb3+ and TNS were used as fluorescence probes in the study of the effect of this mutation to the metal binding characteristic of EoCen by fluorescence spectra. Results indicate that compared with EoCen, the mutation protein (E101K) displays a different Tb3+ binding characteristic and an increased hydrophobic exposure surface. Polyacrylamide gels electrophoresis indicated that the electrophoretic mobilities of EoCen and E101K are distinctly different. It can be deduced that the conformation of EoCen has been altered by this mutation. The general conditional binding constant of Tb3+ to the three loops of EF-hand sites I-III in E101K was calculated to be (5.64+/-0.57)x10(5)M(-1) according to the modified equation of the single binding process.
Collapse
Affiliation(s)
- Guoting Li
- Institute of Molecular Science, Chemical Biology and Molecular Engineering Laboratory of Education Ministry, Shanxi University, Taiyuan 030006, China
| | | | | | | | | | | |
Collapse
|