1
|
Koszła O, Sołek P. Misfolding and aggregation in neurodegenerative diseases: protein quality control machinery as potential therapeutic clearance pathways. Cell Commun Signal 2024; 22:421. [PMID: 39215343 PMCID: PMC11365204 DOI: 10.1186/s12964-024-01791-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
The primary challenge in today's world of neuroscience is the search for new therapeutic possibilities for neurodegenerative disease. Central to these disorders lies among other factors, the aberrant folding, aggregation, and accumulation of proteins, resulting in the formation of toxic entities that contribute to neuronal degeneration. This review concentrates on the key proteins such as β-amyloid (Aβ), tau, and α-synuclein, elucidating the intricate molecular events underlying their misfolding and aggregation. We critically evaluate the molecular mechanisms governing the elimination of misfolded proteins, shedding light on potential therapeutic strategies. We specifically examine pathways such as the endoplasmic reticulum (ER) and unfolded protein response (UPR), chaperones, chaperone-mediated autophagy (CMA), and the intersecting signaling of Keap1-Nrf2-ARE, along with autophagy connected through p62. Above all, we emphasize the significance of these pathways as protein quality control mechanisms, encompassing interventions targeting protein aggregation, regulation of post-translational modifications, and enhancement of molecular chaperones and clearance. Additionally, we focus on current therapeutic possibilities and new, multi-target approaches. In conclusion, this review systematically consolidates insights into emerging therapeutic strategies predicated on protein aggregates clearance.
Collapse
Affiliation(s)
- Oliwia Koszła
- Department of Biopharmacy, Medical University of Lublin, 4A Chodzki St., Lublin, 20-093, Poland.
| | - Przemysław Sołek
- Department of Biopharmacy, Medical University of Lublin, 4A Chodzki St., Lublin, 20-093, Poland
- Department of Biochemistry and Toxicology, University of Life Sciences, 13 Akademicka St, Lublin, 20-950, Poland
| |
Collapse
|
2
|
Chen YJ, Cheng SY, Liu CH, Tsai WC, Wu HH, Huang MD. Exploration of the truncated cytosolic Hsp70 in plants - unveiling the diverse T1 lineage and the conserved T2 lineage. FRONTIERS IN PLANT SCIENCE 2023; 14:1279540. [PMID: 38034583 PMCID: PMC10687569 DOI: 10.3389/fpls.2023.1279540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
The 70-kDa heat shock proteins (Hsp70s) are chaperone proteins involved in protein folding processes. Truncated Hsp70 (Hsp70T) refers to the variant lacking a conserved C-terminal motif, which is crucial for co-chaperone interactions or protein retention. Despite their significance, the characteristics of Hsp70Ts in plants remain largely unexplored. In this study, we performed a comprehensive genome-wide analysis of 192 sequenced plant and green algae genomes to investigate the distribution and features of Hsp70Ts. Our findings unveil the widespread occurrence of Hsp70Ts across all four Hsp70 forms, including cytosolic, endoplasmic reticulum, mitochondrial, and chloroplast Hsp70s, with cytosolic Hsp70T being the most prevalent and abundant subtype. Cytosolic Hsp70T is characterized by two distinct lineages, referred to as T1 and T2. Among the investigated plant and green algae species, T1 genes were identified in approximately 60% of cases, showcasing a variable gene count ranging from one to several dozens. In contrast, T2 genes were prevalent across the majority of plant genomes, usually occurring in fewer than five gene copies per species. Sequence analysis highlights that the putative T1 proteins exhibit higher similarity to full-length cytosolic Hsp70s in comparison to T2 proteins. Intriguingly, the T2 lineage demonstrates a higher level of conservation within their protein sequences, whereas the T1 lineage presents a diverse range in the C-terminal and SBDα region, leading to categorization into four distinct subtypes. Furthermore, we have observed that T1-rich species characterized by the possession of 15 or more T1 genes exhibit an expansion of T1 genes into tandem gene clusters. The T1 gene clusters identified within the Laurales order display synteny with clusters found in a species of the Chloranthales order and another species within basal angiosperms, suggesting a conserved evolutionary relationship of T1 gene clusters among these plants. Additionally, T2 genes demonstrate distinct expression patterns in seeds and under heat stress, implying their potential roles in seed development and stress response.
