1
|
Thakuria S, Paul S. Salt-bridge mediated conformational dynamics in the figure-of-eight knotted ketol acid reductoisomerase (KARI). Phys Chem Chem Phys 2024; 26:24963-24974. [PMID: 39297222 DOI: 10.1039/d4cp02677b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
The utility of knotted proteins in biological activities has been ambiguous since their discovery. From their evolutionary significance to their functionality in stabilizing the native protein structure, a unilateral conclusion hasn't been achieved yet. While most studies have been performed to understand the stabilizing effect of the knotted fold on the protein chain, more ideas are yet to emerge regarding the interactions in stabilizing the knot. Using classical molecular dynamics (MD) simulations, we have explored the dynamics of the figure-of-eight knotted domain present in ketol acid reductoisomerase (KARI). Our main focus was on the presence of a salt bridge network evident within the knotted region and its role in shaping the conformational dynamics of the knotted chain. Through the potential of mean forces (PMFs) calculation, we have also marked the specific salt bridges that are pivotal in stabilizing the knotted structure. The correlated motions have been further monitored with the help of principal component analysis (PCA) and dynamic cross-correlation maps (DCCM). Furthermore, mutation of the specific salt bridges led to a change in their conformational stability, vindicating their importance.
Collapse
Affiliation(s)
- Sanjib Thakuria
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, 781039, India.
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, 781039, India.
| |
Collapse
|
2
|
El-Sayed SM, Ahmed SA, Gulia K, Lenhard JR, Hassan AHE, Farahat AA. Small Molecules Incorporating Privileged Amidine Moiety as Potential Hits Combating Antibiotic-Resistant Bacteria. Pharmaceuticals (Basel) 2023; 16:1040. [PMID: 37513951 PMCID: PMC10384254 DOI: 10.3390/ph16071040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
The continuing need for the discovery of potent antibacterial agents against antibiotic-resistant pathogens is the driving force for many researchers to design and develop such agents. Herein, we report the design, synthesis, and biological evaluation of amidine derivatives as new antibacterial agents. Compound 13d was the most active in this study against a wide range of antibiotic-resistant, and susceptible, Gram-positive, and Gram-negative bacterial strains. Time-kill assay experiments indicated that compound 13d was an effective bactericidal compound against the tested organisms at the log-phase of bacterial growth. Docking simulations were performed to assess in silico its mode of action regarding UPPS, KARI, and DNA as potential bacterial targets. Results unveiled the importance of structural features of compound 13d in its biological activity including central thiophene ring equipped with left and right pyrrolo[2,3-b]pyridine and phenyl moieties and two terminal amidines cyclized into 4,5-dihydro-1H-imidazol-2-yl functionalities. Collectively, compound 13d represents a possible hit for future development of potent antibacterial agents.
Collapse
Affiliation(s)
- Selwan M El-Sayed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Samar A Ahmed
- Department of Clinical and Administrative Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| | - Kanika Gulia
- Master of Pharmaceutical Sciences Program, California Northstate University, 9700 W Taron Dr., Elk Grove, CA 95757, USA
| | - Justin R Lenhard
- Department of Clinical and Administrative Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| | - Ahmed H E Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Medicinal Chemistry Laboratory, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Abdelbasset A Farahat
- Master of Pharmaceutical Sciences Program, California Northstate University, 9700 W Taron Dr., Elk Grove, CA 95757, USA
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
3
|
Lemaire ON, Müller MC, Kahnt J, Wagner T. Structural Rearrangements of a Dodecameric Ketol-Acid Reductoisomerase Isolated from a Marine Thermophilic Methanogen. Biomolecules 2021; 11:1679. [PMID: 34827677 PMCID: PMC8615647 DOI: 10.3390/biom11111679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/30/2022] Open
Abstract
Ketol-acid reductoisomerase (KARI) orchestrates the biosynthesis of branched-chain amino acids, an elementary reaction in prototrophic organisms as well as a valuable process in biotechnology. Bacterial KARIs belonging to class I organise as dimers or dodecamers and were intensively studied to understand their remarkable specificity towards NADH or NADPH, but also to develop antibiotics. Here, we present the first structural study on a KARI natively isolated from a methanogenic archaea. The dodecameric structure of 0.44-MDa was obtained in two different conformations, an open and close state refined to a resolution of 2.2-Å and 2.1-Å, respectively. These structures illustrate the conformational movement required for substrate and coenzyme binding. While the close state presents the complete NADP bound in front of a partially occupied Mg2+-site, the Mg2+-free open state contains a tartrate at the nicotinamide location and a bound NADP with the adenine-nicotinamide protruding out of the active site. Structural comparisons show a very high conservation of the active site environment and detailed analyses point towards few specific residues required for the dodecamerisation. These residues are not conserved in other dodecameric KARIs that stabilise their trimeric interface differently, suggesting that dodecamerisation, the cellular role of which is still unknown, might have occurred several times in the evolution of KARIs.
Collapse
Affiliation(s)
- Olivier Nicolas Lemaire
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany; (O.N.L.); (M.-C.M.)
| | - Marie-Caroline Müller
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany; (O.N.L.); (M.-C.M.)
| | - Jörg Kahnt
- Core Facility for Mass Spectrometry & Proteomics, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany;
| | - Tristan Wagner
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany; (O.N.L.); (M.-C.M.)
| |
Collapse
|
4
|
Wang X, Zhang X, Peng C, Shi Y, Li H, Xu Z, Zhu W. D3DistalMutation: a Database to Explore the Effect of Distal Mutations on Enzyme Activity. J Chem Inf Model 2021; 61:2499-2508. [PMID: 33938221 DOI: 10.1021/acs.jcim.1c00318] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enzyme activity is affected by amino acid mutations, particularly mutations near the active site. Increasing evidence has shown that distal mutations more than 10 Å away from the active site may significantly affect enzyme activity. However, it is difficult to study the enzyme regulation mechanism of distal mutations due to the lack of a systematic collection of three-dimensional (3D) structures, highlighting distal mutation site and the corresponding enzyme activity change. Therefore, we constructed a distal mutation database, namely, D3DistalMutation, which relates the distal mutation to enzyme activity. As a result, we observed that approximately 80% of distal mutations could affect enzyme activity and 72.7% of distal mutations would decrease or abolish enzyme activity in D3DistalMutation. Only 6.6% of distal mutations in D3DistalMutation could increase enzyme activity, which have great potential to the industrial field. Among these mutations, the Y to F, S to D, and T to D mutations are most likely to increase enzyme activity, which sheds some light on industrial catalysis. Distal mutations decreasing enzyme activity in the allosteric pocket play an indispensable role in allosteric drug design. In addition, the pockets in the enzyme structures are provided to explore the enzyme regulation mechanism of distal mutations. D3DistalMutation is accessible free of charge at https://www.d3pharma.com/D3DistalMutation/index.php.
