1
|
Huang Y, Li B, Wu Z, Liu K, Min J. Inhibitors targeting the PWWP domain-containing proteins. Eur J Med Chem 2024; 280:116965. [PMID: 39413441 DOI: 10.1016/j.ejmech.2024.116965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
PWWP domain-containing proteins play a pivotal role in chromatin-mediated biological processes, and their aberrant regulation is linked to various human diseases. Recent years have witnessed remarkable strides in unraveling the structural and functional features of PWWP domain-containing proteins, propelling significant advances in targeting the PWWP domain-containing proteins for drug discovery purposes. Several drugs have already been approved, while others are currently in clinical trials. This review offers a comprehensive overview of the latest developments on PWWP domain-containing proteins, including their structural characteristics and biological significance. It also provides detailed insights into the drug discovery process targeting these proteins, including screening, design, and structural optimization.
Collapse
Affiliation(s)
- Yunyuan Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Boyi Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Zhibin Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Wu JK, Lee YY, Hung H, Chang YP, Tai MH, Fan HF. Binding Behavior of Human Hepatoma-Derived Growth Factor on SMYD1. J Phys Chem B 2024; 128:7722-7735. [PMID: 39091133 PMCID: PMC11331505 DOI: 10.1021/acs.jpcb.4c01854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
The protein-induced fluorescence change technique was employed to investigate the interactions between proteins and their DNA substrates modified with the Cy3 fluorophore. It has been reported that the human hepatoma-derived growth factor (HDGF), containing the chromatin-associated N-terminal proline-tryptophan-tryptophan-proline (PWWP) domain (the N-terminal 100 amino acids of HDGF) capable of binding the SMYD1 promoter, participates in various cellular processes and is involved in human cancer. This project investigated the specific binding behavior of HDGF, the PWWP domain, and the C140 domain (the C-terminal 140 amino acids of HDGF) sequentially using protein-induced fluorescence change. We found that the binding of HDGF and its related proteins on Cy3-labeled 15 bp SMYD1 dsDNA will cause a significant decrease in the recorded Cy3 fluorophore intensity, indicating the occurrence of protein-induced fluorescence quenching. The dissociation equilibrium constant was determined by fitting the bound fraction curve to a binding model. An approximate 10-time weaker SMYD1 binding affinity of the PWWP domain was found in comparison to HDGF. Moreover, the PWWP domain is required for DNA binding, and the C140 domain can enhance the DNA binding affinity. Furthermore, we found that the C140 domain can regulate the sequence-specific binding capability of HDGF on SMYD1.
Collapse
Affiliation(s)
- Jan-Kai Wu
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 80424, Taiwan
| | - Ying-ying Lee
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 80424, Taiwan
| | - Hsin Hung
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 80424, Taiwan
| | - Yuan-Ping Chang
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 80424, Taiwan
| | - Ming-Hong Tai
- Institute
of Biomedical Science, National Sun Yat-sen
University, Kaohsiung 80424, Taiwan
| | - Hsiu-Fang Fan
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 80424, Taiwan
| |
Collapse
|
3
|
Wen H, Shi X. Histone Readers and Their Roles in Cancer. Cancer Treat Res 2023; 190:245-272. [PMID: 38113004 PMCID: PMC11395558 DOI: 10.1007/978-3-031-45654-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Histone proteins in eukaryotic cells are subjected to a wide variety of post-translational modifications, which are known to play an important role in the partitioning of the genome into distinctive compartments and domains. One of the major functions of histone modifications is to recruit reader proteins, which recognize the epigenetic marks and transduce the molecular signals in chromatin to downstream effects. Histone readers are defined protein domains with well-organized three-dimensional structures. In this Chapter, we will outline major histone readers, delineate their biochemical and structural features in histone recognition, and describe how dysregulation of histone readout leads to human cancer.
Collapse
Affiliation(s)
- Hong Wen
- Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA
| | - Xiaobing Shi
- Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
4
|
Li J, Bergmann L, Rafael de Almeida A, Webb KM, Gogol M, Voigt P, Liu Y, Liang H, Smolle M. H3K36 methylation and DNA-binding both promote Ioc4 recruitment and Isw1b remodeler function. Nucleic Acids Res 2022; 50:2549-2565. [PMID: 35188579 PMCID: PMC8934638 DOI: 10.1093/nar/gkac077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 01/20/2022] [Accepted: 02/15/2022] [Indexed: 11/23/2022] Open
Abstract
The Isw1b chromatin-remodeling complex is specifically recruited to gene bodies to help retain pre-existing histones during transcription by RNA polymerase II. Recruitment is dependent on H3K36 methylation and the Isw1b subunit Ioc4, which contains an N-terminal PWWP domain. Here, we present the crystal structure of the Ioc4-PWWP domain, including a detailed functional characterization of the domain on its own as well as in the context of full-length Ioc4 and the Isw1b remodeler. The Ioc4-PWWP domain preferentially binds H3K36me3-containing nucleosomes. Its ability to bind DNA is required for nucleosome binding. It is also furthered by the unique insertion motif present in Ioc4-PWWP. The ability to bind H3K36me3 and DNA promotes the interaction of full-length Ioc4 with nucleosomes in vitro and they are necessary for its recruitment to gene bodies in vivo. Furthermore, a fully functional Ioc4-PWWP domain promotes efficient remodeling by Isw1b and the maintenance of ordered chromatin in vivo, thereby preventing the production of non-coding RNAs.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Lena Bergmann
- Physiological Chemistry, Biomedical Center, Medical Faculty, Ludwig-Maximilian-University Munich, Grosshaderner Str. 9, 82152 Martinsried-Planegg, Germany
| | - Andreia Rafael de Almeida
- Physiological Chemistry, Biomedical Center, Medical Faculty, Ludwig-Maximilian-University Munich, Grosshaderner Str. 9, 82152 Martinsried-Planegg, Germany
| | - Kimberly M Webb
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Madelaine M Gogol
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO 64110, USA
| | - Philipp Voigt
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Yingfang Liu
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
- School of Medicine, Sun Yat-Sen University, Guangzhou 510275, China
| | - Huanhuan Liang
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
- Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Michaela M Smolle
- Physiological Chemistry, Biomedical Center, Medical Faculty, Ludwig-Maximilian-University Munich, Grosshaderner Str. 9, 82152 Martinsried-Planegg, Germany
- BioPhysics Core Facility, Biomedical Center, Medical Faculty, Ludwig-Maximilian-University Munich, Grosshaderner Str. 9, 82152 Martinsried-Planegg, Germany
| |
Collapse
|
5
|
Yun HS, Lee J, Kim JY, Sim YJ, Lee CW, Park JK, Kim JS, Ahn J, Song JY, Baek JH, Hwang SG. A novel function of HRP-3 in regulating cell cycle progression via the HDAC-E2F1-Cyclin E pathway in lung cancer. Cancer Sci 2021; 113:145-155. [PMID: 34714604 PMCID: PMC8748221 DOI: 10.1111/cas.15183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022] Open
Abstract
To improve the poor survival rate of lung cancer patients, we investigated the role of HDGF‐related protein 3 (HRP‐3) as a potential biomarker for lung cancer. The expression of endogenous HRP‐3 in human lung cancer tissues and xenograft tumor models is indicative of its clinical relevance in lung cancer. Additionally, we demonstrated that HRP‐3 directly binds to the E2F1 promoter on chromatin. Interestingly, HRP‐3 depletion in A549 cells impedes the binding of HRP‐3 to the E2F1 promoter; this in turn hampers the interaction between Histone H3/H4 and HDAC1/2 on the E2F1 promoter, while concomitantly inducing Histone H3/H4 acetylation around the E2F1 promoter. The enhanced Histone H3/H4 acetylation on the E2F1 promoter through HRP‐3 depletion increases the transcription level of E2F1. Furthermore, the increased E2F1 transcription levels lead to the enhanced transcription of Cyclin E, known as the E2F1‐responsive gene, thus inducing S‐phase accumulation. Therefore, our study provides evidence for the utility of HRP‐3 as a biomarker for the prognosis and treatment of lung cancer. Furthermore, we delineated the capacity of HRP‐3 to regulate the E2F1 transcription level via histone deacetylation.
Collapse
Affiliation(s)
- Hong Shik Yun
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Janet Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Ju-Young Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Ye-Ji Sim
- Radiation Biology Research Team, Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jong Kuk Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Jae-Sung Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Jiyeon Ahn
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Jie-Young Song
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Jeong-Hwa Baek
- Radiation Biology Research Team, Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, Korea
| | - Sang-Gu Hwang
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| |
Collapse
|
6
|
Zhang M, Lei M, Qin S, Dong A, Yang A, Li Y, Loppnau P, Hughes TR, Min J, Liu Y. Crystal structure of the BRPF2 PWWP domain in complex with DNA reveals a different binding mode than the HDGF family of PWWP domains. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194688. [PMID: 33556623 DOI: 10.1016/j.bbagrm.2021.194688] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 01/22/2023]
Abstract
The PWWP domain was first identified in the HDGF protein family and named after the conserved Proline-Tryptophan-Tryptophan-Proline motif in WHSC1. The PWWP domain-containing proteins play important roles in different biological processes, such as DNA replication, transcription, DNA repair, pre-mRNA processing by recognizing methylated histone and dsDNA simultaneously. Recently, how the HDGF family of PWWP domains recognize histone H3K36me3-modified nucleosome has been reported. In order to better understand the interactions between the PWWP domain and dsDNA, we carried out family-wide characterization of dsDNA binding abilities of human PWWP domains. Our binding assays confirmed that PWWP domains bind to dsDNA without sequence selectivity. Our crystal structure of the BRPF2 PWWP domain in complex with a 12-mer dsDNA reveals that the PWWP domain interacts with dsDNA by binding to its major groove, instead of the minor groove observed in the HDGF family of PWWP domains. Our study indicates that PWWP domains could bind to dsDNA in different modes.
Collapse
Affiliation(s)
- Mengmeng Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ming Lei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Su Qin
- Life Science Research Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Ally Yang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Yanjun Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Timothy R Hughes
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China; Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| | - Yanli Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
7
|
Tian W, Yan P, Xu N, Chakravorty A, Liefke R, Xi Q, Wang Z. The HRP3 PWWP domain recognizes the minor groove of double-stranded DNA and recruits HRP3 to chromatin. Nucleic Acids Res 2019; 47:5436-5448. [PMID: 31162607 PMCID: PMC6547440 DOI: 10.1093/nar/gkz294] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022] Open
Abstract
HDGF-related protein 3 (HRP3, also known as HDGFL3) belongs to the family of HDGF-related proteins (HRPs) and plays an essential role in hepatocellular carcinoma pathogenesis. All HRPs have a PWWP domain at the N-terminus that binds both histone and DNA substrates. Despite previous advances in PWWP domains, the molecular basis by which HRP3 interacts with chromatin is unclear. In this study, we solved the crystal structures of the HRP3 PWWP domain in complex with various double-stranded DNAs with/without bound histone peptides. We found that HRP3 PWWP bound to the phosphate backbone of the DNA minor groove and showed a preference for DNA molecules bearing a narrow minor groove width. In addition, HRP3 PWWP preferentially bound to histone peptides bearing the H3K36me3/2 modification. HRP3 PWWP uses two adjacent surfaces to bind both DNA and histone substrates simultaneously, enabling us to generate a model illustrating the recruitment of PWWP to H3K36me3-containing nucleosomes. Cell-based analysis indicated that both DNA and histone binding by the HRP3 PWWP domain is important for HRP3 recruitment to chromatin in vivo. Our work establishes that HRP3 PWWP is a new family of minor groove-specific DNA-binding proteins, which improves our understanding of HRP3 and other PWWP domain-containing proteins.
Collapse
Affiliation(s)
- Wei Tian
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| | - Peiqiang Yan
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ning Xu
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Arghya Chakravorty
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Robert Liefke
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg, 35043 Marburg, Germany
| | - Qiaoran Xi
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhanxin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| |
Collapse
|
8
|
Weaver TM, Morrison EA, Musselman CA. Reading More than Histones: The Prevalence of Nucleic Acid Binding among Reader Domains. Molecules 2018; 23:molecules23102614. [PMID: 30322003 PMCID: PMC6222470 DOI: 10.3390/molecules23102614] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 01/09/2023] Open
Abstract
The eukaryotic genome is packaged into the cell nucleus in the form of chromatin, a complex of genomic DNA and histone proteins. Chromatin structure regulation is critical for all DNA templated processes and involves, among many things, extensive post-translational modification of the histone proteins. These modifications can be “read out” by histone binding subdomains known as histone reader domains. A large number of reader domains have been identified and found to selectively recognize an array of histone post-translational modifications in order to target, retain, or regulate chromatin-modifying and remodeling complexes at their substrates. Interestingly, an increasing number of these histone reader domains are being identified as also harboring nucleic acid binding activity. In this review, we present a summary of the histone reader domains currently known to bind nucleic acids, with a focus on the molecular mechanisms of binding and the interplay between DNA and histone recognition. Additionally, we highlight the functional implications of nucleic acid binding in chromatin association and regulation. We propose that nucleic acid binding is as functionally important as histone binding, and that a significant portion of the as yet untested reader domains will emerge to have nucleic acid binding capabilities.
Collapse
Affiliation(s)
- Tyler M Weaver
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Emma A Morrison
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Catherine A Musselman
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
9
|
Khanal N, Gaye MM, Clemmer DE. Multiple solution structures of the disordered peptide indolicidin from IMS-MS analysis. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2018; 427:52-58. [PMID: 30906201 PMCID: PMC6426319 DOI: 10.1016/j.ijms.2017.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The solution-favored conformations of the 13-residue disordered peptide, indolicidin (Ile1-Leu2-Pro3-Trp4-Lys5-Trp6-Pro7-Trp8-Trp9-Pro10-Trp11-Arg12-Arg13), are evaluated using electrospray ionization (ESI) coupled to ion mobility spectrometry-mass spectrometry (IMS-MS). The ESI-IMS-MS distributions for the dominant [M+4H]4+ ions indicate that three populations of structures coexist in a range of aqueous to non-aqueous solutions (water:dioxane, water:trifluoroethanol, and water:hexafluoroisopropanol). Conformer types and their relative abundances change in response to different solution environments suggesting that the gas phase conformers reflect on the solution populations present in different solvent environments. Collisional activation of isolated gas phase conformations with IMS-IMS-MS experiments provides additional insight about the relative stabilities of different structural types in the absence of solvent. Simulated annealing studies suggest that proline configuration may be important for the presence of multiple conformations.
Collapse
|
10
|
Li J, Duns G, Westers H, Sijmons R, van den Berg A, Kok K. SETD2: an epigenetic modifier with tumor suppressor functionality. Oncotarget 2018; 7:50719-50734. [PMID: 27191891 PMCID: PMC5226616 DOI: 10.18632/oncotarget.9368] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/05/2016] [Indexed: 11/25/2022] Open
Abstract
In the past decade important progress has been made in our understanding of the epigenetic regulatory machinery. It has become clear that genetic aberrations in multiple epigenetic modifier proteins are associated with various types of cancer. Moreover, targeting the epigenome has emerged as a novel tool to treat cancer patients. Recently, the first drugs have been reported that specifically target SETD2-negative tumors. In this review we discuss the studies on the associated protein, Set domain containing 2 (SETD2), a histone modifier for which mutations have only recently been associated with cancer development. Our review starts with the structural characteristics of SETD2 and extends to its corresponding function by combining studies on SETD2 function in yeast, Drosophila, Caenorhabditis elegans, mice, and humans. SETD2 is now generally known as the single human gene responsible for trimethylation of lysine 36 of Histone H3 (H3K36). H3K36me3 readers that recruit protein complexes to carry out specific processes, including transcription elongation, RNA processing, and DNA repair, determine the impact of this histone modification. Finally, we describe the prevalence of SETD2-inactivating mutations in cancer, with the highest frequency in clear cell Renal Cell Cancer, and explore how SETD2-inactivation might contribute to tumor development.
Collapse
Affiliation(s)
- Jun Li
- Department of Genetics, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Gerben Duns
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, Canada
| | - Helga Westers
- Department of Genetics, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Rolf Sijmons
- Department of Genetics, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Klaas Kok
- Department of Genetics, University of Groningen, University Medical Center Groningen, The Netherlands
| |
Collapse
|
11
|
Chen LY, Huang YC, Huang ST, Hsieh YC, Guan HH, Chen NC, Chuankhayan P, Yoshimura M, Tai MH, Chen CJ. Domain swapping and SMYD1 interactions with the PWWP domain of human hepatoma-derived growth factor. Sci Rep 2018; 8:287. [PMID: 29321480 PMCID: PMC5762634 DOI: 10.1038/s41598-017-18510-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/13/2017] [Indexed: 12/14/2022] Open
Abstract
The human hepatoma-derived growth factor (HDGF), containing the chromatin-associated N-terminal PWWP domain capable of binding the SMYD1 promoter, participates in various cellular processes and is involved in human cancers. We report the first crystal structures of the human HDGF PWWP domain (residues 1–100) in a complex with SMYD1 of 10 bp at 2.84 Å resolution and its apo form at 3.3 Å, respectively. The structure of the apo PWWP domain comprises mainly four β-strands and two α-helices. The PWWP domain undergoes domain swapping to dramatically transform its secondary structures, altering the overall conformation from monomeric globular folding into an extended dimeric structure upon DNA binding. The flexible loop2, as a hinge loop with the partially built structure in the apo PWWP domain, notably refolds into a visible and stable α-helix in the DNA complex. The swapped PWWP domain interacts with the minor grooves of the DNA through residues Lys19, Gly22, Arg79 and Lys80 in varied ways on loops 1 and 4 of the two chains, and the structure becomes more rigid than the apo form. These novel structural findings, together with physiological and activity assays of HDGF and the PWWP domain, provide new insights into the DNA-binding mechanism of HDGF during nucleosomal functions.
Collapse
Affiliation(s)
- Li-Ying Chen
- Institute of Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan.,Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan.,Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Yen-Chieh Huang
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Shih-Tsung Huang
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.,Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yin-Cheng Hsieh
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Hong-Hsiang Guan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Nai-Chi Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Phimonphan Chuankhayan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Masato Yoshimura
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Ming-Hong Tai
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
| | - Chun-Jung Chen
- Institute of Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan. .,Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan. .,Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan. .,Department of Physics, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
12
|
Yang J, Nies MK, Fu Z, Damico R, Korley FK, Hassoun PM, Ivy DD, Austin ED, Everett AD. Hepatoma-derived Growth Factor Predicts Disease Severity and Survival in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2017; 194:1264-1272. [PMID: 27254543 DOI: 10.1164/rccm.201512-2498oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
RATIONALE Pulmonary arterial hypertension (PAH) is a fatal disease, and pulmonary microvascular remodeling is an important contributor to PAH development. Therefore, we hypothesized that a circulating angiogenic factor could predict disease severity and survival. OBJECTIVES We sought to assess the relationship of serum hepatoma-derived growth factor (HDGF) with PAH disease severity and survival. METHODS Using a newly developed enzyme-linked immunosorbent assay, we evaluated circulating HDGF levels in two independent PAH cohorts and two different characterized control cohorts. Clinical and laboratory data were also used to assess the value of HDGF as a PAH prognostic biomarker. MEASUREMENTS AND MAIN RESULTS Serum HDGF levels were significantly elevated in two independent PAH cohorts. Importantly, serum HDGF levels were not elevated in a noncardiac chronic disease cohort. Further, patients with elevated HDGF had significantly lower exercise tolerance, worse New York Heart Association functional class, and higher levels of N-terminal pro-brain natriuretic peptide. HDGF was a strong predictor of mortality, with an unadjusted hazard ratio of 4.5 (95% confidence interval, 1.9-10.3; P = 0.003 by log-rank test). In multivariable Cox proportional hazards models, elevated HDGF levels predicted decreased survival after being adjusted for age, PAH subtype, invasive hemodynamics, and N-terminal pro-brain natriuretic peptide. CONCLUSIONS Elevated HDGF was associated with worse functional class, exertional intolerance, and increased mortality in PAH, suggesting HDGF as a potential biomarker for predicting mortality and as having possible diagnostic value for distinguishing PAH from non-PAH. HDGF may add additional value in PAH risk stratification in clinical trials and may represent a potential target for future PAH drug development.
Collapse
Affiliation(s)
- Jun Yang
- 1 Division of Pediatric Cardiology
| | | | - Zongming Fu
- 2 Division of Pediatric Hematology, Department of Pediatrics
| | - Rachel Damico
- 3 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Frederick K Korley
- 4 Department of Emergency Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Paul M Hassoun
- 3 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - David D Ivy
- 5 Department of Pediatric Cardiology, Children's Hospital Colorado, Denver, Colorado; and
| | - Eric D Austin
- 6 Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | | |
Collapse
|
13
|
Nüße J, Mirastschijski U, Waespy M, Oetjen J, Brandes N, Rebello O, Paroni F, Kelm S, Dietz F. Two new isoforms of the human hepatoma-derived growth factor interact with components of the cytoskeleton. Biol Chem 2016; 397:417-36. [PMID: 26845719 DOI: 10.1515/hsz-2015-0273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/28/2016] [Indexed: 01/27/2023]
Abstract
Hepatoma-derived growth factor (HDGF) is involved in diverse, apparently unrelated processes, such as cell proliferation, apoptosis, DNA-repair, transcriptional control, ribosome biogenesis and cell migration. Most of the interactions of HDGF with diverse molecules has been assigned to the hath region of HDGF. In this study we describe two previously unknown HDGF isoforms, HDGF-B and HDGF-C, generated via alternative splicing with structurally unrelated N-terminal regions of their hath region, which is clearly different from the well described isoform, HDGF-A. In silico modeling revealed striking differences near the PHWP motif, an essential part of the binding site for glycosaminoglycans and DNA/RNA. This observation prompted the hypothesis that these isoforms would have distinct interaction patterns with correspondingly diverse roles on cellular processes. Indeed, we discovered specific associations of HDGF-B and HDGF-C with cytoskeleton elements, such as tubulin and dynein, suggesting previously unknown functions of HDGF in retrograde transport, site directed localization and/or cytoskeleton organization. In contrast, the main isoform HDGF-A does not interact directly with the cytoskeleton, but via RNA with messenger ribonucleoprotein (mRNP) complexes. In summary, the discovery of HDGF splice variants with their discrete binding activities and subcellular distributions opened new avenues for understanding its biological function and importance.
Collapse
|
14
|
Lian J, Tang J, Shi H, Li H, Zhen T, Xie W, Zhang F, Yang Y, Han A. Positive feedback loop of hepatoma-derived growth factor and β-catenin promotes carcinogenesis of colorectal cancer. Oncotarget 2016; 6:29357-74. [PMID: 26296979 PMCID: PMC4745732 DOI: 10.18632/oncotarget.4982] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 07/17/2015] [Indexed: 01/24/2023] Open
Abstract
To clarify the role of hepatoma-derived growth factor (HDGF) and β-catenin in carcinogenesis of colorectal cancer (CRC), our results showed that high HDGF expression was found in CRC cells and tissues and significantly related to histological differentiation (p = 0.035) and lymph node metastasis (p = 0.000). Significant positive correlation between HDGF expression and β-catenin abnormal expression was found in CRC tissues. High HDGF and lymph node metastasis were the strong independent prognostic indicators for reduced overall survival in CRC patients. HDGF knockdown dramatically inhibited cellular proliferation, migration, invasion, and tumorigenesis, both in vitro and in vivo, but induced G1 phase arrest and apoptosis in CRC cells. HDGF knock-down dramatically suppressed β-catenin and its down-stream genes expression in CRC cells. Intriguingly, β-catenin knock-down dramatically suppressed HDGF expression in CRC cells. Human recombinant Wnt3a and DKK1 treatment increased and decreased HDGF, β-catenin, c-Myc, cyclin D1, MMP9, and phos-GSK-3β (Ser9) protein expression in nuclear and cytoplasmic fraction of CRC cells upon β-catenin knock-down, respectively. Three HDGF-binding elements in β-catenin promoter were found and specific for transcriptional activation of β-catenin in CRC cells. In conclusion, our results first suggest that HDGF and β-catenin interacts as a positive feedback loop, which plays an important role in carcinogenesis and progression of CRC.
Collapse
Affiliation(s)
- Jiayan Lian
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianming Tang
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huijuan Shi
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hui Li
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tiantian Zhen
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenlin Xie
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fenfen Zhang
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yang Yang
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Anjia Han
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
15
|
Rondelet G, Dal Maso T, Willems L, Wouters J. Structural basis for recognition of histone H3K36me3 nucleosome by human de novo DNA methyltransferases 3A and 3B. J Struct Biol 2016; 194:357-67. [PMID: 26993463 DOI: 10.1016/j.jsb.2016.03.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 01/01/2023]
Abstract
DNA methylation is an important epigenetic modification involved in chromatin organization and gene expression. The function of DNA methylation depends on cell context and is correlated with histone modification patterns. In particular, trimethylation of Lys36 on histone H3 tail (H3K36me3) is associated with DNA methylation and elongation phase of transcription. PWWP domains of the de novo DNA methyltransferases DNMT3A and DNMT3B read this epigenetic mark to guide DNA methylation. Here we report the first crystal structure of the DNMT3B PWWP domain-H3K36me3 complex. Based on this structure, we propose a model of the DNMT3A PWWP domain-H3K36me3 complex and build a model of DNMT3A (PWWP-ADD-CD) in a nucleosomal context. The trimethylated side chain of Lys36 (H3K36me3) is inserted into an aromatic cage similar to the "Royal" superfamily domains known to bind methylated histones. A key interaction between trimethylated Lys36 and a conserved water molecule stabilized by Ser270 explains the lack of affinity of mutated DNMT3B (S270P) for the H3K36me3 epigenetic mark in the ICF (Immunodeficiency, Centromeric instability and Facial abnormalities) syndrome. The model of the DNMT3A-DNMT3L heterotetramer in complex with a dinucleosome highlights the mechanism for recognition of nucleosome by DNMT3s and explains the periodicity of de novo DNA methylation.
Collapse
Affiliation(s)
- Grégoire Rondelet
- Department of Chemistry, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium.
| | - Thomas Dal Maso
- Department of Chemistry, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
| | - Luc Willems
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (Gembloux Agro-Bio Tech), University of Liège (ULg), 4000 Liège, Belgium
| | - Johan Wouters
- Department of Chemistry, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
| |
Collapse
|
16
|
Wang R, Zhang J, Liao S, Tu X. Solution structure of TbTFIIS2-1 PWWP domain from Trypanosoma brucei. Proteins 2016; 84:912-9. [PMID: 27005948 DOI: 10.1002/prot.25035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/02/2016] [Accepted: 03/12/2016] [Indexed: 12/28/2022]
Abstract
TbTFIIS2-1, one of the two TFIIS homologues of Trypanosome brucei (T. brucei), cooperates with TbTFIIS1 in regulating transcription in T. brcuei. Structurally divergent from other TFIIS homologues from higher organisms, TbTFIIS2-1 contains an additional N-terminal PWWP domain besides other three conserved domains, which may imply potential role of TbTFIIS2-1 in transcription regulation. Here, we determined the solution structure of PWWP domain of TbTFIIS2-1 by NMR spectroscopy, which was the first solution structure of PWWP domain solved in trypanosomatid. In spite of poor sequence similarity between PWWP domains, this domain of TbTFIIS2-1 adopts a conserved 3D-structure, which contains a five-stranded β-barrel and a C-terminal α-helix. Furthermore, we found that TbTFIIS2-1 PWWP domain may be a protein-protein interaction module without the ability of DNA recognition and methyl-group interaction. Proteins 2016; 84:912-919. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rui Wang
- Hefei National Laboratory for Physical Sciences at Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Jiahai Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Shanhui Liao
- Hefei National Laboratory for Physical Sciences at Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Xiaoming Tu
- Hefei National Laboratory for Physical Sciences at Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| |
Collapse
|
17
|
Speranzini V, Pilotto S, Sixma TK, Mattevi A. Touch, act and go: landing and operating on nucleosomes. EMBO J 2016; 35:376-88. [PMID: 26787641 DOI: 10.15252/embj.201593377] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/10/2015] [Indexed: 12/16/2022] Open
Abstract
Chromatin-associated enzymes are responsible for the installation, removal and reading of precise post-translation modifications on DNA and histone proteins. They are specifically recruited to the target gene by associated factors, and as a result of their activity, they contribute in modulating cell identity and differentiation. Structural and biophysical approaches are broadening our knowledge on these processes, demonstrating that DNA, histone tails and histone surfaces can each function as distinct yet functionally interconnected anchoring points promoting nucleosome binding and modification. The mechanisms underlying nucleosome recognition have been described for many histone modifiers and related readers. Here, we review the recent literature on the structural organization of these nucleosome-associated proteins, the binding properties that drive nucleosome modification and the methodological advances in their analysis. The overarching conclusion is that besides acting on the same substrate (the nucleosome), each system functions through characteristic modes of action, which bring about specific biological functions in gene expression regulation.
Collapse
Affiliation(s)
| | - Simona Pilotto
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Titia K Sixma
- Division of Biochemistry and Cancer Genomics Center, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
18
|
Rona GB, Eleutherio ECA, Pinheiro AS. PWWP domains and their modes of sensing DNA and histone methylated lysines. Biophys Rev 2016; 8:63-74. [PMID: 28510146 DOI: 10.1007/s12551-015-0190-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/14/2015] [Indexed: 12/21/2022] Open
Abstract
Chromatin plays an important role in gene transcription control, cell cycle progression, recombination, DNA replication and repair. The fundamental unit of chromatin, the nucleosome, is formed by a DNA duplex wrapped around an octamer of histones. Histones are susceptible to various post-translational modifications, covalent alterations that change the chromatin status. Lysine methylation is one of the major post-translational modifications involved in the regulation of chromatin function. The PWWP domain is a member of the Royal superfamily that functions as a chromatin methylation reader by recognizing both DNA and histone methylated lysines. The PWWP domain three-dimensional structure is based on an N-terminal hydrophobic β-barrel responsible for histone methyl-lysine binding, and a C-terminal α-helical domain. In this review, we set out to discuss the most recent literature on PWWP domains, focusing on their structural features and the mechanisms by which they specifically recognize DNA and histone methylated lysines at the level of the nucleosome.
Collapse
Affiliation(s)
- Germana B Rona
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Elis C A Eleutherio
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Anderson S Pinheiro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil.
| |
Collapse
|
19
|
Bao C, Wang J, Ma W, Wang X, Cheng Y. HDGF: a novel jack-of-all-trades in cancer. Future Oncol 2015; 10:2675-85. [PMID: 25236340 DOI: 10.2217/fon.14.194] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
HDGF is an important regulator of a broad range of cancer cell activities and plays important roles in cancer cell transformation, apoptosis, angiogenesis and metastasis. Such a divergent influence of HDGF on cancer cell activities derives from its multiple inter- and sub-cellular localizations where it interacts with a range of different binding partners. Interestingly, high levels of HDGF could be detected in patients' serum of some cancers. This review is focused on the role of HDGF in tumorigenesis and metastasis, and provides insight for application in clinical cancer therapy as well as its clinical implications as a prognostic marker in cancer progression.
Collapse
Affiliation(s)
- Cihang Bao
- Department of Radiation Oncology, Qilu Hospital of Shandong University, 107 Wenhua Road West, Jinan 250012, China
| | | | | | | | | |
Collapse
|
20
|
Hung YL, Lee HJ, Jiang I, Lin SC, Lo WC, Lin YJ, Sue SC. The First Residue of the PWWP Motif Modulates HATH Domain Binding, Stability, and Protein-Protein Interaction. Biochemistry 2015; 54:4063-74. [PMID: 26067205 DOI: 10.1021/acs.biochem.5b00454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hepatoma-derived growth factor (hHDGF) and HDGF-related proteins (HRPs) contain conserved N-terminal HATH domains with a characteristic structural motif, namely the PWWP motif. The HATH domain has attracted attention because of its ability to bind with heparin/heparan sulfate, DNA, and methylated histone peptide. Depending on the sequence of the PWWP motif, HRP HATHs are classified into P-type (Pro-His-Trp-Pro) and A-type (Ala-His-Trp-Pro) forms. A-type HATH is highly unstable and tends to precipitate in solution. We replaced the Pro residue in P-type HATHHDGF with Ala and evaluated the influence on structure, dynamics, and ligand binding. Nuclear magnetic resonance (NMR) hydrogen/deuterium exchange and circular dichroism (CD) measurements revealed reduced stability. Analysis of NMR backbone (15)N relaxations (R1, R2, and nuclear Overhauser effect) revealed additional backbone dynamics in the interface between the β-barrel and the C-terminal helix bundle. The β1-β2 loop, where the AHWP sequence is located, has great structural flexibility, which aids HATH-HATH interaction through the loop. A-type HATH, therefore, shows a stronger tendency to aggregate when binding with heparin and DNA oligomers. This study defines the role of the first residue of the PWWP motif in modulating HATH domain stability and oligomer formation in binding.
Collapse
Affiliation(s)
| | | | | | | | - Wei-Cheng Lo
- §Institute of Bioinformatics and Structural Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Yi-Jan Lin
- ∥Graduate Institute of Natural Products and Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | |
Collapse
|
21
|
Molecular mechanisms of MLL-associated leukemia. Int J Hematol 2015; 101:352-61. [PMID: 25773519 DOI: 10.1007/s12185-015-1774-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 01/04/2023]
Abstract
Gene rearrangements of the mixed lineage leukemia (MLL) gene cause aggressive leukemia. The fusion of MLL and its partner genes generates various MLL fusion genes, and their gene products trigger aberrant self-renewal of hematopoietic progenitors leading to leukemia. Since the identification of the MLL gene two decades ago, a substantial amount of information has been obtained regarding the mechanisms by which MLL mutations cause leukemia. Wild-type MLL maintains the expression of Homeobox (HOX) genes during development. MLL activates the expression of posterior HOX-A genes in the hematopoietic lineage to stimulate the expansion of immature progenitors. MLL fusion proteins constitutively activate the HOX genes, causing aberrant self-renewal. The modes of transcriptional activation vary depending on the fusion partners and can be categorized into at least four groups. Here I review the recent progress in research related to the molecular mechanisms of MLL fusion-dependent leukemogenesis.
Collapse
|
22
|
Qin S, Min J. Structure and function of the nucleosome-binding PWWP domain. Trends Biochem Sci 2014; 39:536-47. [PMID: 25277115 DOI: 10.1016/j.tibs.2014.09.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/26/2014] [Accepted: 09/08/2014] [Indexed: 12/11/2022]
Abstract
PWWP domain-containing proteins are often involved in chromatin-associated biological processes, such as transcriptional regulation and DNA repair, and recent studies have shown that the PWWP domain specifies chromatin localization. Mutations in the PWWP domain, a 100-150 amino acid motif, have been linked to various human diseases, emphasizing its importance. Structural studies reveal that PWWP domains possess a conserved aromatic cage for histone methyl-lysine recognition, and synergistically bind both histone and DNA, which contributes to their nucleosome-binding ability and chromatin localization. Furthermore, the PWWP domain often cooperates with other histone and DNA 'reader' or 'modifier' domains to evoke crosstalk between various epigenetic marks. Here, we discuss these recent advances in understanding the structure and function of the PWWP domain.
Collapse
Affiliation(s)
- Su Qin
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
23
|
Dürr R, Keppler O, Christ F, Crespan E, Garbelli A, Maga G, Dietrich U. Targeting Cellular Cofactors in HIV Therapy. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_45] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
DNA methylation pattern as important epigenetic criterion in cancer. GENETICS RESEARCH INTERNATIONAL 2013; 2013:317569. [PMID: 24455281 PMCID: PMC3884803 DOI: 10.1155/2013/317569] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/13/2013] [Accepted: 11/02/2013] [Indexed: 11/17/2022]
Abstract
Epigenetic modifications can affect the long-term gene expression without any change in nucleotide sequence of the DNA. Epigenetic processes intervene in the cell differentiation, chromatin structure, and activity of genes since the embryonic period. However, disorders in genes' epigenetic pattern can affect the mechanisms such as cell division, apoptosis, and response to the environmental stimuli which may lead to the incidence of different diseases and cancers. Since epigenetic changes may return to their natural state, they could be used as important targets in the treatment of cancer and similar malignancies. The aim of this review is to assess the epigenetic changes in normal and cancerous cells, the causative factors, and epigenetic therapies and treatments.
Collapse
|
25
|
Morchikh M, Naughtin M, Di Nunzio F, Xavier J, Charneau P, Jacob Y, Lavigne M. TOX4 and NOVA1 proteins are partners of the LEDGF PWWP domain and affect HIV-1 replication. PLoS One 2013; 8:e81217. [PMID: 24312278 PMCID: PMC3842248 DOI: 10.1371/journal.pone.0081217] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 10/10/2013] [Indexed: 12/31/2022] Open
Abstract
PWWP domains are involved in the chromatin attachment of several proteins. They bind to both DNA and proteins and their interaction with specific histone methylation marks define them as a new class of histone code readers. The lens epithelium derived growth factor (LEDGF/p75) contains an N-terminal PWWP domain necessary for its interaction with chromatin but also a C-terminal domain which interacts with several proteins, such as lentiviral integrases. These two domains confer a chromatin-tethering function to LEDGF/p75 and in the case of lentiviral integrases, this tethering participates in the efficiency and site selectivity of integration. Although proteins interacting with LEDGF/p75 C-terminal domain have been extensively studied, no data exist about partners of its PWWP domain regulating its interaction with chromatin. In this study, we report the identification by yeast-two-hybrid of thirteen potential partners of the LEDGF PWWP domain. Five of these interactions were confirmed in mammalian cells, using both a protein complementation assay and co-immunoprecipitation approaches. Three of these partners interact with full length LEDGF/p75, they are specific for PWWP domains of the HDGF family and they require PWWP amino acids essential for the interaction with chromatin. Among them, the transcription activator TOX4 and the splicing cofactor NOVA1 were selected for a more extensive study. These two proteins or their PWWP interacting regions (PIR) colocalize with LEDGF/p75 in Hela cells and interact in vitro in the presence of DNA. Finally, single round VSV-G pseudotyped HIV-1 but not MLV infection is inhibited in cells overexpressing these two PIRs. The observed inhibition of infection can be attributed to a defect in the integration step. Our data suggest that a regulation of LEDGF interaction with chromatin by cellular partners of its PWWP domain could be involved in several processes linked to LEDGF tethering properties, such as lentiviral integration, DNA repair or transcriptional regulation.
Collapse
Affiliation(s)
- Mehdi Morchikh
- Ecole Normale Supérieure, Laboratoire Joliot-Curie, Centre National de la Recherche Scientifique, Lyon, France
- Institut Pasteur, Unité de Virologie Structurale, Centre National de la Recherche Scientifique, Unité de recherche associée, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Monica Naughtin
- Ecole Normale Supérieure, Laboratoire Joliot-Curie, Centre National de la Recherche Scientifique, Lyon, France
| | - Francesca Di Nunzio
- Institut Pasteur, Unité de Virologie Moléculaire et Vaccinologie, Centre National de la Recherche Scientifique, Paris, France
| | - Johan Xavier
- Ecole Normale Supérieure, Laboratoire Joliot-Curie, Centre National de la Recherche Scientifique, Lyon, France
| | - Pierre Charneau
- Institut Pasteur, Unité de Virologie Moléculaire et Vaccinologie, Centre National de la Recherche Scientifique, Paris, France
| | - Yves Jacob
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Centre National de la Recherche Scientifique, Paris, France
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Marc Lavigne
- Ecole Normale Supérieure, Laboratoire Joliot-Curie, Centre National de la Recherche Scientifique, Lyon, France
- Institut Pasteur, Unité de Virologie Structurale, Centre National de la Recherche Scientifique, Unité de recherche associée, Paris, France
- * E-mail:
| |
Collapse
|
26
|
van Nuland R, van Schaik FM, Simonis M, van Heesch S, Cuppen E, Boelens R, Timmers HM, van Ingen H. Nucleosomal DNA binding drives the recognition of H3K36-methylated nucleosomes by the PSIP1-PWWP domain. Epigenetics Chromatin 2013; 6:12. [PMID: 23656834 PMCID: PMC3663649 DOI: 10.1186/1756-8935-6-12] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/16/2013] [Indexed: 12/31/2022] Open
Abstract
Background Recognition of histone modifications by specialized protein domains is a key step in the regulation of DNA-mediated processes like gene transcription. The structural basis of these interactions is usually studied using histone peptide models, neglecting the nucleosomal context. Here, we provide the structural and thermodynamic basis for the recognition of H3K36-methylated (H3K36me) nucleosomes by the PSIP1-PWWP domain, based on extensive mutational analysis, advanced nuclear magnetic resonance (NMR), and computational approaches. Results The PSIP1-PWWP domain binds H3K36me3 peptide and DNA with low affinity, through distinct, adjacent binding surfaces. PWWP binding to H3K36me nucleosomes is enhanced approximately 10,000-fold compared to a methylated peptide. Based on mutational analyses and NMR data, we derive a structure of the complex showing that the PWWP domain is bound to H3K36me nucleosomes through simultaneous interactions with both methylated histone tail and nucleosomal DNA. Conclusion Concerted binding to the methylated histone tail and nucleosomal DNA underlies the high- affinity, specific recognition of H3K36me nucleosomes by the PSIP1-PWWP domain. We propose that this bipartite binding mechanism is a distinctive and general property in the recognition of histone modifications close to the nucleosome core.
Collapse
Affiliation(s)
- Rick van Nuland
- NMR Spectroscopy Research Group, Bijvoet Center for Biomolecular Research, Utrecht University Utrecht, Padualaan 8, Utrecht, CH, 3854, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Eidahl JO, Crowe BL, North JA, McKee CJ, Shkriabai N, Feng L, Plumb M, Graham RL, Gorelick RJ, Hess S, Poirier MG, Foster MP, Kvaratskhelia M. Structural basis for high-affinity binding of LEDGF PWWP to mononucleosomes. Nucleic Acids Res 2013; 41:3924-36. [PMID: 23396443 PMCID: PMC3616739 DOI: 10.1093/nar/gkt074] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/27/2012] [Accepted: 01/18/2013] [Indexed: 01/19/2023] Open
Abstract
Lens epithelium-derived growth factor (LEDGF/p75) tethers lentiviral preintegration complexes (PICs) to chromatin and is essential for effective HIV-1 replication. LEDGF/p75 interactions with lentiviral integrases are well characterized, but the structural basis for how LEDGF/p75 engages chromatin is unknown. We demonstrate that cellular LEDGF/p75 is tightly bound to mononucleosomes (MNs). Our proteomic experiments indicate that this interaction is direct and not mediated by other cellular factors. We determined the solution structure of LEDGF PWWP and monitored binding to the histone H3 tail containing trimethylated Lys36 (H3K36me3) and DNA by NMR. Results reveal two distinct functional interfaces of LEDGF PWWP: a well-defined hydrophobic cavity, which selectively interacts with the H3K36me3 peptide and adjacent basic surface, which non-specifically binds DNA. LEDGF PWWP exhibits nanomolar binding affinity to purified native MNs, but displays markedly lower affinities for the isolated H3K36me3 peptide and DNA. Furthermore, we show that LEDGF PWWP preferentially and tightly binds to in vitro reconstituted MNs containing a tri-methyl-lysine analogue at position 36 of H3 and not to their unmodified counterparts. We conclude that cooperative binding of the hydrophobic cavity and basic surface to the cognate histone peptide and DNA wrapped in MNs is essential for high-affinity binding to chromatin.
Collapse
Affiliation(s)
- Jocelyn O. Eidahl
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA, Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA, Department of Physics, The Ohio State University, Columbus, OH 43210, USA, Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA and AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Brandon L. Crowe
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA, Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA, Department of Physics, The Ohio State University, Columbus, OH 43210, USA, Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA and AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Justin A. North
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA, Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA, Department of Physics, The Ohio State University, Columbus, OH 43210, USA, Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA and AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Christopher J. McKee
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA, Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA, Department of Physics, The Ohio State University, Columbus, OH 43210, USA, Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA and AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Nikoloz Shkriabai
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA, Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA, Department of Physics, The Ohio State University, Columbus, OH 43210, USA, Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA and AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Lei Feng
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA, Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA, Department of Physics, The Ohio State University, Columbus, OH 43210, USA, Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA and AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Matthew Plumb
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA, Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA, Department of Physics, The Ohio State University, Columbus, OH 43210, USA, Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA and AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Robert L. Graham
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA, Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA, Department of Physics, The Ohio State University, Columbus, OH 43210, USA, Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA and AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Robert J. Gorelick
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA, Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA, Department of Physics, The Ohio State University, Columbus, OH 43210, USA, Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA and AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Sonja Hess
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA, Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA, Department of Physics, The Ohio State University, Columbus, OH 43210, USA, Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA and AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Michael G. Poirier
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA, Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA, Department of Physics, The Ohio State University, Columbus, OH 43210, USA, Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA and AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mark P. Foster
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA, Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA, Department of Physics, The Ohio State University, Columbus, OH 43210, USA, Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA and AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mamuka Kvaratskhelia
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA, Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA, Department of Physics, The Ohio State University, Columbus, OH 43210, USA, Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA and AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
28
|
Alvarez-Venegas R, Avramova Z. Evolution of the PWWP-domain encoding genes in the plant and animal lineages. BMC Evol Biol 2012; 12:101. [PMID: 22734652 PMCID: PMC3457860 DOI: 10.1186/1471-2148-12-101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 06/06/2012] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Conserved domains are recognized as the building blocks of eukaryotic proteins. Domains showing a tendency to occur in diverse combinations ('promiscuous' domains) are involved in versatile architectures in proteins with different functions. Current models, based on global-level analyses of domain combinations in multiple genomes, have suggested that the propensity of some domains to associate with other domains in high-level architectures increases with organismal complexity. Alternative models using domain-based phylogenetic trees propose that domains have become promiscuous independently in different lineages through convergent evolution and are, thus, random with no functional or structural preferences. Here we test whether complex protein architectures have occurred by accretion from simpler systems and whether the appearance of multidomain combinations parallels organismal complexity. As a model, we analyze the modular evolution of the PWWP domain and ask whether its appearance in combinations with other domains into multidomain architectures is linked with the occurrence of more complex life-forms. Whether high-level combinations of domains are conserved and transmitted as stable units (cassettes) through evolution is examined in the genomes of plant or metazoan species selected for their established position in the evolution of the respective lineages. RESULTS Using the domain-tree approach, we analyze the evolutionary origins and distribution patterns of the promiscuous PWWP domain to understand the principles of its modular evolution and its existence in combination with other domains in higher-level protein architectures. We found that as a single module the PWWP domain occurs only in proteins with a limited, mainly, species-specific distribution. Earlier, it was suggested that domain promiscuity is a fast-changing (volatile) feature shaped by natural selection and that only a few domains retain their promiscuity status throughout evolution. In contrast, our data show that most of the multidomain PWWP combinations in extant multicellular organisms (humans or land plants) are present in their unicellular ancestral relatives suggesting they have been transmitted through evolution as conserved linear arrangements ('cassettes'). Among the most interesting biologically relevant results is the finding that the genes of the two plant Trithorax family subgroups (ATX1/2 and ATX3/4/5) have different phylogenetic origins. The two subgroups occur together in the earliest land plants Physcomitrella patens and Selaginella moellendorffii. CONCLUSION Gain/loss of a single PWWP domain is observed throughout evolution reflecting dynamic lineage- or species-specific events. In contrast, higher-level protein architectures involving the PWWP domain have survived as stable arrangements driven by evolutionary descent. The association of PWWP domains with the DNA methyltransferases in O. tauri and in the metazoan lineage seems to have occurred independently consistent with convergent evolution. Our results do not support models wherein more complex protein architectures involving the PWWP domain occur with the appearance of more evolutionarily advanced life forms.
Collapse
Affiliation(s)
- Raúl Alvarez-Venegas
- Department of Genetic Engineering, Centro de Investigación y de Estudios Avanzados, Unidad Irapuato, Irapuato Gto., 36821, Mexico
| | | |
Collapse
|
29
|
Shindo H, Suzuki R, Tsuchiya W, Taichi M, Nishiuchi Y, Yamazaki T. PHD finger of the SUMO ligase Siz/PIAS family in rice reveals specific binding for methylated histone H3 at lysine 4 and arginine 2. FEBS Lett 2012; 586:1783-9. [PMID: 22626555 DOI: 10.1016/j.febslet.2012.04.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 04/27/2012] [Accepted: 04/30/2012] [Indexed: 10/28/2022]
Abstract
We determined the three-dimensional structure of the PHD finger of the rice Siz/PIAS-type SUMO ligase, OsSiz1, by NMR spectroscopy and investigated binding ability for a variety of methylated histone H3 tails, showing that OsSiz1-PHD primarily recognizes dimethylated Arg2 of the histone H3 and that methylations at Arg2 and Lys4 reveal synergy effect on binding to OsSiz1-PHD. The K4 cage of OsSiz1-PHD for trimethylated Lys4 of H3K4me3 was similar to that of the BPTF-PHD finger, while the R2 pocket for Arg2 was different. It is intriguing that the PHD module of Siz/PIAS plays an important role, with collaboration with the DNA binding domain SAP, in gene regulation through SUMOylation of a variety of effectors associated with the methylated arginine-riched chromatin domains.
Collapse
Affiliation(s)
- Heisaburo Shindo
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Solution structure of the Pdp1 PWWP domain reveals its unique binding sites for methylated H4K20 and DNA. Biochem J 2012; 442:527-38. [DOI: 10.1042/bj20111885] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Methylation of H4K20 (Lys20 of histone H4) plays an important role in the regulation of diverse cellular processes. In fission yeast, all three states of H4K20 methylation are catalysed by Set9. Pdp1 is a PWWP (proline-tryptophan-tryptophan-proline) domain-containing protein, which associates with Set9 to regulate its chromatin localization and methyltransferase activity towards H4K20. The structure of the Pdp1 PWWP domain, which is the first PWWP domain identified which binds to methyl-lysine at the H4K20 site, was determined in the present study by solution NMR. The Pdp1 PWWP domain adopts a classical PWWP fold, with a five-strand antiparallel β-barrel followed by three α-helices. However, it differs significantly from other PWWP domains in some structural aspects that account, in part, for its molecular recognition. Moreover, we revealed a unique binding pattern of the PWWP domain, in that the PWWP domain of Pdp1 bound not only to H4K20me3 (trimethylated Lys20 of histone H4), but also to dsDNA (double-stranded DNA) via an aromatic cage and a positively charged area respectively. EMSAs (electrophoretic mobility-shift assays) illustrated the ability of the Pdp1 PWWP domain to bind to the nucleosome core particle, and further mutagenesis experiments indicated the crucial role of this binding activity in histone H4K20 di- and tri-methylation in yeast cells. The present study may shed light on a novel mechanism of histone methylation regulation by the PWWP domain.
Collapse
|
31
|
Thakar K, Votteler I, Kelkar D, Shidore T, Gupta S, Kelm S, Dietz F. Interaction of HRP-2 isoforms with HDGF. Chromatin binding of a specific heteromer. FEBS J 2012; 279:737-51. [DOI: 10.1111/j.1742-4658.2011.08464.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Chen FF, Lin WH, Lin SC, Kuo JH, Chu HY, Huang WC, Chuang YJ, Lee SC, Sue SC. Significance of heparin binding to basic residues in homologous to the amino terminus of hepatoma-derived growth factor and related proteins. Glycobiology 2012; 22:649-61. [DOI: 10.1093/glycob/cwr191] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
33
|
Zhao J, Yu H, Lin L, Tu J, Cai L, Chen Y, Zhong F, Lin C, He F, Yang P. Interactome study suggests multiple cellular functions of hepatoma-derived growth factor (HDGF). J Proteomics 2011; 75:588-602. [DOI: 10.1016/j.jprot.2011.08.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 08/14/2011] [Accepted: 08/25/2011] [Indexed: 02/05/2023]
|
34
|
Hsu SS, Chen CH, Liu GS, Tai MH, Wang JS, Wu JC, Kung ML, Chan EC, Liu LF. Tumorigenesis and prognostic role of hepatoma-derived growth factor in human gliomas. J Neurooncol 2011; 107:101-9. [PMID: 22037800 DOI: 10.1007/s11060-011-0733-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 09/21/2011] [Indexed: 12/28/2022]
Abstract
Hepatoma-derived growth factor (HDGF) is a neurotrophic factor found in mouse spinal cord and hippocampal neurons. In various malignant tumors, the role of HDGF in tumor progression and its use as a diagnostic biomarker or therapeutic target have been extensively explored. However, the prognostic function and mitogenic role of HDGF in gliomagenesis are yet to be verified. In this study, we found a significant incidence of HDGF prevalence between the different pathological types and stages of glioma in 105 patients. We also found a prognostic significance in 41 glioblastoma multiforme (GBM) patients, with prevalence of nuclear HDGF predicting short survival of patients with GBM after surgery. To delineate the mitogenic role of HDGF in gliomagenesis, an adenoviral-expressed HDGF small interfering RNA (Ad-HDGF siRNA) was used to knock down expression of nuclear HDGF. After knocking down nuclear HDGF expression in human GBM cells, cell growth and cell invasion and induction on apoptosis by caspase-3 activation were significantly inhibited. We conclude that HDGF is a mitogenic growth factor in glioma progression and can be a useful prognostic marker for GBM and therapeutic target for clinical management of glioma in the future.
Collapse
Affiliation(s)
- Shu-Shong Hsu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Gijsbers R, Vets S, De Rijck J, Ocwieja KE, Ronen K, Malani N, Bushman FD, Debyser Z. Role of the PWWP domain of lens epithelium-derived growth factor (LEDGF)/p75 cofactor in lentiviral integration targeting. J Biol Chem 2011; 286:41812-41826. [PMID: 21987578 DOI: 10.1074/jbc.m111.255711] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
LEDGF/p75 is a chromatin-interacting, cellular cofactor of HIV integrase that dictates lentiviral integration site preference. In this study we determined the role of the PWWP domain of LEDGF/p75 in tethering and targeting of the lentiviral pre-integration complex, employing potent knockdown cell lines allowing analysis in the absence of endogenous LEDGF/p75. Deletion of the PWWP domain resulted in a diffuse subnuclear distribution pattern, loss of interaction with condensed chromatin, and failure to rescue proviral integration, integration site distribution, and productive virus replication. Substitution of the PWWP domain of LEDGF/p75 with that of hepatoma-derived growth factor or HDGF-related protein-2 rescued viral replication and lentiviral integration site distribution in LEDGF/p75-depleted cells. Replacing all chromatin binding elements of LEDGF/p75 with full-length hepatoma-derived growth factor resulted in more integration in genes combined with a preference for CpG islands. In addition, we showed that any PWWP domain targets SMYD1-like sequences. Analysis of integration preferences of lentiviral vectors for epigenetic marks indicates that the PWWP domain is critical for interactions specifying the relationship of integration sites to regions enriched in specific histone post-translational modifications.
Collapse
Affiliation(s)
- Rik Gijsbers
- Division of Molecular Medicine, KU Leuven, 3000 Leuven, Belgium.
| | - Sofie Vets
- Division of Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Jan De Rijck
- Division of Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Karen E Ocwieja
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Keshet Ronen
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Nirav Malani
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Zeger Debyser
- Division of Molecular Medicine, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
36
|
Wu H, Zeng H, Lam R, Tempel W, Amaya MF, Xu C, Dombrovski L, Qiu W, Wang Y, Min J. Structural and histone binding ability characterizations of human PWWP domains. PLoS One 2011; 6:e18919. [PMID: 21720545 PMCID: PMC3119473 DOI: 10.1371/journal.pone.0018919] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 03/24/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The PWWP domain was first identified as a structural motif of 100-130 amino acids in the WHSC1 protein and predicted to be a protein-protein interaction domain. It belongs to the Tudor domain 'Royal Family', which consists of Tudor, chromodomain, MBT and PWWP domains. While Tudor, chromodomain and MBT domains have long been known to bind methylated histones, PWWP was shown to exhibit histone binding ability only until recently. METHODOLOGY/PRINCIPAL FINDINGS The PWWP domain has been shown to be a DNA binding domain, but sequence analysis and previous structural studies show that the PWWP domain exhibits significant similarity to other 'Royal Family' members, implying that the PWWP domain has the potential to bind histones. In order to further explore the function of the PWWP domain, we used the protein family approach to determine the crystal structures of the PWWP domains from seven different human proteins. Our fluorescence polarization binding studies show that PWWP domains have weak histone binding ability, which is also confirmed by our NMR titration experiments. Furthermore, we determined the crystal structures of the BRPF1 PWWP domain in complex with H3K36me3, and HDGF2 PWWP domain in complex with H3K79me3 and H4K20me3. CONCLUSIONS PWWP proteins constitute a new family of methyl lysine histone binders. The PWWP domain consists of three motifs: a canonical β-barrel core, an insertion motif between the second and third β-strands and a C-terminal α-helix bundle. Both the canonical β-barrel core and the insertion motif are directly involved in histone binding. The PWWP domain has been previously shown to be a DNA binding domain. Therefore, the PWWP domain exhibits dual functions: binding both DNA and methyllysine histones. ENHANCED VERSION This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.
Collapse
Affiliation(s)
- Hong Wu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Robert Lam
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Wolfram Tempel
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Maria F. Amaya
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Chao Xu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Ludmila Dombrovski
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Wei Qiu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Yanming Wang
- Department of Biochemistry and Molecular Biology, Center for Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
37
|
Thakar K, Kröcher T, Savant S, Gollnast D, Kelm S, Dietz F. Secretion of hepatoma-derived growth factor is regulated by N-terminal processing. Biol Chem 2010; 391:1401-10. [DOI: 10.1515/bc.2010.147] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Hepatoma-derived growth factor (HDGF) was first purified as a growth factor secreted by hepatoma cells. It promotes angiogenesis and has been related to tumorigenesis. To date, little is known about the molecular mechanisms of HDGF functions and especially its routes or regulation of secretion. Here we show that secretion of HDGF requires the N-terminal 10 amino acids and that this peptide can mediate secretion of other proteins, such as enhanced green fluorescent protein, if fused to their N-terminus. Our results further demonstrate that cysteine residues at positions 12 and 108 are linked via an intramolecular disulfide bridge. Surprisingly, phosphorylation of serine 165 in the C-terminal part of HDGF plays a critical role in the secretion process. If this serine is replaced by alanine, the N-terminus is truncated, the intramolecular disulfide bridge is not formed and the protein is not secreted. In summary, these observations provide a model of how phosphorylation, a disulfide bridge and proteolytic cleavage are involved in HDGF secretion.
Collapse
|
38
|
Hendrix J, Gijsbers R, De Rijck J, Voet A, Hotta JI, McNeely M, Hofkens J, Debyser Z, Engelborghs Y. The transcriptional co-activator LEDGF/p75 displays a dynamic scan-and-lock mechanism for chromatin tethering. Nucleic Acids Res 2010; 39:1310-25. [PMID: 20974633 PMCID: PMC3045605 DOI: 10.1093/nar/gkq933] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Nearly all cellular and disease related functions of the transcriptional co-activator lens epithelium-derived growth factor (LEDGF/p75) involve tethering of interaction partners to chromatin via its conserved integrase binding domain (IBD), but little is known about the mechanism of in vivo chromatin binding and tethering. In this work we studied LEDGF/p75 in real-time in living HeLa cells combining different quantitative fluorescence techniques: spot fluorescence recovery after photobleaching (sFRAP) and half-nucleus fluorescence recovery after photobleaching (hnFRAP), continuous photobleaching, fluorescence correlation spectroscopy (FCS) and an improved FCS method to study diffusion dependence of chromatin binding, tunable focus FCS. LEDGF/p75 moves about in nuclei of living cells in a chromatin hopping/scanning mode typical for transcription factors. The PWWP domain of LEDGF/p75 is necessary, but not sufficient for in vivo chromatin binding. After interaction with HIV-1 integrase via its IBD, a general protein–protein interaction motif, kinetics of LEDGF/p75 shift to 75-fold larger affinity for chromatin. The PWWP is crucial for locking the complex on chromatin. We propose a scan-and-lock model for LEDGF/p75, unifying paradoxical notions of transcriptional co-activation and lentiviral integration targeting.
Collapse
Affiliation(s)
- Jelle Hendrix
- Laboratory for Biomolecular Dynamics, University of Leuven, Leuven, Flanders, B-3000, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Yap KL, Zhou MM. Keeping it in the family: diverse histone recognition by conserved structural folds. Crit Rev Biochem Mol Biol 2010; 45:488-505. [PMID: 20923397 DOI: 10.3109/10409238.2010.512001] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Epigenetic regulation of gene transcription relies on an array of recurring structural domains that have evolved to recognize post-translational modifications on histones. The roles of bromodomains, PHD fingers, and the Royal family domains in the recognition of histone modifications to direct transcription have been well characterized. However, only through recent structural studies has it been realized that these basic folds are capable of interacting with increasingly more complex histone modification landscapes, illuminating how nature has concocted a way to accomplish more with less. Here we review the recent biochemical and structural studies of several conserved folds that recognize modified as well as unmodified histone sequences, and discuss their implications on gene expression.
Collapse
Affiliation(s)
- Kyoko L Yap
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY, USA
| | | |
Collapse
|
40
|
Huen MSY, Huang J, Leung JWC, Sy SMH, Leung KM, Ching YP, Tsao SW, Chen J. Regulation of chromatin architecture by the PWWP domain-containing DNA damage-responsive factor EXPAND1/MUM1. Mol Cell 2010; 37:854-64. [PMID: 20347427 DOI: 10.1016/j.molcel.2009.12.040] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 10/22/2009] [Accepted: 12/31/2009] [Indexed: 11/18/2022]
Abstract
Dynamic changes of chromatin structure facilitate diverse biological events, including DNA replication, repair, recombination, and gene transcription. Recent evidence revealed that DNA damage elicits alterations to the chromatin to facilitate proper checkpoint activation and DNA repair. Here we report the identification of the PWWP domain-containing protein EXPAND1/MUM1 as an architectural component of the chromatin, which in response to DNA damage serves as an accessory factor to promote cell survival. Depletion of EXPAND1/MUM1 or inactivation of its PWWP domain resulted in chromatin compaction. Upon DNA damage, EXPAND1/MUM1 rapidly concentrates at the vicinity of DNA damage sites via its direct interaction with 53BP1. Ablation of this interaction impaired damage-induced chromatin decondensation, which is accompanied by sustained DNA damage and hypersensitivity to genotoxic stress. Collectively, our study uncovers a chromatin-bound factor that serves an accessory role in coupling damage signaling with chromatin changes in response to DNA damage.
Collapse
Affiliation(s)
- Michael S Y Huen
- Department of Anatomy, The University of Hong Kong, L1, Laboratory Block, 21 Sassoon Road, Hong Kong SAR.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Purdy MM, Holz-Schietinger C, Reich NO. Identification of a second DNA binding site in human DNA methyltransferase 3A by substrate inhibition and domain deletion. Arch Biochem Biophys 2010; 498:13-22. [PMID: 20227382 DOI: 10.1016/j.abb.2010.03.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/06/2010] [Accepted: 03/08/2010] [Indexed: 02/02/2023]
Abstract
The human DNA methyltransferase 3A (DNMT3A) is essential for establishing DNA methylation patterns. Knowing the key factors involved in the regulation of mammalian DNA methylation is critical to furthering understanding of embryonic development and designing therapeutic approaches targeting epigenetic mechanisms. We observe substrate inhibition for the full length DNMT3A but not for its isolated catalytic domain, demonstrating that DNMT3A has a second binding site for DNA. Deletion of recognized domains of DNMT3A reveals that the conserved PWWP domain is necessary for substrate inhibition and forms at least part of the allosteric DNA binding site. The PWWP domain is demonstrated here to bind DNA in a cooperative manner with muM affinity. No clear sequence preference was observed, similar to previous observations with the isolated PWWP domain of Dnmt3b but with one order of magnitude weaker affinity. Potential roles for a low affinity, low specificity second DNA binding site are discussed.
Collapse
Affiliation(s)
- Matthew M Purdy
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, 93106-9510, USA
| | | | | |
Collapse
|
42
|
Xu F, Mao C, Ding Y, Rui C, Wu L, Shi A, Zhang H, Zhang L, Xu Z. Molecular and enzymatic profiles of mammalian DNA methyltransferases: structures and targets for drugs. Curr Med Chem 2010; 17:4052-71. [PMID: 20939822 PMCID: PMC3003592 DOI: 10.2174/092986710793205372] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Accepted: 09/20/2010] [Indexed: 12/29/2022]
Abstract
DNA methylation is an epigenetic event involved in a variety array of processes that may be the foundation of genetic phenomena and diseases. DNA methyltransferase is a key enzyme for cytosine methylation in DNA, and can be divided into two functional families (Dnmt1 and Dnmt3) in mammals. All mammalian DNA methyltransferases are encoded by their own single gene, and consisted of catalytic and regulatory regions (except Dnmt2). Via interactions between functional domains in the regulatory or catalytic regions and other adaptors or cofactors, DNA methyltransferases can be localized at selective areas (specific DNA/nucleotide sequence) and linked to specific chromosome status (euchromatin/heterochromatin, various histone modification status). With assistance from UHRF1 and Dnmt3L or other factors in Dnmt1 and Dnmt3a/Dnmt3b, mammalian DNA methyltransferases can be recruited, and then specifically bind to hemimethylated and unmethylated double-stranded DNA sequence to maintain and de novo setup patterns for DNA methylation. Complicated enzymatic steps catalyzed by DNA methyltransferases include methyl group transferred from cofactor Ado-Met to C5 position of the flipped-out cytosine in targeted DNA duplex. In the light of the fact that different DNA methyltransferases are divergent in both structures and functions, and use unique reprogrammed or distorted routines in development of diseases, design of new drugs targeting specific mammalian DNA methyltransferases or their adaptors in the control of key steps in either maintenance or de novo DNA methylation processes will contribute to individually treating diseases related to DNA methyltransferases.
Collapse
Affiliation(s)
- F. Xu
- First Hospital & Perinatal Biology Center of Soochow University, Suzhou 215123, China
| | - C. Mao
- First Hospital & Perinatal Biology Center of Soochow University, Suzhou 215123, China
| | - Y. Ding
- First Hospital & Perinatal Biology Center of Soochow University, Suzhou 215123, China
| | - C. Rui
- First Hospital & Perinatal Biology Center of Soochow University, Suzhou 215123, China
| | - L. Wu
- First Hospital & Perinatal Biology Center of Soochow University, Suzhou 215123, China
| | - A. Shi
- First Hospital & Perinatal Biology Center of Soochow University, Suzhou 215123, China
| | - H. Zhang
- First Hospital & Perinatal Biology Center of Soochow University, Suzhou 215123, China
| | - L. Zhang
- Center for Perinatal Biology, Loma Linda University School of Medicine, CA 92350, USA
| | - Z. Xu
- First Hospital & Perinatal Biology Center of Soochow University, Suzhou 215123, China
- Center for Perinatal Biology, Loma Linda University School of Medicine, CA 92350, USA
| |
Collapse
|
43
|
Zhou H, Purdy MM, Dahlquist FW, Reich NO. The Recognition Pathway for the DNA Cytosine Methyltransferase M.HhaI,. Biochemistry 2009; 48:7807-16. [DOI: 10.1021/bi900502g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hongjun Zhou
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106-9510
| | - Matthew M. Purdy
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106-9510
| | - Frederick W. Dahlquist
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106-9510
| | - Norbert O. Reich
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106-9510
| |
Collapse
|
44
|
El-Tahir HM, Abouzied MM, Gallitzendoerfer R, Gieselmann V, Franken S. Hepatoma-derived growth factor-related protein-3 interacts with microtubules and promotes neurite outgrowth in mouse cortical neurons. J Biol Chem 2009; 284:11637-51. [PMID: 19237540 DOI: 10.1074/jbc.m901101200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatoma-derived growth factor-related proteins (HRP) comprise a family of 6 members, which the biological functions are still largely unclear. Here we show that during embryogenesis HRP-3 is strongly expressed in the developing nervous system. At early stages of development HRP-3 is located in the cytoplasm and neurites of cortical neurons. Upon maturation HRP-3 relocalizes continuously to the nuclei and in the majority of neurons of adult mice it is located exclusively in the nucleus. This redistribution from neurites to nuclei is also found in embryonic cortical neurons maturing in cell culture. We show that HRP-3 is necessary for proper neurite outgrowth in primary cortical neurons. To identify possible mechanisms of how HRP-3 modulate neuritogenesis we isolated HRP-3 interaction partners and demonstrate that it binds tubulin through the N-terminal so called HATH region, which is strongly conserved among members of the HRP family. It promotes tubulin polymerization, stabilizes and bundles microtubules. This activity depends on the extranuclear localization of HRP-3. HRP-3 thus could play an important role during neuronal development by its modulation of the neuronal cytoskeleton.
Collapse
Affiliation(s)
- Heba M El-Tahir
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms Universität, Nussallee 11, 53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
45
|
Hepatoma-derived growth factor represses SET and MYND domain containing 1 gene expression through interaction with C-terminal binding protein. J Mol Biol 2009; 386:938-50. [PMID: 19162039 DOI: 10.1016/j.jmb.2008.12.080] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 11/28/2008] [Accepted: 12/26/2008] [Indexed: 11/22/2022]
Abstract
Hepatoma-derived growth factor (HDGF) is a nuclear protein with both mitogenic and angiogenic activity that is highly expressed in the developing heart and vasculature. To date, the mechanism underlying the function of HDGF is unknown. Oligonucleotide microarray analysis was used to gain insights into HDGF function. Adenoviral expression of HDGF significantly (> or =2-fold) downregulated a large group (66) of genes, and increased expression of a relatively small number of genes (9). Two groups of target genes that are involved in cardiovascular development and transcriptional regulation, including the skeletal/cardiac muscle specific SET and MYND domain containing 1 (SMYD1) gene, were validated by real time PCR. This suggested that HDGF could function as a transcriptional repressor. In a one-hybrid system, GBD-HDGF significantly repressed reporter gene activity in a dose-dependent manner. This demonstrated that HDGF has transcriptional repressive activity. Moreover, in G-7 myoblast cells, over-expression of a GFP-HDGF fusion specifically downregulated SMYD1 mRNA expression and the activity of the human SMYD1 promoter. HDGF repressed SMYD1 gene transcription through interaction with a transcriptional corepressor C-terminal binding protein (CtBP). Over-expression of CtBP potentiated the trans-repressive activity of HDGF; on the other hand, knocking down CtBP attenuated the trans-repressive effect of HDGF. HDGF binds CtBP through a non-canonical binding motif (PKDLF) within the PWWP domain, as mutation of DL to AS abolished HDGF and CtBP interaction, and diminished the trans-repressive effect of HDGF without affecting DNA binding. Finally, fluorescent microscopy showed that HDGF induced the nuclear accumulation of CtBP, suggesting that HDGF forms a transcriptional complex with CtBP. Taken together, our data demonstrate that HDGF functions as a transcriptional repressor of the SMYD1 gene through interaction with the transcriptional corepressor CtBP. Because of moderate conservation of the CtBP binding motif in HDGF family members, trans-repressive activity mediated by CtBP may be a common function among HDGF proteins.
Collapse
|
46
|
Structural and Biochemical Advances in Mammalian DNA Methylation. Epigenomics 2008. [DOI: 10.1007/978-1-4020-9187-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
47
|
Brown-Bryan TA, Leoh LS, Ganapathy V, Pacheco FJ, Mediavilla-Varela M, Filippova M, Linkhart TA, Gijsbers R, Debyser Z, Casiano CA. Alternative splicing and caspase-mediated cleavage generate antagonistic variants of the stress oncoprotein LEDGF/p75. Mol Cancer Res 2008; 6:1293-307. [PMID: 18708362 DOI: 10.1158/1541-7786.mcr-08-0125] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
There is increasing evidence that an augmented state of cellular oxidative stress modulates the expression of stress genes implicated in diseases associated with health disparities such as certain cancers and diabetes. Lens epithelium-derived growth factor p75 (LEDGF/p75), also known as DFS70 autoantigen, is emerging as a survival oncoprotein that promotes resistance to oxidative stress-induced cell death and chemotherapy. We previously showed that LEDGF/p75 is targeted by autoantibodies in prostate cancer patients and is overexpressed in prostate tumors, and that its stress survival activity is abrogated during apoptosis. LEDGF/p75 has a COOH-terminally truncated splice variant, p52, whose role in stress survival and apoptosis has not been thoroughly investigated. We observed unbalanced expression of these proteins in a panel of tumor cell lines, with LEDGF/p75 generally expressed at higher levels. During apoptosis, caspase-3 cleaved p52 to generate a p38 fragment that lacked the NH(2)-terminal PWWP domain and failed to transactivate the Hsp27 promoter in reporter assays. However, p38 retained chromatin association properties and repressed the transactivation potential of LEDGF/p75. Overexpression of p52 or its variants with truncated PWWP domains in several tumor cell lines induced apoptosis, an activity that was linked to the presence of an intron-derived COOH-terminal sequence. These results implicate the PWWP domain of p52 in transcription function but not in chromatin association and proapoptotic activities. Consistent with their unbalanced expression in tumor cells, LEDGF/p75 and p52 seem to play antagonistic roles in the cellular stress response and could serve as targets for novel antitumor therapies.
Collapse
Affiliation(s)
- Terry A Brown-Bryan
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Identification and characterization of PWWP domain residues critical for LEDGF/p75 chromatin binding and human immunodeficiency virus type 1 infectivity. J Virol 2008; 82:11555-67. [PMID: 18799576 DOI: 10.1128/jvi.01561-08] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lens epithelium-derived growth factor (LEDGF)/p75 functions as a bimodal tether during lentiviral DNA integration: its C-terminal integrase-binding domain interacts with the viral preintegration complex, whereas the N-terminal PWWP domain can bind to cellular chromatin. The molecular basis for the integrase-LEDGF/p75 interaction is understood, while the mechanism of chromatin binding is unknown. The PWWP domain is homologous to other protein interaction modules that together comprise the Tudor clan. Based on primary amino acid sequence and three-dimensional structural similarities, 24 residues of the LEDGF/p75 PWWP domain were mutagenized to garner essential details of its function during human immunodeficiency virus type 1 (HIV-1) infection. Mutating either Trp-21 or Ala-51, which line the inner wall of a hydrophobic cavity that is common to Tudor clan members, disrupts chromatin binding and virus infectivity. Consistent with a role for chromatin-associated LEDGF/p75 in stimulating integrase activity during infection, recombinant W21A protein is preferentially defective for enhancing integration into chromatinized target DNA in vitro. The A51P mutation corresponds to the S270P change in DNA methyltransferase 3B that causes human immunodeficiency, centromeric instability, and facial anomaly syndrome, revealing a critical role for this amino acid position in the chromatin binding functions of varied PWWP domains. Our results furthermore highlight the requirement for a conserved Glu in the hydrophobic core that mediates interactions between other Tudor clan members and their substrates. This initial systematic mutagenesis of a PWWP domain identifies amino acid residues critical for chromatin binding function and the consequences of their changes on HIV-1 integration and infection.
Collapse
|
49
|
Yokoyama A, Cleary ML. Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell 2008; 14:36-46. [PMID: 18598942 PMCID: PMC2692591 DOI: 10.1016/j.ccr.2008.05.003] [Citation(s) in RCA: 399] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 05/15/2008] [Accepted: 05/15/2008] [Indexed: 12/15/2022]
Abstract
Menin displays the unique ability to either promote oncogenic function in the hematopoietic lineage or suppress tumorigenesis in the endocrine lineage; however, its molecular mechanism of action has not been defined. We demonstrate here that these discordant functions are unified by menin's ability to serve as a molecular adaptor that physically links the MLL (mixed-lineage leukemia) histone methyltransferase with LEDGF (lens epithelium-derived growth factor), a chromatin-associated protein previously implicated in leukemia, autoimmunity, and HIV-1 pathogenesis. LEDGF is required for both MLL-dependent transcription and leukemic transformation. Conversely, a subset of menin mutations in multiple endocrine neoplasia type 1 patients abrogate interaction with LEDGF while preserving MLL interaction but nevertheless compromise MLL/menin-dependent functions. Thus, LEDGF critically associates with MLL and menin at the nexus of transcriptional pathways that are recurrently targeted in diverse diseases.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Chromatin/metabolism
- Chromatin Assembly and Disassembly
- Gene Expression Regulation, Leukemic
- HeLa Cells
- Histone Methyltransferases
- Histone-Lysine N-Methyltransferase/metabolism
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Leukemia/enzymology
- Leukemia/genetics
- Leukemia/metabolism
- Leukemia/pathology
- Mice
- Mice, Inbred C57BL
- Multiple Endocrine Neoplasia Type 1/genetics
- Multiple Endocrine Neoplasia Type 1/metabolism
- Mutation
- Myeloid Progenitor Cells/enzymology
- Myeloid Progenitor Cells/metabolism
- Myeloid-Lymphoid Leukemia Protein/genetics
- Myeloid-Lymphoid Leukemia Protein/metabolism
- Protein Binding
- Protein Methyltransferases
- Protein Structure, Tertiary
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA Interference
- Time Factors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Transduction, Genetic
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- U937 Cells
Collapse
Affiliation(s)
- Akihiko Yokoyama
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | |
Collapse
|
50
|
Laguri C, Duband-Goulet I, Friedrich N, Axt M, Belin P, Callebaut I, Gilquin B, Zinn-Justin S, Couprie J. Human mismatch repair protein MSH6 contains a PWWP domain that targets double stranded DNA. Biochemistry 2008; 47:6199-207. [PMID: 18484749 DOI: 10.1021/bi7024639] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The eukaryotic mismatch repair (MMR) protein MSH6 exhibits a core region structurally and functionally similar to bacterial MutS. However, it possesses an additional N-terminal region (NTR), comprising a PCNA binding motif, a large region of unknown function and a nonspecific DNA binding fragment. Yeast NTR was recently described as an extended tether between PCNA and the core of MSH6 . In contrast, we show that human NTR presents a globular PWWP domain in the region of unknown function. We demonstrate that this PWWP domain binds double-stranded DNA, without any preference for mismatches or nicks, whereas its apparent affinity for single-stranded DNA is about 20 times lower. The S144I mutation, which in human MSH6 causes inherited somatic defects in MMR resulting in increased development of hereditary non polyposis colorectal cancer , is located in the DNA binding surface of the PWWP domain. However, it only moderately affects domain stability, and it does not perturb DNA binding in vitro.
Collapse
Affiliation(s)
- Cédric Laguri
- CEA Laboratoire de Biologie Structurale et Radiobiologie, iBiTec-Saclay, 91191 Gif sur Yvette, France
| | | | | | | | | | | | | | | | | |
Collapse
|