Collapse
Affiliation(s)
- Yi-Jing Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Sou-Yu Cheng
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Cheng-Han Liu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wen-Chieh Tsai
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-Hsin Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ming-Der Huang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Abstract
The Hsp70/Hsp90 organising protein (Hop, also known as stress-inducible protein 1/STI1/STIP1) has received considerable attention for diverse cellular functions in both healthy and diseased states. There is extensive evidence that intracellular Hop is a co-chaperone of the major chaperones Hsp70 and Hsp90, playing an important role in the productive folding of Hsp90 client proteins, although recent evidence suggests that eukaryotic Hop is regulatory within chaperone complexes rather than essential. Consequently, Hop is implicated in many key signalling pathways, including aberrant pathways leading to cancer. Hop is also secreted, and it is now well established that Hop interacts with the prion protein, PrPC, to mediate multiple signalling events. The intracellular and extracellular forms of Hop most likely represent two different isoforms, although the molecular determinants of these divergent functions are yet to be identified. There is also a growing body of research that reports the involvement of Hop in cellular activities that appear independent of either chaperones or PrPC. While the various cellular functions of Hop have been described, its biological function remains elusive. However, recent knockout studies in mammals suggest that Hop has an important role in embryonic development. This review provides a critical overview of the latest molecular, cellular and biological research on Hop, critically evaluating its function in healthy systems and how this function is adapted in diseased states.
Collapse
|
4
|
Khan A, Khan V, Pandey K, Sopory SK, Sanan-Mishra N. Thermo-Priming Mediated Cellular Networks for Abiotic Stress Management in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:866409. [PMID: 35646001 PMCID: PMC9136941 DOI: 10.3389/fpls.2022.866409] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/25/2022] [Indexed: 05/05/2023]
Abstract
Plants can adapt to different environmental conditions and can survive even under very harsh conditions. They have developed elaborate networks of receptors and signaling components, which modulate their biochemistry and physiology by regulating the genetic information. Plants also have the abilities to transmit information between their different parts to ensure a holistic response to any adverse environmental challenge. One such phenomenon that has received greater attention in recent years is called stress priming. Any milder exposure to stress is used by plants to prime themselves by modifying various cellular and molecular parameters. These changes seem to stay as memory and prepare the plants to better tolerate subsequent exposure to severe stress. In this review, we have discussed the various ways in which plants can be primed and illustrate the biochemical and molecular changes, including chromatin modification leading to stress memory, with major focus on thermo-priming. Alteration in various hormones and their subsequent role during and after priming under various stress conditions imposed by changing climate conditions are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
5
|
Liu M, Zaman R, Sawczak V, Periasamy A, Sun F, Zaman K. S-nitrosothiols signaling in cystic fibrosis airways. J Biosci 2021. [DOI: 10.1007/s12038-021-00223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Zhang WJ, Wang RQ, Li LT, Fu W, Chen HC, Liu ZF. Hsp90 is involved in pseudorabies virus virion assembly via stabilizing major capsid protein VP5. Virology 2020; 553:70-80. [PMID: 33242760 DOI: 10.1016/j.virol.2020.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
Many viruses utilize molecular chaperone heat shock protein 90 (Hsp90) for protein folding and stabilization, however, the role of Hsp90 in herpesvirus lifecycle is obscure. Here, we provide evidence that Hsp90 participates in pseudorabies virus (PRV) replication. Viral growth kinetics assays show that Hsp90 inhibitor geldanamycin (GA) abrogates PRV replication at the post-penetration step. Transmission electron microscopy demonstrates that dysfunction of Hsp90 diminishes the quantity of PRV nucleocapsids. Overexpression and knockdown of Hsp90 suggest that de novo Hsp90 is involved in PRV replication. Mechanismly, dysfunction of Hsp90 inhibits PRV major capsid protein VP5 expression. Co-immunoprecipitation and indirect immunofluorescence assays indicate that Hsp90 interacts with VP5. Interestingly, Hsp70, a collaborator of Hsp90, also interacts with VP5, but doesn't affect PRV growth. Finally, inhibition of Hsp90 results in PRV VP5 degradation in a proteasome-dependent manner. Collectively, our data suggest that Hsp90 contributes to PRV virion assembly and replication via stabilization of VP5.
Collapse
Affiliation(s)
- Wen-Jing Zhang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ren-Qi Wang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin-Tao Li
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen Fu
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huan-Chun Chen
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zheng-Fei Liu
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
7
|
Nitika, Porter CM, Truman AW, Truttmann MC. Post-translational modifications of Hsp70 family proteins: Expanding the chaperone code. J Biol Chem 2020; 295:10689-10708. [PMID: 32518165 PMCID: PMC7397107 DOI: 10.1074/jbc.rev120.011666] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/08/2020] [Indexed: 02/01/2023] Open
Abstract
Cells must be able to cope with the challenge of folding newly synthesized proteins and refolding those that have become misfolded in the context of a crowded cytosol. One such coping mechanism that has appeared during evolution is the expression of well-conserved molecular chaperones, such as those that are part of the heat shock protein 70 (Hsp70) family of proteins that bind and fold a large proportion of the proteome. Although Hsp70 family chaperones have been extensively examined for the last 50 years, most studies have focused on regulation of Hsp70 activities by altered transcription, co-chaperone "helper" proteins, and ATP binding and hydrolysis. The rise of modern proteomics has uncovered a vast array of post-translational modifications (PTMs) on Hsp70 family proteins that include phosphorylation, acetylation, ubiquitination, AMPylation, and ADP-ribosylation. Similarly to the pattern of histone modifications, the histone code, this complex pattern of chaperone PTMs is now known as the "chaperone code." In this review, we discuss the history of the Hsp70 chaperone code, its currently understood regulation and functions, and thoughts on what the future of research into the chaperone code may entail.
Collapse
Affiliation(s)
- Nitika
- Department of Biological Sciences, University of North Carolina, Charlotte, North Carolina, USA
| | - Corey M Porter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrew W Truman
- Department of Biological Sciences, University of North Carolina, Charlotte, North Carolina, USA
| | - Matthias C Truttmann
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Geriatrics Center, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Synovial Fluid Cell Proteomic Analysis Identifies Upregulation of Alpha-Taxilin Proteins in Rheumatoid Arthritis: A Potential Prognostic Marker. J Immunol Res 2020; 2020:4897983. [PMID: 32377534 PMCID: PMC7195675 DOI: 10.1155/2020/4897983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/13/2020] [Indexed: 12/28/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease affecting the joints and surrounding tissue. Identification of novel proteins associated with the progression of a disease is a prerequisite for understanding the pathogenesis of RA. The present study was undertaken to identify the potential biomarkers from a less explored biological sample such as synovial fluid (SF) cells which is specific for RA and to analyze their functional aspects using proteomic approach. Two-dimensional gel electrophoresis (2-DE) was performed using synovial fluid cells of RA and osteoarthritis (OA) patients, and 7 differentially expressed proteins were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS/MS). Αlpha-Taxilin (α-Taxilin) has been found as one of the novel, significantly up regulated protein in RA. It has been validated in the synovium, synovial fluid (SF), SF cells, and plasma samples by Western blot, enzyme-linked immunosorbent assay (ELISA), fluorescence-activated cell sorting (FACS), immunohistochemistry (IHC), and real-time PCR. The identification of autoantibody against α-Taxilin and in silico studies has further helped us to understand its involvement in disease mechanism. The present study will therefore provide knowledge towards the etiology of RA that pave the way for suitable prognostic marker identification along with other clinical parameters.
Collapse
|
9
|
Singh JK, Hutt DM, Tait B, Guy NC, Sivils JC, Ortiz NR, Payan AN, Komaragiri SK, Owens JJ, Culbertson D, Blair LJ, Dickey C, Kuo SY, Finley D, Dyson HJ, Cox MB, Chaudhary J, Gestwicki JE, Balch WE. Management of Hsp90-Dependent Protein Folding by Small Molecules Targeting the Aha1 Co-Chaperone. Cell Chem Biol 2020; 27:292-305.e6. [PMID: 32017918 PMCID: PMC7144688 DOI: 10.1016/j.chembiol.2020.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/18/2019] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
Hsp90 plays an important role in health and is a therapeutic target for managing misfolding disease. Compounds that disrupt co-chaperone delivery of clients to Hsp90 target a subset of Hsp90 activities, thereby minimizing the toxicity of pan-Hsp90 inhibitors. Here, we have identified SEW04784 as a first-in-class inhibitor of the Aha1-stimulated Hsp90 ATPase activity without inhibiting basal Hsp90 ATPase. Nuclear magnetic resonance analysis reveals that SEW84 binds to the C-terminal domain of Aha1 to weaken its asymmetric binding to Hsp90. Consistent with this observation, SEW84 blocks Aha1-dependent Hsp90 chaperoning activities, including the in vitro and in vivo refolding of firefly luciferase, and the transcriptional activity of the androgen receptor in cell-based models of prostate cancer and promotes the clearance of phosphorylated tau in cellular and tissue models of neurodegenerative tauopathy. We propose that SEW84 provides a novel lead scaffold for developing therapeutic approaches to treat proteostatic disease.
Collapse
Affiliation(s)
- Jay K Singh
- Department of Molecular Medicine, Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Darren M Hutt
- Department of Molecular Medicine, Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bradley Tait
- Brad Tait Enterprise LLC, 80 Christian Way, North Andover, MA 01845, USA
| | - Naihsuan C Guy
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Jeffrey C Sivils
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Nina R Ortiz
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Ashley N Payan
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79902, USA
| | | | | | - David Culbertson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Laura J Blair
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, University of South Florida, Tampa, FL 33613, USA
| | - Chad Dickey
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, University of South Florida, Tampa, FL 33613, USA
| | - Szu Yu Kuo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Dan Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marc B Cox
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Jaideep Chaudhary
- School of Arts and Sciences, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - William E Balch
- Department of Molecular Medicine, Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
10
|
Yan P, Wang T, Guzman ML, Peter RI, Chiosis G. Chaperome Networks - Redundancy and Implications for Cancer Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1243:87-99. [PMID: 32297213 PMCID: PMC7279512 DOI: 10.1007/978-3-030-40204-4_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The chaperome is a large family of proteins composed of chaperones, co-chaperones and a multitude of other factors. Elegant studies in yeast and other organisms have paved the road to how we currently understand the complex organization of this large family into protein networks. The goal of this chapter is to provide an overview of chaperome networks in cancer cells, with a focus on two cellular states defined by chaperome network organization. One state characterized by chaperome networks working in isolation and with little overlap, contains global chaperome networks resembling those of normal, non-transformed, cells. We propose that in this state, redundancy in chaperome networks results in a tumor type unamenable for single-agent chaperome therapy. The second state comprises chaperome networks interconnected in response to cellular stress, such as MYC hyperactivation. This is a state where no redundant pathways can be deployed, and is a state of vulnerability, amenable for chaperome therapy. We conclude by proposing a change in how we discover and implement chaperome inhibitor strategies, and suggest an approach to chaperome therapy where the properties of chaperome networks, rather than genetics or client proteins, are used in chaperome inhibitor implementation.
Collapse
Affiliation(s)
- Pengrong Yan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tai Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Monica L Guzman
- Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Radu I Peter
- Department of Mathematics, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
11
|
Adão R, Zanphorlin LM, Lima TB, Sriranganadane D, Dahlström KM, Pinheiro GMS, Gozzo FC, Barbosa LRS, Ramos CHI. Revealing the interaction mode of the highly flexible Sorghum bicolor Hsp70/Hsp90 organizing protein (Hop): A conserved carboxylate clamp confers high affinity binding to Hsp90. J Proteomics 2018; 191:191-201. [PMID: 29425735 DOI: 10.1016/j.jprot.2018.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/02/2018] [Accepted: 02/04/2018] [Indexed: 12/27/2022]
Abstract
Proteostasis is dependent on the Hsp70/Hsp90 system (the two chaperones and their co-chaperones). Of these, Hop (Hsp70/Hsp90 organizing protein), also known as Sti1, forms an important scaffold to simultaneously binding to both Hsp70 and Hsp90. Hop/Sti1 has been implicated in several disease states, for instance cancer and transmissible spongiform encephalopathies. Therefore, human and yeast homologous have been better studied and information on plant homologous is still limited, even though plants are continuously exposed to environmental stress. Particularly important is the study of crops that are relevant for agriculture, such as Sorghum bicolor, a C4 grass that is among the five most important cereals and is considered as a bioenergy feedstock. To increase the knowledge on plant chaperones, the hop putative gene for Sorghum bicolor was cloned and the biophysical and structural characterization of the protein was done by cross-linking coupled to mass spectroscopy, small angle X-ray scattering and structural modeling. Additionally, the binding to a peptide EEVD motif, which is present in both Hsp70 and Hsp90, was studied by isothermal titration calorimetry and hydrogen/deuterium exchange and the interaction pattern structurally modeled. The results indicate SbHop as a highly flexible, mainly alpha-helical monomer consisting of nine tetratricopeptide repeat domains, of which one confers high affinity binding to Hsp90 through a conserved carboxylate clamp. Moreover, the present insights into the conserved interactions formed between Hop and Hsp90 can help to design strategies for potential therapeutic approaches for the diseases in which Hop has been implicated.
Collapse
Affiliation(s)
- Regina Adão
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Letícia M Zanphorlin
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Tatiani B Lima
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Dev Sriranganadane
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Käthe M Dahlström
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Glaucia M S Pinheiro
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Fabio C Gozzo
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | | | - Carlos H I Ramos
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
12
|
Jain CV, Jessmon P, Barrak CT, Bolnick AD, Kilburn BA, Hertz M, Armant DR. Trophoblast survival signaling during human placentation requires HSP70 activation of MMP2-mediated HBEGF shedding. Cell Death Differ 2017; 24:1772-1783. [PMID: 28731464 DOI: 10.1038/cdd.2017.104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 04/30/2017] [Accepted: 05/19/2017] [Indexed: 12/13/2022] Open
Abstract
Survival of trophoblast cells in the low oxygen environment of human placentation requires metalloproteinase-mediated shedding of HBEGF and downstream signaling. A matrix metalloproteinase (MMP) antibody array and quantitative RT-PCR revealed upregulation of MMP2 post-transcriptionally in human first trimester HTR-8/SVneo trophoblast cells and placental villous explants exposed to 2% O2. Specific MMP inhibitors established the requirement for MMP2 in HBEGF shedding and upregulation. Because α-amanitin inhibited the upregulation of HBEGF, differentially expressed genes were identified by next-generation sequencing of RNA from trophoblast cells cultured at 2% O2 for 0, 1, 2 and 4 h. Nine genes, all containing HIF-response elements, were upregulated at 1 h, but only HSPA6 (HSP70B') remained elevated at 2-4 h. The HSP70 chaperone inhibitor VER 155008 blocked upregulation of both MMP2 and HBEGF at 2% O2, and increased apoptosis. However, both HBEGF upregulation and apoptosis were rescued by exogenous MMP2. Proximity ligation assays demonstrated interactions between HSP70 and MMP2, and between MMP2 and HBEGF, supporting the concept that MMP2-mediated shedding of HBEGF, initiated by HSP70, contributes to trophoblast survival at the low O2 concentrations encountered during the first trimester, and is essential for successful pregnancy outcomes. Trophoblast survival during human placentation, when oxygenation is minimal, required HSP70 activity, which mediated MMP2 accumulation and the transactivation of anti-apoptotic ERBB signaling by HBEGF shedding.
Collapse
Affiliation(s)
- Chandni V Jain
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Philip Jessmon
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Charbel T Barrak
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Alan D Bolnick
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Brian A Kilburn
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Michael Hertz
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - D Randall Armant
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
13
|
Foo B, Williamson B, Young JC, Lukacs G, Shrier A. hERG quality control and the long QT syndrome. J Physiol 2016; 594:2469-81. [PMID: 26718903 DOI: 10.1113/jp270531] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/07/2015] [Indexed: 11/08/2022] Open
Abstract
Long-QT syndrome type-2 (LQT2) is characterized by reduced functional expression of the human ether-à-go-go related (hERG) gene product, resulting in impaired cardiac repolarization and predisposition to fatal arrhythmia. Previous studies have implicated abnormal trafficking of misfolded hERG as the primary mechanism of LQT2, with misfolding being caused by mutations in the hERG gene (inherited) or drug treatment (acquired). More generally, environmental and metabolic stresses present a constant challenge to the folding of proteins, including hERG, and must be countered by robust protein quality control (QC) systems. Disposal of partially unfolded yet functional plasma membrane (PM) proteins by protein QC contributes to the loss-of-function phenotype in various conformational diseases including cystic fibrosis (CF) and long-QT syndrome type-2 (LQT2). The prevalent view has been that the loss of PM expression of hERG is attributed to biosynthetic block by endoplasmic reticulum (ER) QC pathways. However, there is a growing appreciation for protein QC pathways acting at post-ER cellular compartments, which may contribute to conformational disease pathogenesis. This article will provide a background on the structure and cellular trafficking of hERG as well as inherited and acquired LQT2. We will review previous work on hERG ER QC and introduce the more novel view that there is a significant peripheral QC at the PM and peripheral cellular compartments. Particular attention is drawn to the unique role of the peripheral QC system in acquired LQT2. Understanding the QC process and players may provide targets for therapeutic intervention in dealing with LQT2.
Collapse
Affiliation(s)
- Brian Foo
- Department of Physiology, McGill University, Montréal, Québec, Canada, H3G 1Y6
| | - Brittany Williamson
- Department of Biochemistry, McGill University, Montréal, Québec, Canada, H3G 1Y6
| | - Jason C Young
- Department of Biochemistry, McGill University, Montréal, Québec, Canada, H3G 1Y6
| | - Gergely Lukacs
- Department of Physiology, McGill University, Montréal, Québec, Canada, H3G 1Y6
| | - Alvin Shrier
- Department of Physiology, McGill University, Montréal, Québec, Canada, H3G 1Y6
| |
Collapse
|
14
|
Bertram S, Padden J, Kälsch J, Ahrens M, Pott L, Canbay A, Weber F, Fingas C, Hoffmann AC, Vietor A, Schlaak JF, Eisenacher M, Reis H, Sitek B, Baba HA. Novel immunohistochemical markers differentiate intrahepatic cholangiocarcinoma from benign bile duct lesions. J Clin Pathol 2016; 69:619-26. [PMID: 26729014 DOI: 10.1136/jclinpath-2015-203418] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/30/2015] [Indexed: 12/17/2022]
Abstract
AIMS The distinction between intrahepatic cholangiocarcinoma (ICC) and benign bile duct lesions can be challenging. Using our previously identified potential biomarkers for ICC, we examined whether these are useful for the differential diagnosis of ICC, bile duct adenoma and reactive bile duct proliferations in an immunohistochemical approach and identified a diagnostic marker panel including known biomarkers. METHODS Subjects included samples from 77 patients with ICC, 33 patients with bile duct adenoma and 47 patients with ductular reactions in liver cirrhosis. Our previously identified biomarkers (stress-induced phosphoprotein 1 (STIP1), SerpinH1, 14-3-3Sigma) were tested immunohistochemically following comparison with candidates from the literature (cluster of differentiation 56, heat shock protein (HSP)27, HSP70, B-cell-lymphoma2, p53, ki67). RESULTS The expression of SerpinH1 and 14-3-3Sigma was significantly higher in ICC than in bile duct adenomas and ductular reactions (p<0.05), whereas STIP1 expression was significantly higher (p<0.05) in ICC than in ductular reactions, but the difference to the bile duct adenoma group was not significant. A panel of the biomarker SerpinH1, 14-3-3Sigma and ki67 (≥2 marker positive) showed a high diagnostic accuracy (sensitivity 87.8%, specificity 95.9%, accuracy 91.8%) in the differential diagnosis of ICC versus non-malignant bile duct lesions. CONCLUSIONS This suggests that 14-3-3Sigma and SerpinH1 may be useful in the differential diagnosis of malignant, benign and reactive bile duct lesions in addition to ki67 where a cut-off of >5% might be used for the distinction of malignant and non-malignant lesions.
Collapse
Affiliation(s)
- Stefanie Bertram
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Juliet Padden
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Julia Kälsch
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany Department of Gastroenterology and Hepatology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Maike Ahrens
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Leona Pott
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Ali Canbay
- Department of Gastroenterology and Hepatology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Frank Weber
- Department of General, Visceral and Transplantation Surgery, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Christian Fingas
- Department of General, Visceral and Transplantation Surgery, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Andreas C Hoffmann
- West German Cancer Center Essen, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Antonie Vietor
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Joerg F Schlaak
- Department of Gastroenterology and Hepatology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Eisenacher
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Henning Reis
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Barbara Sitek
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Hideo A Baba
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
15
|
Zaman K, Sawczak V, Zaidi A, Butler M, Bennett D, Getsy P, Zeinomar M, Greenberg Z, Forbes M, Rehman S, Jyothikumar V, DeRonde K, Sattar A, Smith L, Corey D, Straub A, Sun F, Palmer L, Periasamy A, Randell S, Kelley TJ, Lewis SJ, Gaston B. Augmentation of CFTR maturation by S-nitrosoglutathione reductase. Am J Physiol Lung Cell Mol Physiol 2015; 310:L263-70. [PMID: 26637637 DOI: 10.1152/ajplung.00269.2014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/20/2015] [Indexed: 12/27/2022] Open
Abstract
S-nitrosoglutathione (GSNO) reductase regulates novel endogenous S-nitrosothiol signaling pathways, and mice deficient in GSNO reductase are protected from airways hyperreactivity. S-nitrosothiols are present in the airway, and patients with cystic fibrosis (CF) tend to have low S-nitrosothiol levels that may be attributed to upregulation of GSNO reductase activity. The present study demonstrates that 1) GSNO reductase activity is increased in the cystic fibrosis bronchial epithelial (CFBE41o(-)) cells expressing mutant F508del-cystic fibrosis transmembrane regulator (CFTR) compared with the wild-type CFBE41o(-) cells, 2) GSNO reductase expression level is increased in the primary human bronchial epithelial cells expressing mutant F508del-CFTR compared with the wild-type cells, 3) GSNO reductase colocalizes with cochaperone Hsp70/Hsp90 organizing protein (Hop; Stip1) in human airway epithelial cells, 4) GSNO reductase knockdown with siRNA increases the expression and maturation of CFTR and decreases Stip1 expression in human airway epithelial cells, 5) increased levels of GSNO reductase cause a decrease in maturation of CFTR, and 6) a GSNO reductase inhibitor effectively reverses the effects of GSNO reductase on CFTR maturation. These studies provide a novel approach to define the subcellular location of the interactions between Stip1 and GSNO reductase and the role of S-nitrosothiols in these interactions.
Collapse
Affiliation(s)
- Khalequz Zaman
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Victoria Sawczak
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Atiya Zaidi
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Maya Butler
- Pediatric Respiratory Medicine, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Deric Bennett
- Pediatric Respiratory Medicine, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Paulina Getsy
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Maryam Zeinomar
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Zivi Greenberg
- Pediatric Respiratory Medicine, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Michael Forbes
- Pediatric Respiratory Medicine, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Shagufta Rehman
- W. M. Keck Center for Cellular Imaging, Department of Biology, University of Virginia, Charlottesville, Virginiga
| | - Vinod Jyothikumar
- W. M. Keck Center for Cellular Imaging, Department of Biology, University of Virginia, Charlottesville, Virginiga
| | - Kim DeRonde
- Pediatric Respiratory Medicine, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Abdus Sattar
- Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Laura Smith
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Deborah Corey
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Adam Straub
- Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Fei Sun
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Lisa Palmer
- Pediatric Respiratory Medicine, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Ammasi Periasamy
- W. M. Keck Center for Cellular Imaging, Department of Biology, University of Virginia, Charlottesville, Virginiga
| | - Scott Randell
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Thomas J Kelley
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Stephen J Lewis
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Benjamin Gaston
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio; Pediatric Pulmonology Division, Rainbow Babies and Children's Hospital, Cleveland, Ohio
| |
Collapse
|
16
|
Trendowski M. PU-H71: An improvement on nature's solutions to oncogenic Hsp90 addiction. Pharmacol Res 2015; 99:202-16. [DOI: 10.1016/j.phrs.2015.06.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 12/26/2022]
|
17
|
Structural characterization of the substrate transfer mechanism in Hsp70/Hsp90 folding machinery mediated by Hop. Nat Commun 2014; 5:5484. [PMID: 25407331 DOI: 10.1038/ncomms6484] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 10/06/2014] [Indexed: 01/11/2023] Open
Abstract
In eukarya, chaperones Hsp70 and Hsp90 act coordinately in the folding and maturation of a range of key proteins with the help of several co-chaperones, especially Hop. Although biochemical data define the Hop-mediated Hsp70-Hsp90 substrate transfer mechanism, the intrinsic flexibility of these proteins and the dynamic nature of their complexes have limited the structural studies of this mechanism. Here we generate several complexes in the Hsp70/Hsp90 folding pathway (Hsp90:Hop, Hsp90:Hop:Hsp70 and Hsp90:Hop:Hsp70 with a fragment of the client protein glucocorticoid receptor (GR-LBD)), and determine their 3D structure using electron microscopy techniques. Our results show that one Hop molecule binds to one side of the Hsp90 dimer in both extended and compact conformations, through Hop domain rearrangement that take place when Hsp70 or Hsp70:GR-LBD bind to Hsp90:Hop. The compact conformation of the Hsp90:Hop:Hsp70:GR-LBD complex shows that GR-LBD binds to the side of the Hsp90 dimer opposite the Hop attachment site.
Collapse
|
18
|
Cato L, Neeb A, Brown M, Cato ACB. Control of steroid receptor dynamics and function by genomic actions of the cochaperones p23 and Bag-1L. NUCLEAR RECEPTOR SIGNALING 2014; 12:e005. [PMID: 25422595 PMCID: PMC4242288 DOI: 10.1621/nrs.12005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/20/2014] [Indexed: 01/23/2023]
Abstract
Molecular chaperones encompass a group of unrelated proteins that facilitate the
correct assembly and disassembly of other macromolecular structures, which they
themselves do not remain a part of. They associate with a large and diverse set
of coregulators termed cochaperones that regulate their function and
specificity. Amongst others, chaperones and cochaperones regulate the activity
of several signaling molecules including steroid receptors, which upon ligand
binding interact with discrete nucleotide sequences within the nucleus to
control the expression of diverse physiological and developmental genes.
Molecular chaperones and cochaperones are typically known to provide the correct
conformation for ligand binding by the steroid receptors. While this
contribution is widely accepted, recent studies have reported that they further
modulate steroid receptor action outside ligand binding. They are thought to
contribute to receptor turnover, transport of the receptor to different
subcellular localizations, recycling of the receptor on chromatin and even
stabilization of the DNA-binding properties of the receptor. In addition to
these combined effects with molecular chaperones, cochaperones are reported to
have additional functions that are independent of molecular chaperones. Some of
these functions also impact on steroid receptor action. Two well-studied
examples are the cochaperones p23 and Bag-1L, which have been identified as
modulators of steroid receptor activity in nuclei. Understanding details of
their regulatory action will provide new therapeutic opportunities of
controlling steroid receptor action independent of the widespread effects of
molecular chaperones.
Collapse
Affiliation(s)
- Laura Cato
- Division of Molecular and Cellular Oncology, Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA (LC, MB) and Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany (AN, ACBC)
| | - Antje Neeb
- Division of Molecular and Cellular Oncology, Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA (LC, MB) and Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany (AN, ACBC)
| | - Myles Brown
- Division of Molecular and Cellular Oncology, Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA (LC, MB) and Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany (AN, ACBC)
| | - Andrew C B Cato
- Division of Molecular and Cellular Oncology, Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA (LC, MB) and Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany (AN, ACBC)
| |
Collapse
|
19
|
Zhang S, Wu D, Wang J, Wang Y, Wang G, Yang M, