1
|
Shen HH, Zhao Q, Wen YP, Wu R, Du SY, Huang XB, Wen XT, Cao SJ, Zeng L, Yan QG. Porcine reproductive and respiratory syndrome virus upregulates SMPDL3B to promote viral replication by modulating lipid metabolism. iScience 2023; 26:107450. [PMID: 37583552 PMCID: PMC10424083 DOI: 10.1016/j.isci.2023.107450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/04/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) poses a severe threat to the health of pigs globally. Host factors play a critical role in PRRSV replication. Using PRRSV as a model for genome-scale CRISPR knockout (KO) screening, we identified a host factor critical to PRRSV infection: sphingomyelin phosphodiesterase acid-like 3B (SMPDL3B). Our findings show that SMPDL3B restricted PRRSV attachment, entry, replication, and secretion and that its depletion significantly inhibited PRRSV proliferation, indicating that SMPDL3B plays a positive role in PRRSV replication. Our data also show that SMPDL3B deficiency resulted in an accumulation of intracellular lipid droplets (LDs). The expression level of key genes (ACC, SCD-1, and FASN) involved in lipogenesis was increased, whereas the fundamental lipolysis gene, ATGL, was inhibited when SMPDL3B was knocked down. Overall, our findings suggest that SMPDL3B deficiency can effectively inhibit viral infection through the modulation of lipid metabolism.
Collapse
Affiliation(s)
- Huan-Huan Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - Qin Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - Yi-Ping Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - Rui Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - Sen-Yan Du
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - Xiao-Bo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - Xin-Tian Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - San-Jie Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - Lei Zeng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Qi-Gui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| |
Collapse
|
2
|
Ueda S, Manabe Y, Kubo N, Morino N, Yuasa H, Shiotsu M, Tsuji T, Sugawara T, Kambe T. Early secretory pathway-resident Zn transporter proteins contribute to cellular sphingolipid metabolism through activation of sphingomyelin phosphodiesterase 1. Am J Physiol Cell Physiol 2022; 322:C948-C959. [PMID: 35294847 DOI: 10.1152/ajpcell.00020.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sphingomyelin phosphodiesterase 1 (SMPD1) converts sphingomyelin into ceramide and phosphocholine; hence, loss of SMPD1 function causes abnormal accumulation of sphingomyelin in lysosomes, which results in the lipid-storage disorder Niemann-Pick disease (types A and B). SMPD1 activity is dependent on zinc, which is coordinated at the active site of the enzyme, and although SMPD1 has been suggested to acquire zinc at the sites where the enzyme is localized, precisely how SMPD1 acquires zinc remains to be clarified. Here, we addressed this using a gene-disruption/re-expression strategy. Our results revealed that Zn transporter 5 (ZNT5)-ZNT6 heterodimers and ZNT7 homodimers, which localize in the compartments of the early secretory pathway, play essential roles in SMPD1 activation. Both ZNT complexes contribute to cellular sphingolipid metabolism by activating SMPD1 because cells lacking the functions of the two complexes exhibited a reduced ceramide to sphingomyelin content ratio in terms of their dominant molecular species and an increase in the sphingomyelin content in terms of three minor species. Moreover, mutant cells contained multilamellar body-like structures, indicative of membrane stacking and accumulation, in the cytoplasm. These findings provide novel insights into the molecular mechanism underlying the activation of SMPD1, a key enzyme in sphingolipid metabolism.
Collapse
Affiliation(s)
- Sachiko Ueda
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yuki Manabe
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Naoya Kubo
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Naho Morino
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hana Yuasa
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kyoto University, Kyoto, Japan
| | - Miku Shiotsu
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tokuji Tsuji
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tatsuya Sugawara
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Ramírez-Montiel F, Mendoza-Macías C, Andrade-Guillén S, Rangel-Serrano Á, Páramo-Pérez I, Rivera-Cuéllar PE, España-Sánchez BL, Luna-Bárcenas G, Anaya-Velázquez F, Franco B, Padilla-Vaca F. Plasma membrane damage repair is mediated by an acid sphingomyelinase in Entamoeba histolytica. PLoS Pathog 2019; 15:e1008016. [PMID: 31461501 PMCID: PMC6713333 DOI: 10.1371/journal.ppat.1008016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 08/02/2019] [Indexed: 12/15/2022] Open
Abstract
Entamoeba histolytica is a pathogen that during its infective process confronts the host defenses, which damages the amoebic plasma membrane (PM), resulting in the loss of viability. However, it is unknown whether amoebic trophozoites are able to repair their PM when it is damaged. Acid sphingomyelinases (aSMases) have been reported in mammalian cells to promote endocytosis and removal of PM lesions. In this work, six predicted amoebic genes encoding for aSMases were found to be transcribed in the HM1:IMSS strain, finding that the EhaSM6 gene is the most transcribed in basal growth conditions and rendered a functional protein. The secreted aSMase activity detected was stimulated by Mg+2 and inhibited by Co+2. Trophozoites that overexpress the EhaSM6 gene (HM1-SM6HA) exhibit an increase of 2-fold in the secreted aSMase activity. This transfectant trophozoites exposed to pore-forming molecules (SLO, Magainin, β-Defensin 2 and human complement) exhibited an increase from 6 to 25-fold in the secreted aSMase activity which correlated with higher amoebic viability in a Ca+2 dependent process. However, other agents that affect the PM such as hydrogen peroxide also induced an increase of secreted aSMase, but to a lesser extent. The aSMase6 enzyme is N- and C-terminal processed. Confocal and transmission electron microscopy showed that trophozoites treated with SLO presented a migration of lysosomes containing the aSMase towards the PM, inducing the formation of membrane patches and endosomes in the control strain. These cellular structures were increased in the overexpressing strain, indicating the involvement of the aSMase6 in the PM injury repair. The pore-forming molecules induced an increase in the expression of EhaSM1, 2, 5 and 6 genes, meanwhile, hydrogen peroxide induced an increase in all of them. In all the conditions evaluated, the EhaSM6 gene exhibited the highest levels of induction. Overall, these novel findings show that the aSMase6 enzyme from E. histolytica promotes the repair of the PM damaged with pore-forming molecules to prevent losing cell integrity. This novel system could act when encountered with the lytic defense systems of the host. The host-amoeba relationship is based on a series of interplays between host defense mechanisms and parasite survival strategies. While host cells elaborate diverse mechanisms for pathogen elimination, Entamoeba histolytica trophozoites have also developed complex strategies to counteract host immune response and facilitate its own survival while confronting host defenses. E. histolytica exposed to pore-forming proteins such as β-Defensin 2, human complement and Streptolysin O (SLO), increases the activity of secreted aSMase, which is related to greater amoebic viability. Other agents that affect plasma membrane (PM) may also increase secreted aSMase but to a lesser extent. SLO form pores in the PM of E. histolytica trophozoites that initiates the uncontrolled entry of Ca2+, recognized as the primary trigger for cell responses which favors the migration of the lysosomes to the periphery of the cell, fuses with the PM and release their content, including aSMase to the external side of the cell. The secreted aSMase favoring the internalization of the lesion for its degradation in phagolysosomes. During the early stages of PM damage, the pores are rapidly blocked by patch-like structures that prevent the lysis of the trophozoite and immediately begin internalizing the lesion. The aSMase6 overexpression favors the repair of the lesion and the survival of E. histolytica trophozoites. Pore-forming proteins induced an increase in the expression of EhaSM1, 2, 5 and 6 genes, meanwhile oxidative stress induced an increase in all of them. Here we report, for the first time, that E. histolytica possess a mechanism for PM damage repair mediated by aSMase similar to the system described in mammalian cells.
Collapse
Affiliation(s)
- Fátima Ramírez-Montiel
- Departmento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Claudia Mendoza-Macías
- Departmento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Sairy Andrade-Guillén
- Departmento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Ángeles Rangel-Serrano
- Departmento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Itzel Páramo-Pérez
- Departmento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Paris E. Rivera-Cuéllar
- Departmento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - B. Liliana España-Sánchez
- CONACYT_Centro de Investigación y Desarrollo en Electroquímica (CIDETEQ) S.C. Parque Tecnológico, San Fandila, Querétaro, México
| | - Gabriel Luna-Bárcenas
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV) Unidad Querétaro, Fracc. Real de Juriquilla, Querétaro, Querétaro, México
| | - Fernando Anaya-Velázquez
- Departmento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Bernardo Franco
- Departmento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
- * E-mail: (BF); (FPV)
| | - Felipe Padilla-Vaca
- Departmento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
- * E-mail: (BF); (FPV)
| |
Collapse
|
4
|
Human acid sphingomyelinase structures provide insight to molecular basis of Niemann-Pick disease. Nat Commun 2016; 7:13082. [PMID: 27725636 PMCID: PMC5062611 DOI: 10.1038/ncomms13082] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 09/01/2016] [Indexed: 12/18/2022] Open
Abstract
Acid sphingomyelinase (ASM) hydrolyzes sphingomyelin to ceramide and phosphocholine, essential components of myelin in neurons. Genetic alterations in ASM lead to ASM deficiency (ASMD) and have been linked to Niemann–Pick disease types A and B. Olipudase alfa, a recombinant form of human ASM, is being developed as enzyme replacement therapy to treat the non-neurological manifestations of ASMD. Here we present the human ASM holoenzyme and product bound structures encompassing all of the functional domains. The catalytic domain has a metallophosphatase fold, and two zinc ions and one reaction product phosphocholine are identified in a histidine-rich active site. The structures reveal the underlying catalytic mechanism, in which two zinc ions activate a water molecule for nucleophilic attack of the phosphodiester bond. Docking of sphingomyelin provides a model that allows insight into the selectivity of the enzyme and how the ASM domains collaborate to complete hydrolysis. Mapping of known mutations provides a basic understanding on correlations between enzyme dysfunction and phenotypes observed in ASMD patients. Genetic alterations in the protein acid sphingomyelinase (ASM) lead to ASM deficiency and have been associated with Niemann–Pick disease. Here, the authors report the crystal structures of ASM alone and bound to its product, and discuss the catalytic mechanism and its possible significance for patients with ASM deficiency.
Collapse
|
5
|
Acuña M, Castro-Fernández V, Latorre M, Castro J, Schuchman EH, Guixé V, González M, Zanlungo S. Structural and functional analysis of the ASM p.Ala359Asp mutant that causes acid sphingomyelinase deficiency. Biochem Biophys Res Commun 2016; 479:496-501. [PMID: 27659707 DOI: 10.1016/j.bbrc.2016.09.096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/19/2016] [Indexed: 12/01/2022]
Abstract
Niemann-Pick disease (NPD) type A and B are recessive hereditary disorders caused by deficiency in acid sphingomyelinase (ASM). The p.Ala359Asp mutation has been described in several patients but its functional and structural effects in the protein are unknown. In order to characterize this mutation, we modeled the three-dimensional ASM structure using the recent available crystal of the mammalian ASM as a template. We found that the p.Ala359Asp mutation is localized in the hydrophobic core and far from the sphingomyelin binding site. However, energy function calculations using statistical potentials indicate that the mutation causes a decrease in ASM stability. Therefore, we investigated the functional effect of the p.Ala359Asp mutation in ASM expression, secretion, localization and activity in human fibroblasts. We found a 3.8% residual ASM activity compared to the wild-type enzyme, without changes in the other parameters evaluated. These results support the hypothesis that the p.Ala359Asp mutation causes structural alterations in the hydrophobic environment where ASM is located, decreasing its enzymatic activity. A similar effect was observed in other previously described NPDB mutations located outside the active site of the enzyme. This work shows the first full size ASM mutant model describe at date, providing a complete analysis of the structural and functional effects of the p.Ala359Asp mutation over the stability and activity of the enzyme.
Collapse
Affiliation(s)
- Mariana Acuña
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Center of Genome Regulation (Fondap 15090007), Universidad de Chile, Santiago, Chile.
| | | | - Mauricio Latorre
- Center of Genome Regulation (Fondap 15090007), Universidad de Chile, Santiago, Chile; Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile; Mathomics, Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile
| | - Juan Castro
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Edward H Schuchman
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Victoria Guixé
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mauricio González
- Center of Genome Regulation (Fondap 15090007), Universidad de Chile, Santiago, Chile; Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile
| | - Silvana Zanlungo
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Center of Genome Regulation (Fondap 15090007), Universidad de Chile, Santiago, Chile.
| |
Collapse
|
6
|
Vadlamudi Y, Muthu K, M. SK. Structural exploration of acid sphingomyelinase at different physiological pH through molecular dynamics and docking studies. RSC Adv 2016. [DOI: 10.1039/c6ra16584b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acid sphingomyelinase (ASM) hydrolysis the sphingomyelin at physiological pH 5.0 and subsequently leads to ceramide production.
Collapse
Affiliation(s)
| | - Kannan Muthu
- Centre for Bioinformatics
- Pondicherry University
- Pondicherry 605014
- India
| | - Suresh Kumar M.
- Centre for Bioinformatics
- Pondicherry University
- Pondicherry 605014
- India
| |
Collapse
|
7
|
Zampieri S, Filocamo M, Pianta A, Lualdi S, Gort L, Coll MJ, Sinnott R, Geberhiwot T, Bembi B, Dardis A. SMPD1 Mutation Update: Database and Comprehensive Analysis of Published and Novel Variants. Hum Mutat 2015; 37:139-47. [PMID: 26499107 DOI: 10.1002/humu.22923] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/12/2015] [Indexed: 01/15/2023]
Abstract
Niemann-Pick Types A and B (NPA/B) diseases are autosomal recessive lysosomal storage disorders caused by the deficient activity of acid sphingomyelinase (ASM) because of the mutations in the SMPD1 gene. Here, we provide a comprehensive updated review of already reported and newly identified SMPD1 variants. Among them, 185 have been found in NPA/B patients. Disease-causing variants are equally distributed along the SMPD1 gene; most of them are missense (65.4%) or frameshift (19%) mutations. The most frequently reported mutation worldwide is the p.R610del, clearly associated with an attenuated NP disease type B phenotype. The available information about the impact of 52 SMPD1 variants on ASM mRNA and/or enzymatic activity has been collected and whenever possible, phenotype/genotype correlations were established. In addition, we created a locus-specific database easily accessible at http://www.inpdr.org/genes that catalogs the 417 SMPD1 variants reported to date and provides data on their in silico predicted effects on ASM protein function or mRNA splicing. The information reviewed in this article, providing new insights into the genotype/phenotype correlation, is extremely valuable to facilitate diagnosis and genetic counseling of families affected by NPA/B.
Collapse
Affiliation(s)
- Stefania Zampieri
- Regional Coordinator Centre for Rare Diseases, University Hospital Santa Maria della Misericordia, Udine, Italy
| | - Mirella Filocamo
- Centro di Diagnostica Genetica e Biochimica delle Malattie Metaboliche, Istituto G. Gaslini, Genova, Italy
| | - Annalisa Pianta
- Regional Coordinator Centre for Rare Diseases, University Hospital Santa Maria della Misericordia, Udine, Italy
| | - Susanna Lualdi
- Centro di Diagnostica Genetica e Biochimica delle Malattie Metaboliche, Istituto G. Gaslini, Genova, Italy
| | - Laura Gort
- Sección Errores Congénitos del Metabolismo-IBC, Serv Bioquímica y Genética Molecular, Hospital Clínic; IDIBAPS; CIBERER, Barcelona, Spain
| | - Maria Jose Coll
- Sección Errores Congénitos del Metabolismo-IBC, Serv Bioquímica y Genética Molecular, Hospital Clínic; IDIBAPS; CIBERER, Barcelona, Spain
| | - Richard Sinnott
- Department of Computing and Information Systems, University of Melbourne, Melbourne, Australia
| | | | - Bruno Bembi
- Regional Coordinator Centre for Rare Diseases, University Hospital Santa Maria della Misericordia, Udine, Italy
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, University Hospital Santa Maria della Misericordia, Udine, Italy
| |
Collapse
|
8
|
Heinz LX, Baumann CL, Köberlin MS, Snijder B, Gawish R, Shui G, Sharif O, Aspalter IM, Müller AC, Kandasamy RK, Breitwieser FP, Pichlmair A, Bruckner M, Rebsamen M, Blüml S, Karonitsch T, Fauster A, Colinge J, Bennett KL, Knapp S, Wenk MR, Superti-Furga G. The Lipid-Modifying Enzyme SMPDL3B Negatively Regulates Innate Immunity. Cell Rep 2015; 11:1919-28. [PMID: 26095358 PMCID: PMC4508342 DOI: 10.1016/j.celrep.2015.05.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/23/2015] [Accepted: 05/01/2015] [Indexed: 12/26/2022] Open
Abstract
Lipid metabolism and receptor-mediated signaling are highly intertwined processes that cooperate to fulfill cellular functions and safeguard cellular homeostasis. Activation of Toll-like receptors (TLRs) leads to a complex cellular response, orchestrating a diverse range of inflammatory events that need to be tightly controlled. Here, we identified the GPI-anchored Sphingomyelin Phosphodiesterase, Acid-Like 3B (SMPDL3B) in a mass spectrometry screening campaign for membrane proteins co-purifying with TLRs. Deficiency of Smpdl3b in macrophages enhanced responsiveness to TLR stimulation and profoundly changed the cellular lipid composition and membrane fluidity. Increased cellular responses could be reverted by re-introducing affected ceramides, functionally linking membrane lipid composition and innate immune signaling. Finally, Smpdl3b-deficient mice displayed an intensified inflammatory response in TLR-dependent peritonitis models, establishing its negative regulatory role in vivo. Taken together, our results identify the membrane-modulating enzyme SMPDL3B as a negative regulator of TLR signaling that functions at the interface of membrane biology and innate immunity. Identification of SMPDL3B as lipid-modulating phosphodiesterase on macrophages Negative regulatory role for SMPDL3B in Toll-like receptor function Strong influence of SMPDL3B on membrane lipid composition and fluidity Smpdl3b-deficient mice show enhanced responsiveness in TLR-dependent peritonitis
Collapse
Affiliation(s)
- Leonhard X Heinz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Christoph L Baumann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Marielle S Köberlin
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Berend Snijder
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Riem Gawish
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Omar Sharif
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Irene M Aspalter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - André C Müller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Richard K Kandasamy
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Florian P Breitwieser
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Andreas Pichlmair
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Manuela Bruckner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Manuele Rebsamen
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Stephan Blüml
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Division of Rheumatology, Department of Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Karonitsch
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Astrid Fauster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Jacques Colinge
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Sylvia Knapp
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus R Wenk
- Department of Biochemistry and Department of Biological Sciences, National University of Singapore, Singapore 117456, Singapore; Swiss Tropical and Public Health Institute, University of Basel, 4003 Basel, Switzerland
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
9
|
Epidemiological, clinical and biochemical characterization of the p.(Ala359Asp) SMPD1 variant causing Niemann-Pick disease type B. Eur J Hum Genet 2015; 24:208-13. [PMID: 25920558 DOI: 10.1038/ejhg.2015.89] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/19/2015] [Accepted: 03/25/2015] [Indexed: 02/07/2023] Open
Abstract
Niemann-Pick disease type B (NPDB) is a rare, inherited lysosomal storage disorder that occurs due to variants in the sphingomyelin phosphodiesterase 1 (SMPD1) gene and the resultant deficiency of acid sphingomyelinase (ASM) activity. While numerous variants causing NPDB have been described, only a small number have been studied in any detail. Herein, we describe the frequency of the p.(Ala359Asp) variant in the healthy Chilean population, and determine the haplotype background of homozygous patients to establish if this variant originated from a common founder. Genomic DNA samples from 1691 healthy individuals were analyzed for the p.(Ala359Asp) variant. The frequency of p.(Ala359Asp) was found to be 1/105.7, predicting a disease incidence of 1/44 960 in Chile, higher than the incidence estimated by the number of confirmed NPDB cases. We also describe the clinical characteristics of 13 patients homozygous for p.(Ala359Asp) and all of them had moderate to severe NPDB disease. In addition, a conserved haplotype and shared 280 Kb region around the SMPD1 gene was observed in the patients analyzed, indicating that the variant originated from a common ancestor. The haplotype frequency and mitochondrial DNA analysis suggest an Amerindian origin for the variant. To assess the effect of the p.(Ala359Asp) variant, we transfected cells with the ASM-p.(Ala359Asp) cDNA and the activity was only 4.2% compared with the wild-type cDNA, definitively demonstrating the causative effect of the variant on ASM function. Information on common variants such as p.(Ala359Asp) is essential to guide the successful implementation for future therapies and benefit to patients.
Collapse
|
10
|
Traini M, Quinn CM, Sandoval C, Johansson E, Schroder K, Kockx M, Meikle PJ, Jessup W, Kritharides L. Sphingomyelin phosphodiesterase acid-like 3A (SMPDL3A) is a novel nucleotide phosphodiesterase regulated by cholesterol in human macrophages. J Biol Chem 2014; 289:32895-913. [PMID: 25288789 DOI: 10.1074/jbc.m114.612341] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cholesterol-loaded foam cell macrophages are prominent in atherosclerotic lesions and play complex roles in both inflammatory signaling and lipid metabolism, which are underpinned by large scale reprogramming of gene expression. We performed a microarray study of primary human macrophages that showed that transcription of the sphingomyelin phosphodiesterase acid-like 3A (SMPDL3A) gene is up-regulated after cholesterol loading. SMPDL3A protein expression in and secretion from primary macrophages are stimulated by cholesterol loading, liver X receptor ligands, and cyclic AMP, and N-glycosylated SMPDL3A protein is detectable in circulating blood. We demonstrate for the first time that SMPDL3A is a functional phosphodiesterase with an acidic pH optimum. We provide evidence that SMPDL3A is not an acid sphingomyelinase but unexpectedly is active against nucleotide diphosphate and triphosphate substrates at acidic and neutral pH. SMPDL3A is a major source of nucleotide phosphodiesterase activity secreted by liver X receptor-stimulated human macrophages. Extracellular nucleotides such as ATP may activate pro-inflammatory responses in immune cells. Increased expression and secretion of SMPDL3A by cholesterol-loaded macrophage foam cells in lesions may decrease local concentrations of pro-inflammatory nucleotides and potentially represent a novel anti-inflammatory axis linking lipid metabolism with purinergic signaling in atherosclerosis.
Collapse
Affiliation(s)
- Mathew Traini
- From the Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales 2139,
| | - Carmel M Quinn
- the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052
| | - Cecilia Sandoval
- the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052
| | - Erik Johansson
- From the Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales 2139
| | - Kate Schroder
- the Institute for Molecular Bioscience, University of Queensland, Queensland 4072
| | - Maaike Kockx
- From the Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales 2139
| | - Peter J Meikle
- the Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, and
| | - Wendy Jessup
- From the Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales 2139
| | - Leonard Kritharides
- From the Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales 2139, the Department of Cardiology, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia
| |
Collapse
|
11
|
Kornhuber J, Tripal P, Gulbins E, Muehlbacher M. Functional inhibitors of acid sphingomyelinase (FIASMAs). Handb Exp Pharmacol 2013:169-186. [PMID: 23579455 DOI: 10.1007/978-3-7091-1368-4_9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Sphingolipids are not only structural components of biological membranes, but also play an important role in cellular signalling and, thus, are involved in cell proliferation and differentiation but also stress and cell death. It is therefore of great clinical relevance to define inhibitors of the enzymes involved in sphingolipid metabolism. Here, we describe the state of the art of functional inhibitors of the acid sphingomyelinase. The acid sphingomyelinase converts sphingomyelin to ceramide, a compound often involved in cell stress. We describe the structural and physicochemical properties, the distribution, the pharmacokinetics, the pharmocodynamics and the clinical use of direct and functional inhibitors of the acid sphingomyelinase.
Collapse
Affiliation(s)
- Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen, Schwabachanlage 6, D 91054 Erlangen, Germany.
| | | | | | | |
Collapse
|
12
|
Jenkins RW, Canals D, Idkowiak-Baldys J, Simbari F, Roddy P, Perry DM, Kitatani K, Luberto C, Hannun YA. Regulated secretion of acid sphingomyelinase: implications for selectivity of ceramide formation. J Biol Chem 2010; 285:35706-18. [PMID: 20807762 DOI: 10.1074/jbc.m110.125609] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The acid sphingomyelinase (aSMase) gene gives rise to two distinct enzymes, lysosomal sphingomyelinase (L-SMase) and secretory sphingomyelinase (S-SMase), via differential trafficking of a common protein precursor. However, the regulation of S-SMase and its role in cytokine-induced ceramide formation remain ill defined. To determine the role of S-SMase in cellular sphingolipid metabolism, MCF7 breast carcinoma cells stably transfected with V5-aSMase(WT) were treated with inflammatory cytokines. Interleukin-1β and tumor necrosis factor-α induced a time- and dose-dependent increase in S-SMase secretion and activity, coincident with selective elevations in cellular C(16)-ceramide. To establish a role for S-SMase, we utilized a mutant of aSMase (S508A) that is shown to retain L-SMase activity, but is defective in secretion. MCF7 expressing V5-aSMase(WT) exhibited increased S-SMase and L-SMase activity, as well as elevated cellular levels of specific long-chain and very long-chain ceramide species relative to vector control MCF7. Interestingly, elevated levels of only certain very long-chain ceramides were evident in V5-aSMase(S508A) MCF7. Secretion of the S508A mutant was also defective in response to IL-1β, as was the regulated generation of C(16)-ceramide. Taken together, these data support a crucial role for Ser(508) in the regulation of S-SMase secretion, and they suggest distinct metabolic roles for S-SMase and L-SMase.
Collapse
Affiliation(s)
- Russell W Jenkins
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kang TS, Stevens RC. Structural aspects of therapeutic enzymes to treat metabolic disorders. Hum Mutat 2010; 30:1591-610. [PMID: 19790257 DOI: 10.1002/humu.21111] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein therapeutics represents a niche subset of pharmacological agents that is rapidly gaining importance in medicine. In addition to the exceptional specificity that is characteristic of protein therapeutics, several classes of proteins have also been effectively utilized for treatment of conditions that would otherwise lack effective pharmacotherapeutic options. A particularly striking class of protein therapeutics is exogenous enzymes administered for replacement therapy in patients afflicted with metabolic disorders. To date, at least 11 enzymes have either been approved for use, or are in clinical trials for the treatment of selected inherited metabolic disorders. With the recent advancement in structural biology, a significantly larger amount of structural information for several of these enzymes is now available. This article is an overview of the correlation between structural perturbations of these enzymes with the clinical presentation of the respective metabolic conditions, as well as a discussion of the relevant structural modification strategies engaged in improving these enzymes for replacement therapies.
Collapse
Affiliation(s)
- Tse Siang Kang
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
14
|
Roth A, Drescher D, Yang Y, Redmer S, Uhlig S, Arenz C. Potente und selektive Inhibition der sauren Sphingomyelinase durch Bisphosphonate. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200903288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Roth A, Drescher D, Yang Y, Redmer S, Uhlig S, Arenz C. Potent and Selective Inhibition of Acid Sphingomyelinase by Bisphosphonates. Angew Chem Int Ed Engl 2009; 48:7560-3. [DOI: 10.1002/anie.200903288] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Sharma P, Kar R, Dutta S, Pati HP, Saxena R. Niemann-Pick disease, type B with TRAP-positive storage cells and secondary sea blue histiocytosis. Eur J Histochem 2009; 53:e22. [PMID: 19864213 PMCID: PMC3168231 DOI: 10.4081/ejh.2009.e22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 06/05/2009] [Indexed: 11/23/2022] Open
Abstract
We present 2 cases of Niemann Pick disease, type B with secondary sea-blue histiocytosis. Strikingly, in both cases the Pick cells were positive for tartrate resistant acid phosphatase, a finding hitherto described only in Gaucher cells. This report highlights the importance of this finding as a potential cytochemical diagnostic pitfall in the diagnosis of Niemann Pick disease.
Collapse
Affiliation(s)
- P Sharma
- Haematology Department, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.
| | | | | | | | | |
Collapse
|
17
|
Lan MY, Lin SJ, Chen YF, Peng CH, Liu YF. A novel missense mutation of the SMPD1 gene in a Taiwanese patient with type B Niemann-Pick disease. Ann Hematol 2008; 88:695-7. [PMID: 19050888 DOI: 10.1007/s00277-008-0648-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 11/12/2008] [Indexed: 10/21/2022]
|
18
|
Jones I, He X, Katouzian F, Darroch PI, Schuchman EH. Characterization of common SMPD1 mutations causing types A and B Niemann-Pick disease and generation of mutation-specific mouse models. Mol Genet Metab 2008; 95:152-62. [PMID: 18815062 PMCID: PMC2621017 DOI: 10.1016/j.ymgme.2008.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 08/13/2008] [Indexed: 11/18/2022]
Abstract
Herein we describe detailed characterization of four common mutations (L302P, H421Y, R496L and DeltaR608) within the acid sphingomyelinase (ASM) gene causing types A and B Niemann-Pick disease (NPD). In vitro and in situ enzyme assays revealed marked deficiencies of ASM activity in NPD cell lines homoallelic for each mutation, although Western blotting and fluorescent microscopy showed that the mutant ASM polypeptides were expressed at normal levels and trafficked to lysosomes. Co-immunoprecipitation of the polypeptides with the ER chaperone, BiP, confirmed these findings, as did in vitro expression of the mutant cDNAs in reticulocyte lysates. We further developed a computer assisted, three-dimensional model of human ASM based on homologies to known proteins, and used this model to map each NPD mutation in relation to putative substrate binding, hydrolysis and zinc-binding domains. Lastly, we generated transgenic mice expressing the R496L and DeltaR608 mutations on the complete ASM knock-out background (ASMKO), and established breeding colonies for the future evaluation of enzyme enhancement therapies. Analysis of these mice demonstrated that the mutant ASM transgenes were expressed at high levels in the brain, and in the case of the DeltaR608 mutation, produced residual ASM activity that was significantly above the ASMKO background.
Collapse
Affiliation(s)
- Iwan Jones
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | - Xingxuan He
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | - Fourogh Katouzian
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | - Peter I. Darroch
- Wound Management, Smith and Nephew Healthcare Ltd., Healthcare House, Goulton Street, Hull, HU3 4DJ, United Kingdom
| | - Edward H. Schuchman
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| |
Collapse
|
19
|
Abstract
Pharmacological interference with sphingolipid metabolizing enzymes promises to provide novel ways to modulate cellular pathways relevant in multiple diseases. In this review, we focus on two sphingolipid signaling molecules, sphingosine-1-phosphate (S1P) and ceramide, as they are involved in cell fate decisions (survival vs. apoptosis) and in a wide range of pathophysiological processes. For S1P, we will discuss sphingosine kinases and S1P lyase as the enzymes which are crucial for its production and degradation, respectively, emphasizing the potential therapeutic usefulness of inhibitors of these enzymes. For ceramide, we will concentrate on acid sphingomyelinase, and critically review the substantial literature which implicates this enzyme as a worthwhile target for pharmacological inhibitors. It will become clear that the task to validate these enzymes as drug targets is not finished and many questions regarding the therapeutic usefulness of their inhibitors remain unanswered. Still this approach holds promise for a number of totally new therapies, and, on the way, detailed insight into sphingolipid signaling pathways can be gained.
Collapse
Affiliation(s)
- Andreas Billich
- Novartis Institutes for BioMedical Research, Brunnerstrasse 59, A-1235 Vienna, Austria
| | | |
Collapse
|
20
|
Lee CY, Tamura T, Rabah N, Lee DYD, Ruel I, Hafiane A, Iatan I, Nyholt D, Laporte F, Lazure C, Wada I, Krimbou L, Genest J. Carboxyl-terminal disulfide bond of acid sphingomyelinase is critical for its secretion and enzymatic function. Biochemistry 2007; 46:14969-78. [PMID: 18052040 DOI: 10.1021/bi700817g] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human acid sphingomyelinase (ASM, EC 3.1.4.12), a lysosomal and secretory protein coded by the sphingomyelin phosphodiesterase 1 (SMPD-1) gene, catalyzes the degradation of sphingomyelin (SM) to ceramide and phosphorylcholine. We examined the structural-functional properties of its carboxyl-terminus (amino acids 462-629), which harbors approximately 1/3 of all mutations discovered in the SMPD-1 gene. We created four naturally occurring mutants (DeltaR608, R496L, G577A, and Y537H) and five serial carboxyl-terminal deletion mutants (N620, N590, N570, N510, and N490). Transient transfection of the His/V5-tagged wild-type and mutant recombinant ASM in Chinese hamster ovary cells showed that all the mutants were normally expressed. Nonetheless, none of them, except the smallest deletion mutant N620 that preserved all post-translational modifications, were found capable of secretion to the medium. Furthermore, only the N620 conserved functional integrity (100% activity of the wild type); all other mutants completely lost the ability to catalyze SM hydrolysis. Importantly, cell surface biotinylation revealed that mutant DeltaR608 transfected CHO cells and fibroblasts from a compound heterozygous Niemann-Pick disease type B (NPD-B) patient (DeltaR608 and R441X) have defective translocation to the plasma membrane. Furthermore, we demonstrated that the DeltaR608 and N590 were trapped in the endoplasmic reticulum (ER) quality control checkpoint in contrast to the wild-type lysosomal localization. Interestingly, while the steady-state levels of ubiquitination were minimal for the wild-type ASM, a significant amount of Lys63-linked polyubiquitinated DeltaR608 and N590 could be purified by S5a-affinity chromatography, indicating an important misfolding in the carboxyl-terminal mutants. Altogether, we provide evidence that the carboxyl-terminus of the ASM is crucial for its protein structure, which in turns dictates the enzymatic function and secretion.
Collapse
Affiliation(s)
- Ching Yin Lee
- Cardiovascular Genetics Laboratory, Cardiology Division, McGill University Health Center/Royal Victoria Hospital, Montréal, Québec H3A 1A1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Huseby M, Shi K, Brown CK, Digre J, Mengistu F, Seo KS, Bohach GA, Schlievert PM, Ohlendorf DH, Earhart CA. Structure and biological activities of beta toxin from Staphylococcus aureus. J Bacteriol 2007; 189:8719-26. [PMID: 17873030 PMCID: PMC2168928 DOI: 10.1128/jb.00741-07] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Beta toxin is a neutral sphingomyelinase secreted by certain strains of Staphylococcus aureus. This virulence factor lyses erythrocytes in order to evade the host immune system as well as scavenge nutrients. The structure of beta toxin was determined at 2.4-A resolution using crystals that were merohedrally twinned. This structure is similar to that of the sphingomyelinases of Listeria ivanovii and Bacillus cereus. Beta toxin belongs to the DNase I folding superfamily; in addition to sphingomyelinases, the proteins most structurally related to beta toxin include human endonuclease HAP1, Escherichia coli endonuclease III, bovine pancreatic DNase I, and the endonuclease domain of TRAS1 from Bombyx mori. Our biological assays demonstrated for the first time that beta toxin kills proliferating human lymphocytes. Structure-directed active site mutations show that biological activities, including hemolysis and lymphotoxicity, are due to the sphingomyelinase activity of the enzyme.
Collapse
Affiliation(s)
- Medora Huseby
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|