Collapse
Affiliation(s)
- Xiaoyu Wang
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xinben Zhang
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cheng Peng
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yulong Shi
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Huiyu Li
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
5
|
Kandale A, Patel K, Hussein WM, Wun SJ, Zheng S, Tan L, West NP, Schenk G, Guddat LW, McGeary RP. Analogues of the Herbicide, N-Hydroxy- N-isopropyloxamate, Inhibit Mycobacterium tuberculosis Ketol-Acid Reductoisomerase and Their Prodrugs Are Promising Anti-TB Drug Leads. J Med Chem 2021; 64:1670-1684. [PMID: 33512163 DOI: 10.1021/acs.jmedchem.0c01919] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New drugs to treat tuberculosis (TB) are urgently needed to combat the increase in resistance observed among the current first-line and second-line treatments. Here, we propose ketol-acid reductoisomerase (KARI) as a target for anti-TB drug discovery. Twenty-two analogues of IpOHA, an inhibitor of plant KARI, were evaluated as antimycobacterial agents. The strongest inhibitor of Mycobacterium tuberculosis (Mt) KARI has a Ki value of 19.7 nM, fivefold more potent than IpOHA (Ki = 97.7 nM). This and four other potent analogues are slow- and tight-binding inhibitors of MtKARI. Three compounds were cocrystallized with Staphylococcus aureus KARI and yielded crystals that diffracted to 1.6-2.0 Å resolution. Prodrugs of these compounds possess antimycobacterial activity against H37Rv, a virulent strain of human TB, with the most active compound having an MIC90 of 2.32 ± 0.04 μM. This compound demonstrates a very favorable selectivity window and represents a highly promising lead as an anti-TB agent.
Collapse
Affiliation(s)
- Ajit Kandale
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Campus, Brisbane, Queensland 4072, Australia
| | - Khushboo Patel
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Campus, Brisbane, Queensland 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Campus, Brisbane, Queensland 4072, Australia
| | - Shun Jie Wun
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Campus, Brisbane, Queensland 4072, Australia
| | - Shan Zheng
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Campus, Brisbane, Queensland 4072, Australia
| | - Lendl Tan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Campus, Brisbane, Queensland 4072, Australia
| | - Nicholas P West
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Campus, Brisbane, Queensland 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Campus, Brisbane, Queensland 4072, Australia.,Sustainable Minerals Institute, The University of Queensland, St Lucia Campus, Brisbane, Queensland 4072, Australia.,Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia Campus, Brisbane, Queensland 4072, Australia
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Campus, Brisbane, Queensland 4072, Australia
| | - Ross P McGeary
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Campus, Brisbane, Queensland 4072, Australia
| |
Collapse
|
6
|
Lin X, Kurz JL, Patel KM, Wun SJ, Hussein WM, Lonhienne T, West NP, McGeary RP, Schenk G, Guddat LW. Discovery of a Pyrimidinedione Derivative with Potent Inhibitory Activity against Mycobacterium tuberculosis Ketol-Acid Reductoisomerase. Chemistry 2021; 27:3130-3141. [PMID: 33215746 DOI: 10.1002/chem.202004665] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Indexed: 12/26/2022]
Abstract
New drugs aimed at novel targets are urgently needed to combat the increasing rate of drug-resistant tuberculosis (TB). Herein, the National Cancer Institute Developmental Therapeutic Program (NCI-DTP) chemical library was screened against a promising new target, ketol-acid reductoisomerase (KARI), the second enzyme in the branched-chain amino acid (BCAA) biosynthesis pathway. From this library, 6-hydroxy-2-methylthiazolo[4,5-d]pyrimidine-5,7(4H,6H)-dione (NSC116565) was identified as a potent time-dependent inhibitor of Mycobacterium tuberculosis (Mt) KARI with a Ki of 95.4 nm. Isothermal titration calorimetry studies showed that this inhibitor bound to MtKARI in the presence and absence of the cofactor, nicotinamide adenine dinucleotide phosphate (NADPH), which was confirmed by crystal structures of the compound in complex with closely related Staphylococcus aureus KARI. It is also shown that NSC116565 inhibits the growth of H37Ra and H37Rv strains of Mt with MIC50 values of 2.93 and 6.06 μm, respectively. These results further validate KARI as a TB drug target and show that NSC116565 is a promising lead for anti-TB drug development.
Collapse
Affiliation(s)
- Xin Lin
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
| | - Julia L Kurz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
| | - Khushboo M Patel
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
| | - Shun Jie Wun
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia.,Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Ein Helwan, Helwan University, Helwan, Egypt
| | - Thierry Lonhienne
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
| | - Nicholas P West
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
| | - Ross P McGeary
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
7
|
Chen CY, Chang YC, Lin BL, Huang CH, Tsai MD. Temperature-Resolved Cryo-EM Uncovers Structural Bases of Temperature-Dependent Enzyme Functions. J Am Chem Soc 2019; 141:19983-19987. [PMID: 31829582 DOI: 10.1021/jacs.9b10687] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protein functions are temperature-dependent, but protein structures are usually solved at a single (often low) temperature because of limitations on the conditions of crystal growth or protein vitrification. Here we demonstrate the feasibility of solving cryo-EM structures of proteins vitrified at high temperatures, solve 12 structures of an archaeal ketol-acid reductoisomerase (KARI) vitrified at 4-70 °C, and show that structures of both the Mg2+ form (KARI:2Mg2+) and its ternary complex (KARI:2Mg2+:NADH:inhibitor) are temperature-dependent in correlation with the temperature dependence of enzyme activity. Furthermore, structural analyses led to dissection of the induced-fit mechanism into ligand-induced and temperature-induced effects and to capture of temperature-resolved intermediates of the temperature-induced conformational change. The results also suggest that it is preferable to solve cryo-EM structures of protein complexes at functional temperatures. These studies should greatly expand the landscapes of protein structure-function relationships and enhance the mechanistic analysis of enzymatic functions.
Collapse
Affiliation(s)
- Chin-Yu Chen
- Department of Life Sciences , National Central University , Taoyuan 32001 , Taiwan
| | | | | | - Chun-Hsiang Huang
- Experimental Facility Division , National Synchrotron Radiation Research Center , Hsinchu 30076 , Taiwan
| | - Ming-Daw Tsai
- Institute of Biochemical Sciences , National Taiwan University , Taipei 106 , Taiwan
| |
Collapse
|
8
|
Crystal Structure of IlvC, a Ketol-Acid Reductoisomerase, from Streptococcus Pneumoniae. CRYSTALS 2019. [DOI: 10.3390/cryst9110551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biosynthesis of branched-chain amino acids (BCAAs), including isoleucine, leucine and valine, is required for survival and virulence of a bacterial pathogen such as Streptococcus pneumoniae. IlvC, a ketol-acid reductoisomerase (E.C. 1.1.1.86) with NADP(H) and Mg2+ as cofactors from the pathogenic Streptococcus pneumoniae (SpIlvC), catalyzes the second step in the BCAA biosynthetic pathway. To elucidate the structural basis for the IlvC-mediated reaction, we determined the crystal structure of SpIlvC at 1.69 Å resolution. The crystal structure of SpIlvC contains an asymmetric dimer in which one subunit is in apo-form and the other in NADP(H) and Mg2+-bound form. Crystallographic analysis combined with an activity assay and small-angle X-ray scattering suggested that SpIlvC retains dimeric arrangement in solution and that D83 in the NADP(H) binding site and E195 in the Mg2+ binding site are the most critical in the catalytic activity of SpIlvC. Crystal structures of SpIlvC mutants (R49E, D83G, D191G and E195S) revealed local conformational changes only in the NADP(H) binding site. Taken together, our results establish the molecular mechanism for understanding functions of SpIlvC in pneumococcal growth and virulence.
Collapse
|
9
|
Yu MJ, Wu J, Chen SL. Mechanism and Inhibitor Exploration with Binuclear Mg Ketol-Acid Reductoisomerase: Targeting the Biosynthetic Pathway of Branched-Chain Amino Acids. Chembiochem 2019; 21:381-391. [PMID: 31309701 DOI: 10.1002/cbic.201900363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Indexed: 01/01/2023]
Abstract
Binuclear Mg ketol-acid reductoisomerase (KARI), which converts (S)-2-acetolactate into (R)-2,3-dihydroxyisovalerate, is responsible for the second step of the biosynthesis of branched-chain amino acids in plants and microorganisms and thus serves as a key inhibition target potentially without effects on mammals. Here, through the use of density functional calculations and a chemical model, the KARI-catalyzed reaction has been demonstrated to include the initial deprotonation of the substrate C2 hydroxy group, bridged by the two Mg ions, alkyl migration from the C2-alkoxide carbon atom to the C3-carbonyl carbon atom, and hydride transfer from a nicotinamide adenine dinucleotide phosphate [NAD(P)H] cofactor to C2. A dead-end mechanism with a hydride transferred to the C3 carbonyl group has been ruled out. The nucleophilicity (migratory aptitude) of the migrating carbon atom and the provision of additional negative charge to the di-Mg coordination sphere have significant effects on the steps of alkyl migration and hydride transfer, respectively. Other important mechanistic characteristics are also revealed. Inspired by the mechanism, an inhibitor (2-carboxylate-lactic acid) was designed and predicted by barrier analysis to be effective in inactivating KARI, hence probably enriching the antifungal and antibacterial library. Two types of slow substrate analogues (2-trihalomethyl acetolactic acids and 2-glutaryl lactic acid) were also found.
Collapse
Affiliation(s)
- Ming-Jia Yu
- Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jue Wu
- Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Shi-Lu Chen
- Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
10
|
Chen CY, Chang YC, Lin BL, Lin KF, Huang CH, Hsieh DL, Ko TP, Tsai MD. Use of Cryo-EM To Uncover Structural Bases of pH Effect and Cofactor Bispecificity of Ketol-Acid Reductoisomerase. J Am Chem Soc 2019; 141:6136-6140. [DOI: 10.1021/jacs.9b01354] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Chin-Yu Chen
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | | | | | - Kuan-Fu Lin
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Chun-Hsiang Huang
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Dong-Lin Hsieh
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | | | - Ming-Daw Tsai
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
11
|
NADH/NADPH bi-cofactor-utilizing and thermoactive ketol-acid reductoisomerase from Sulfolobus acidocaldarius. Sci Rep 2018; 8:7176. [PMID: 29739976 PMCID: PMC5940873 DOI: 10.1038/s41598-018-25361-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/19/2018] [Indexed: 11/13/2022] Open
Abstract
Ketol-acid reductoisomerase (KARI) is a bifunctional enzyme in the second step of branched-chain amino acids biosynthetic pathway. Most KARIs prefer NADPH as a cofactor. However, KARI with a preference for NADH is desirable in industrial applications including anaerobic fermentation for the production of branched-chain amino acids or biofuels. Here, we characterize a thermoacidophilic archaeal Sac-KARI from Sulfolobus acidocaldarius and present its crystal structure at a 1.75-Å resolution. By comparison with other holo-KARI structures, one sulphate ion is observed in each binding site for the 2′-phosphate of NADPH, implicating its NADPH preference. Sac-KARI has very high affinity for NADPH and NADH, with KM values of 0.4 μM for NADPH and 6.0 μM for NADH, suggesting that both are good cofactors at low concentrations although NADPH is favoured over NADH. Furthermore, Sac-KARI can catalyze 2(S)-acetolactate (2S-AL) with either cofactor from 25 to 60 °C, but the enzyme has higher activity by using NADPH. In addition, the catalytic activity of Sac-KARI increases significantly with elevated temperatures and reaches an optimum at 60 °C. Bi-cofactor utilization and the thermoactivity of Sac-KARI make it a potential candidate for use in metabolic engineering or industrial applications under anaerobic or harsh conditions.
Collapse
|
12
|
Li KH, Yu YH, Dong HJ, Zhang WB, Ma JC, Wang HH. Biological Functions of ilvC in Branched-Chain Fatty Acid Synthesis and Diffusible Signal Factor Family Production in Xanthomonas campestris. Front Microbiol 2017; 8:2486. [PMID: 29312195 PMCID: PMC5733099 DOI: 10.3389/fmicb.2017.02486] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/29/2017] [Indexed: 12/16/2022] Open
Abstract
In bacteria, the metabolism of branched-chain amino acids (BCAAs) is tightly associated with branched-chain fatty acids (BCFAs) synthetic pathways. Although previous studies have reported on BCFAs biosynthesis, more detailed associations between BCAAs metabolism and BCFAs biosynthesis remain to be addressed. In this study, we deleted the ilvC gene, which encodes ketol-acid reductoisomerase in the BCAAs synthetic pathway, from the Xanthomonas campestris pv. campestris (Xcc) genome. We characterized gene functions in BCFAs biosynthesis and production of the diffusible signal factor (DSF) family signals. Disruption of ilvC caused Xcc to become auxotrophic for valine and isoleucine, and lose the ability to synthesize BCFAs via carbohydrate metabolism. Furthermore, ilvC mutant reduced the ability to produce DSF-family signals, especially branched-chain DSF-family signals, which might be the main reason for Xcc reduction of pathogenesis toward host plants. In this report, we confirmed that BCFAs do not have major functions in acclimatizing Xcc cells to low temperatures.
Collapse
Affiliation(s)
- Kai-Huai Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yong-Hong Yu
- Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Hui-Juan Dong
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Wen-Bin Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Jin-Cheng Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Hai-Hong Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Tadrowski S, Pedroso MM, Sieber V, Larrabee JA, Guddat LW, Schenk G. Metal Ions Play an Essential Catalytic Role in the Mechanism of Ketol-Acid Reductoisomerase. Chemistry 2016; 22:7427-36. [PMID: 27136273 DOI: 10.1002/chem.201600620] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Indexed: 01/13/2023]
Abstract
Ketol-acid reductoisomerase (KARI) is a Mg(2+) -dependent enzyme in the branched-chain amino acid biosynthesis pathway. It catalyses a complex two-part reaction: an alkyl migration followed by a NADPH-dependent reduction. Both reactions occur within the one active site, but in particular, the mechanism of the isomerisation step is poorly understood. Here, using a combination of kinetic, thermodynamic and spectroscopic techniques, the reaction mechanisms of both Escherichia coli and rice KARI have been investigated. We propose a conserved mechanism of catalysis, whereby a hydroxide, bridging the two Mg(2+) ions in the active site, initiates the reaction by abstracting a proton from the C2 alcohol group of the substrate. While the μ-hydroxide-bridged dimetallic centre is pre-assembled in the bacterial enzyme, in plant KARI substrate binding leads to a reduction of the metal-metal distance with the concomitant formation of a hydroxide bridge. Only Mg(2+) is capable of promoting the isomerisation reaction, likely to be due to non-competent substrate binding in the presence of other metal ions.
Collapse
Affiliation(s)
- Sonya Tadrowski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Marcelo M Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Volker Sieber
- Straubing Center of Science, Technische Universität München, Straubing, Germany
| | - James A Larrabee
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT, 05753, USA
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
14
|
Lv Y, Kandale A, Wun SJ, McGeary RP, Williams SJ, Kobe B, Sieber V, Schembri MA, Schenk G, Guddat LW. Crystal structure of
Mycobacterium tuberculosis
ketol‐acid reductoisomerase at 1.0 Å resolution – a potential target for anti‐tuberculosis drug discovery. FEBS J 2016; 283:1184-96. [DOI: 10.1111/febs.13672] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/18/2016] [Accepted: 01/27/2016] [Indexed: 10/22/2022]
Affiliation(s)
- You Lv
- School of Chemistry and Molecular Biosciences and Australian Infectious Disease Research Centre University of Queensland Brisbane Australia
| | - Ajit Kandale
- School of Chemistry and Molecular Biosciences and Australian Infectious Disease Research Centre University of Queensland Brisbane Australia
| | - Shun Jie Wun
- School of Chemistry and Molecular Biosciences and Australian Infectious Disease Research Centre University of Queensland Brisbane Australia
| | - Ross P. McGeary
- School of Chemistry and Molecular Biosciences and Australian Infectious Disease Research Centre University of Queensland Brisbane Australia
| | - Simon J. Williams
- School of Chemistry and Molecular Biosciences and Australian Infectious Disease Research Centre University of Queensland Brisbane Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences and Australian Infectious Disease Research Centre University of Queensland Brisbane Australia
- Institute for Molecular Bioscience University of Queensland Brisbane Australia
| | - Volker Sieber
- Straubing Center of Science Technische Universität München Straubing Germany
| | - Mark A. Schembri
- School of Chemistry and Molecular Biosciences and Australian Infectious Disease Research Centre University of Queensland Brisbane Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences and Australian Infectious Disease Research Centre University of Queensland Brisbane Australia
| | - Luke W. Guddat
- School of Chemistry and Molecular Biosciences and Australian Infectious Disease Research Centre University of Queensland Brisbane Australia
| |
Collapse
|
15
|
Cahn JKB, Brinkmann-Chen S, Buller AR, Arnold FH. Artificial domain duplication replicates evolutionary history of ketol-acid reductoisomerases. Protein Sci 2015; 25:1241-8. [PMID: 26644020 DOI: 10.1002/pro.2852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/01/2015] [Indexed: 11/11/2022]
Abstract
The duplication of protein structural domains has been proposed as a common mechanism for the generation of new protein folds. A particularly interesting case is the class II ketol-acid reductoisomerase (KARI), which putatively arose from an ancestral class I KARI by duplication of the C-terminal domain and corresponding loss of obligate dimerization. As a result, the class II enzymes acquired a deeply embedded figure-of-eight knot. To test this evolutionary hypothesis we constructed a novel class II KARI by duplicating the C-terminal domain of a hyperthermostable class I KARI. The new protein is monomeric, as confirmed by gel filtration and X-ray crystallography, and has the deeply knotted class II KARI fold. Surprisingly, its catalytic activity is nearly unchanged from the parent KARI. This provides strong evidence in support of domain duplication as the mechanism for the evolution of the class II KARI fold and demonstrates the ability of domain duplication to generate topological novelty in a function-neutral manner.
Collapse
Affiliation(s)
- Jackson K B Cahn
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125
| | - Sabine Brinkmann-Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125
| | - Andrew R Buller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125
| |
Collapse
|
16
|
Cofactor specificity motifs and the induced fit mechanism in class I ketol-acid reductoisomerases. Biochem J 2015; 468:475-84. [PMID: 25849365 DOI: 10.1042/bj20150183] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/07/2015] [Indexed: 11/17/2022]
Abstract
Although most sequenced members of the industrially important ketol-acid reductoisomerase (KARI) family are class I enzymes, structural studies to date have focused primarily on the class II KARIs, which arose through domain duplication. In the present study, we present five new crystal structures of class I KARIs. These include the first structure of a KARI with a six-residue β2αB (cofactor specificity determining) loop and an NADPH phosphate-binding geometry distinct from that of the seven- and 12-residue loops. We also present the first structures of naturally occurring KARIs that utilize NADH as cofactor. These results show insertions in the specificity loops that confounded previous attempts to classify them according to loop length. Lastly, we explore the conformational changes that occur in class I KARIs upon binding of cofactor and metal ions. The class I KARI structures indicate that the active sites close upon binding NAD(P)H, similar to what is observed in the class II KARIs of rice and spinach and different from the opening of the active site observed in the class II KARI of Escherichia coli. This conformational change involves a decrease in the bending of the helix that runs between the domains and a rearrangement of the nicotinamide-binding site.
Collapse
|
17
|
Identification and optimization of a novel thermo- and solvent stable ketol-acid reductoisomerase for cell free isobutanol biosynthesis. Biochimie 2015; 108:76-84. [DOI: 10.1016/j.biochi.2014.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 10/27/2014] [Indexed: 11/22/2022]
|
18
|
Brinkmann-Chen S, Cahn JKB, Arnold FH. Uncovering rare NADH-preferring ketol-acid reductoisomerases. Metab Eng 2014; 26:17-22. [PMID: 25172159 DOI: 10.1016/j.ymben.2014.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/01/2014] [Accepted: 08/19/2014] [Indexed: 11/25/2022]
Abstract
All members of the ketol-acid reductoisomerase (KARI) enzyme family characterized to date have been shown to prefer the nicotinamide adenine dinucleotide phosphate hydride (NADPH) cofactor to nicotinamide adenine dinucleotide hydride (NADH). However, KARIs with the reversed cofactor preference are desirable for industrial applications, including anaerobic fermentation to produce branched-chain amino acids. By applying insights gained from structural and engineering studies of this enzyme family to a comprehensive multiple sequence alignment of KARIs, we identified putative NADH-utilizing KARIs and characterized eight whose catalytic efficiencies using NADH were equal to or greater than NADPH. These are the first naturally NADH-preferring KARIs reported and demonstrate that this property has evolved independently multiple times, using strategies unlike those used previously in the laboratory to engineer a KARI cofactor switch.
Collapse
Affiliation(s)
- S Brinkmann-Chen
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 E California Blvd, MC 210-41, Pasadena, CA 91125, USA.
| | - J K B Cahn
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 E California Blvd, MC 210-41, Pasadena, CA 91125, USA.
| | - F H Arnold
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 E California Blvd, MC 210-41, Pasadena, CA 91125, USA.
| |
Collapse
|
19
|
General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH. Proc Natl Acad Sci U S A 2013; 110:10946-51. [PMID: 23776225 DOI: 10.1073/pnas.1306073110] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To date, efforts to switch the cofactor specificity of oxidoreductases from nicotinamide adenine dinucleotide phosphate (NADPH) to nicotinamide adenine dinucleotide (NADH) have been made on a case-by-case basis with varying degrees of success. Here we present a straightforward recipe for altering the cofactor specificity of a class of NADPH-dependent oxidoreductases, the ketol-acid reductoisomerases (KARIs). Combining previous results for an engineered NADH-dependent variant of Escherichia coli KARI with available KARI crystal structures and a comprehensive KARI-sequence alignment, we identified key cofactor specificity determinants and used this information to construct five KARIs with reversed cofactor preference. Additional directed evolution generated two enzymes having NADH-dependent catalytic efficiencies that are greater than the wild-type enzymes with NADPH. High-resolution structures of a wild-type/variant pair reveal the molecular basis of the cofactor switch.
Collapse
|
20
|
Marcheschi RJ, Gronenberg LS, Liao JC. Protein engineering for metabolic engineering: current and next-generation tools. Biotechnol J 2013; 8:545-55. [PMID: 23589443 DOI: 10.1002/biot.201200371] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 03/07/2013] [Accepted: 03/20/2013] [Indexed: 11/10/2022]
Abstract
Protein engineering in the context of metabolic engineering is increasingly important to the field of industrial biotechnology. As the demand for biologically produced food, fuels, chemicals, food additives, and pharmaceuticals continues to grow, the ability to design and modify proteins to accomplish new functions will be required to meet the high productivity demands for the metabolism of engineered organisms. We review advances in selecting, modeling, and engineering proteins to improve or alter their activity. Some of the methods have only recently been developed for general use and are just beginning to find greater application in the metabolic engineering community. We also discuss methods of generating random and targeted diversity in proteins to generate mutant libraries for analysis. Recent uses of these techniques to alter cofactor use; produce non-natural amino acids, alcohols, and carboxylic acids; and alter organism phenotypes are presented and discussed as examples of the successful engineering of proteins for metabolic engineering purposes.
Collapse
Affiliation(s)
- Ryan J Marcheschi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, USA
| | | | | |
Collapse
|
21
|
Bacterial and plant ketol-acid reductoisomerases have different mechanisms of induced fit during the catalytic cycle. J Mol Biol 2012; 424:168-79. [PMID: 23036858 DOI: 10.1016/j.jmb.2012.09.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/09/2012] [Accepted: 09/24/2012] [Indexed: 11/21/2022]
Abstract
Ketol-acid reductoisomerase (KARI) is the second enzyme in the branched-chain amino acid biosynthesis pathway, which is found in plants, fungi and bacteria but not in animals. This difference in metabolism between animals and microorganisms makes KARI an attractive target for the development of antimicrobial agents. Herein we report the crystal structure of Escherichia coli KARI in complex with Mg(2+) and NADPH at 2.3Å resolution. Ultracentrifugation studies confirm that the enzyme exists as a tetramer in solution, and isothermal titration calorimetry shows that the binding of Mg(2+) increases structural disorder while the binding of NADPH increases the structural rigidity of the enzyme. Comparison of the structure of the E. coli KARI-Mg(2+)-NADPH complex with that of enzyme in the absence of cofactors shows that the binding of Mg(2+) and NADPH opens the interface between the N- and C-domains, thereby allowing access for the substrates to bind: the existence of only a small opening between the domains in the crystal structure of the unliganded enzyme signifies restricted access to the active site. This observation contrasts with that in the plant enzyme, where the N-domain can rotate freely with respect to the C-domain until the binding of Mg(2+) and/or NADPH stabilizes the relative positions of these domains. Support is thereby provided for the idea that plant and bacterial KARIs have evolved different mechanisms of induced fit to prepare the active site for catalysis.
Collapse
|
22
|
Virtual screening and evaluation of Ketol-Acid Reducto-Isomerase (KARI) as a putative drug target for Aspergillosis. Clin Proteomics 2012; 9:1. [PMID: 22300397 PMCID: PMC3298717 DOI: 10.1186/1559-0275-9-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 02/03/2012] [Indexed: 01/20/2023] Open
Abstract
Aspergillus is a leading causative agent for fungal morbidity and mortality in immuno-compromised patients. To identify a putative target to design or identify new antifungal drug, against Aspergillus is required. In our previous work, we have analyzed the various biochemical pathways, and we found Ketol Acid Reducto-Isomerase (KARI) an enzyme involves in the amino acid biosynthesis, could be a better target. This enzyme was found to be unique by comparing to host proteome through BLASTp analysis. A homology based model of KARI was generated by Swiss model server. The generated model had been validated by PROCHECK and WHAT IF programs. The Zinc library was generated within the limitation of the Lipinski rule of five, for docking study. Based on the dock-score six molecules have been studied for ADME/TOX analysis and subjected for pharmacophore model generation. The Zinc ID of the potential inhibitors is ZINC00720614, ZINC01068126, ZINC0923, ZINC02090678, ZINC00663057 and ZINC02284065 and found to be pharmacologically active agonist and antagonist of KARI. This study is an attempt to Insilco evaluation of the KARI as a drug target and the screened inhibitors could help in the development of the better drug against Aspergillus.
Collapse
|
23
|
Bastian S, Liu X, Meyerowitz JT, Snow CD, Chen MMY, Arnold FH. Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng 2011; 13:345-52. [PMID: 21515217 DOI: 10.1016/j.ymben.2011.02.004] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 02/04/2011] [Accepted: 02/10/2011] [Indexed: 11/19/2022]
Abstract
2-methylpropan-1-ol (isobutanol) is a leading candidate biofuel for the replacement or supplementation of current fossil fuels. Recent work has demonstrated glucose to isobutanol conversion through a modified amino acid pathway in a recombinant organism. Although anaerobic conditions are required for an economically competitive process, only aerobic isobutanol production has been feasible due to an imbalance in cofactor utilization. Two of the pathway enzymes, ketol-acid reductoisomerase and alcohol dehydrogenase, require nicotinamide dinucleotide phosphate (NADPH); glycolysis, however, produces only nicotinamide dinucleotide (NADH). Here, we compare two solutions to this imbalance problem: (1) over-expression of pyridine nucleotide transhydrogenase PntAB and (2) construction of an NADH-dependent pathway, using engineered enzymes. We demonstrate that an NADH-dependent pathway enables anaerobic isobutanol production at 100% theoretical yield and at higher titer and productivity than both the NADPH-dependent pathway and transhydrogenase over-expressing strain. Our results show how engineering cofactor dependence can overcome a critical obstacle to next-generation biofuel commercialization.
Collapse
Affiliation(s)
- Sabine Bastian
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | |
Collapse
|
24
|
Marzoa J, Sánchez S, Ferreirós CM, Criado MT. Identification of Neisseria meningitidis outer membrane vesicle complexes using 2-D high resolution clear native/SDS-PAGE. J Proteome Res 2010; 9:611-9. [PMID: 19888731 DOI: 10.1021/pr9006409] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The identification and characterization of meningococcal outer membrane vesicle complexes can be important for gaining an in-depth understaining of their structure and functionality. Analysis of the vesicle complexome by 'traditional' 2-D analysis, in which isoelectrofocusing is used for separation in the first dimension, is hampered by the high hydrophobicity and extreme isoelectric points of many relevant proteins. Analysis of the meningococcal outer membrane vesicle complexome using Blue Native (nondenaturing) electrophoresis instead of isoelectrofocusing in the first dimension showed several porin complexes, but their composition could not be clearly resolved after separation by SDS-PAGE in the second dimension. In this work, using a recently described native separation technique -high resolution Clear Native Electrophoresis-and different bidimensional approaches, we were able to demonstrate the presence of relevant outer membrane complexes which could be resolved with a higher resolution than in previous analysis. The most relevant were nine porin complexes formed by different combinations of the meningococcal PorA, PorB and RmpM proteins, and comparison with the complexes formed in specific knockout mutants allowed us to infer the relevance of each porin in the formation of each complex.
Collapse
Affiliation(s)
- Juan Marzoa
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Campus Sur, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
25
|
Binder S. Branched-Chain Amino Acid Metabolism in Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2010; 8:e0137. [PMID: 22303262 PMCID: PMC3244963 DOI: 10.1199/tab.0137] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Valine, leucine and isoleucine form the small group of branched-chain amino acids (BCAAs) classified by their small branched hydrocarbon residues. Unlike animals, plants are able to de novo synthesize these amino acids from pyruvate, 2-oxobutanoate and acetyl-CoA. In plants, biosynthesis follows the typical reaction pathways established for the formation of these amino acids in microorganisms. Val and Ile are synthesized in two parallel pathways using a single set of enzymes. The pathway to Leu branches of from the final intermediate of Val biosynthesis. The formation of this amino acid requires a three-step pathway generating a 2-oxoacid elongated by a methylene group. In Arabidopsis thaliana and other Brassicaceae, a homologous three-step pathway is also involved in Met chain elongation required for the biosynthesis of aliphatic glucosinolates, an important class of specialized metabolites in Brassicaceae. This is a prime example for the evolutionary relationship of pathways from primary and specialized metabolism. Similar to animals, plants also have the ability to degrade BCAAs. The importance of BCAA turnover has long been unclear, but now it seems apparent that the breakdown process might by relevant under certain environmental conditions. In this review, I summarize the current knowledge about BCAA metabolism, its regulation and its particular features in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Stefan Binder
- Institute Molecular Botany, Ulm University, Albert-Einstein-Allee 11, 89060 Ulm, Germany Address correspondence to
| |
Collapse
|
26
|
Leung EWW, Guddat LW. Conformational changes in a plant ketol-acid reductoisomerase upon Mg(2+) and NADPH binding as revealed by two crystal structures. J Mol Biol 2009; 389:167-82. [PMID: 19362563 DOI: 10.1016/j.jmb.2009.04.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 04/02/2009] [Accepted: 04/04/2009] [Indexed: 11/17/2022]
Abstract
Ketol-acid reductoisomerase (KARI; EC 1.1.1.86) is an enzyme in the branched-chain amino acid biosynthesis pathway where it catalyzes the conversion of 2-acetolactate into (2R)-2,3-dihydroxy-3-isovalerate or the conversion of 2-aceto-2-hydroxybutyrate into (2R,3R)-2,3-dihydroxy-3-methylvalerate. KARI catalyzes two reactions-alkyl migration and reduction-and requires Mg(2+) and NADPH for activity. To date, the only reported structures for a plant KARI are those of the spinach enzyme-Mn(2+)-(phospho)ADP ribose-(2R,3R)-2,3-dihydroxy-3-methylvalerate complex and the spinach KARI-Mg(2)(+)-NADPH-N-hydroxy-N-isopropyloxamate complex, where N-hydroxy-N-isopropyloxamate is a predicted transition-state analog. These studies demonstrated that the enzyme consists of two domains, N-domain and C-domain, with the active site at the interface of these domains. Here, we have determined the structures of the rice KARI-Mg(2+) and rice KARI-Mg(2)(+)-NADPH complexes to 1.55 A and 2.80 A resolutions, respectively. In comparing the structures of all the complexes, several differences are observed. Firstly, the N-domain is rotated up to 15 degrees relative to the C-domain, expanding the active site by up to 4 A. Secondly, an alpha-helix in the C-domain that includes residues V510-T519 and forms part of the active site moves by approximately 3.9 A upon binding of NADPH. Thirdly, the 15 C-terminal amino acid residues in the rice KARI-Mg(2+) complex are disordered. In the rice KARI-Mg(2)(+)-NADPH complex and the spinach KARI structures, many of the 15 residues bind to NADPH and the N-domain and cover the active site. Fourthly, the location of the metal ions within the active site can vary by up to 2.7 A. The new structures allow us to propose that an induced-fit mechanism operates to (i) allow substrate to enter the active site, (ii) close over the active site during catalysis, and (iii) open the active site to facilitate product release.
Collapse
|
27
|
Marzoa J, Abel A, Sánchez S, Chan H, Feavers I, Criado MT, Ferreirós CM. Analysis of outer membrane porin complexes of Neisseria meningitidis in wild-type and specific knock-out mutant strains. Proteomics 2009; 9:648-56. [DOI: 10.1002/pmic.200800486] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Hiett KL, Stintzi A, Andacht TM, Kuntz RL, Seal BS. Genomic differences between Campylobacter jejuni isolates identify surface membrane and flagellar function gene products potentially important for colonizing the chicken intestine. Funct Integr Genomics 2008; 8:407-20. [PMID: 18592283 DOI: 10.1007/s10142-008-0087-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 05/21/2008] [Accepted: 06/01/2008] [Indexed: 11/27/2022]
Abstract
Campylobacter spp. are one of the leading bacterial etiologic agents of acute human gastroenteritis among industrialized countries. Poultry are implicated as a major source of the organism for human illness; however, the factors involved with colonization of poultry gastrointestinal systems remain unclear. Genomics and proteomics analyses were used to identify differences between poor- versus robust-colonizing Campylobacter jejuni isolates, 11168(GS) and A74/C, respectively. Sequence analyses of subtracted DNA resulted in A74/C-specifc genes similar to a dimethyl sulfoxide reductase, a serine protease, polysaccharide modification proteins, and restriction modification proteins. DNA microarray analyses were performed for comparison of A74/C to the complete genome sequences published for two C. jejuni. A total of 114 genes (7.1%) were determined absent from A74/C relative to those genomes. Additionally, proteomics was completed on both soluble and membrane protein extracts from 11168(GS) and A74/C. Variation in protein expression and physical characteristics such as pI was detected between the two isolates that included the major outer membrane protein, flagella, and aconitate hydratase. Several proteins including cysteine synthase and a Ni/Fe hydrogenase were determined to be differentially present between the two isolates. Finally, DNA hybridization analyses of 19 C. jejuni isolates recovered from chickens and humans worldwide over the past 20 years were performed to determine the distribution of a subset of differentially identified gene sequences.
Collapse
Affiliation(s)
- Kelli L Hiett
- Agricultural Research Service, Poultry Microbiological Safety Research Unit, Russell Research Center, United States Department of Agriculture, P.O. Box 5677, Athens, GA, 30604-5677, USA.
| | | | | | | | | |
Collapse
|
29
|
Horie K, Rakwal R, Hirano M, Shibato J, Nam HW, Kim YS, Kouzuma Y, Agrawal GK, Masuo Y, Yonekura M. Proteomics of two cultivated mushrooms Sparassis crispa and Hericium erinaceum provides insight into their numerous functional protein components and diversity. J Proteome Res 2008; 7:1819-35. [PMID: 18380476 DOI: 10.1021/pr070369o] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mushroom can be defined as a macrofungus with a distinctive fruiting body. Mushrooms of class Basidiomycete are primarily wood degradation fungi, but serve as food and a part of traditional medicine used by humans. Although their life cycle is fairly well-established, the information on the molecular components, especially proteins are very limited. Here, we report proteomics analysis of two edible mushrooms (fruiting bodies) Sparassis crispa and Hericium erinaceum using one- and two-dimensional gel electrophoresis (1-DGE and 2-DGE) based complementary proteomics approaches. 1-DGE coupled with liquid chromatography and mass spectrometry identified 77 (60 nonredundant proteins) and 121 (88 nonredundant proteins) proteins from S. crispa and H. erinaceum, respectively. 2-DGE analysis revealed 480 and 570 protein spots stained with colloidal coomassie brilliant blue in S. crispa and H. erinaceum, respectively. Of the 71 and 115 selected protein spots from S. crispa and H. erinaceum 2D gel blots on polyvinyldifluoride (PVDF) membranes, respectively, 29 and 35 nonredundant proteins were identified by N-terminal amino acid sequencing. Identified nonredundant proteins from 1- or 2-DGE belonged to 19 functional categories. Twenty-one proteins were found common in both S. crispa and H. erinaceum proteomes, including 14-3-3 protein and septin. Together this study provides evidence for the presence of a large number of functionally diverse proteins, expressed in the fruiting body of two economically important mushrooms, S. crispa and H. erinaceum. Data obtained from 1-DGE and 2-DGE analyses is accessible through the mushroom proteomics portal http://foodfunc.agr.ibaraki.ac.jp/mushprot.html.
Collapse
Affiliation(s)
- Kiyotaka Horie
- Food Function Laboratory, School of Agriculture, Ibaraki University, Ami 300-0393, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wang ZJ, Xu XP, Fan KQ, Jia CJ, Yang KQ. Sample preparation for two-dimensional blue native/SDS polyacrylamide gel electrophoresis in the identification of Streptomyces coelicolor cytoplasmic protein complexes. ACTA ACUST UNITED AC 2007; 70:565-72. [PMID: 17399796 DOI: 10.1016/j.jbbm.2007.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2006] [Revised: 11/28/2006] [Accepted: 01/07/2007] [Indexed: 10/23/2022]
Abstract
Ammonium sulfate precipitation was tested as a sample preparation step for BN-PAGE analyses of S. coelicolor cytoplasmic protein complexes. A procedure of sample preparation compatible with two-dimensional BN/SDS-PAGE was established and used to visualize protein complexes. To validate the sample preparation procedure, representative protein complexes were identified. Several previously characterized protein complexes were rediscovered and their reported oligomeric states reconfirmed. In addition, we identified new but plausible interactions that have never been reported before. Our work provides useful reference for the wide application of BN-PAGE in protein interaction study.
Collapse
Affiliation(s)
- Zhi-Jun Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100080, PR China.
| | | | | | | | | |
Collapse
|
31
|
Abstract
Knotted proteins are more commonly observed in recent years due to the enormously growing number of structures in the Protein Data Bank (PDB). Studies show that the knot regions contribute to both ligand binding and enzyme activity in proteins such as the chromophore-binding domain of phytochrome, ketol–acid reductoisomerase or SpoU methyltransferase. However, there are still many misidentified knots published in the literature due to the absence of a convenient web tool available to the general biologists. Here, we present the first web server to detect the knots in proteins as well as provide information on knotted proteins in PDB—the protein KNOT (pKNOT) web server. In pKNOT, users can either input PDB ID or upload protein coordinates in the PDB format. The pKNOT web server will detect the knots in the protein using the Taylor's smoothing algorithm. All the detected knots can be visually inspected using a Java-based 3D graphics viewer. We believe that the pKNOT web server will be useful to both biologists in general and structural biologists in particular.
Collapse
Affiliation(s)
- Yan-Long Lai
- Institute of Bioinformatics, National Chiao Tung University, Hsinchu 30050, Taiwan and Core Facility for Structural Bioinformatics, National Chiao Tung University, Hsinchu 30050, Taiwan
| | - Shih-Chung Yen
- Institute of Bioinformatics, National Chiao Tung University, Hsinchu 30050, Taiwan and Core Facility for Structural Bioinformatics, National Chiao Tung University, Hsinchu 30050, Taiwan
| | - Sung-Huan Yu
- Institute of Bioinformatics, National Chiao Tung University, Hsinchu 30050, Taiwan and Core Facility for Structural Bioinformatics, National Chiao Tung University, Hsinchu 30050, Taiwan
| | - Jenn-Kang Hwang
- Institute of Bioinformatics, National Chiao Tung University, Hsinchu 30050, Taiwan and Core Facility for Structural Bioinformatics, National Chiao Tung University, Hsinchu 30050, Taiwan
- *To whom correspondence should be addressed. +886-3-513-1337+886-3-572-9288
| |
Collapse
|
32
|
Virnau P, Mirny LA, Kardar M. Intricate knots in proteins: Function and evolution. PLoS Comput Biol 2006; 2:e122. [PMID: 16978047 PMCID: PMC1570178 DOI: 10.1371/journal.pcbi.0020122] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 07/28/2006] [Indexed: 11/19/2022] Open
Abstract
Our investigation of knotted structures in the Protein Data Bank reveals the most complicated knot discovered to date. We suggest that the occurrence of this knot in a human ubiquitin hydrolase might be related to the role of the enzyme in protein degradation. While knots are usually preserved among homologues, we also identify an exception in a transcarbamylase. This allows us to exemplify the function of knots in proteins and to suggest how they may have been created. Several protein structures incorporate a rather unusual structural feature: a knot in the polypeptide backbone. These knots are extremely rare, but their occurrence is likely connected to protein function in as yet unexplored fashion. The authors' analysis of the complete Protein Data Bank reveals several new knots that, along with previously discovered ones, may shed light on such connections. In particular, they identify the most complex knot discovered to date in a human protein, and suggest that its entangled topology protects it against unfolding and degradation. Knots in proteins are typically preserved across species and sometimes even across kingdoms. However, there is also one example of a knot in a protein that is not present in a closely related structure. The emergence of this particular knot is accompanied by a shift in the enzymatic function of the protein. It is suggested that the simple insertion of a short DNA fragment into the gene may suffice to cause this alteration of structure and function.
Collapse
Affiliation(s)
- Peter Virnau
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
| | | | | |
Collapse
|
33
|
McCourt JA, Duggleby RG. Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. Amino Acids 2006; 31:173-210. [PMID: 16699828 DOI: 10.1007/s00726-005-0297-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 12/09/2005] [Indexed: 11/25/2022]
Abstract
The branched-chain amino acids are synthesized by plants, fungi and microorganisms, but not by animals. Therefore, the enzymes of this pathway are potential target sites for the development of antifungal agents, antimicrobials and herbicides. Most research has focused upon the first enzyme in this biosynthetic pathway, acetohydroxyacid synthase (AHAS) largely because it is the target site for many commercial herbicides. In this review we provide a brief overview of the important properties of each enzyme within the pathway and a detailed summary of the most recent AHAS research, against the perspective of work that has been carried out over the past 50 years.
Collapse
Affiliation(s)
- J A McCourt
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Australia
| | | |
Collapse
|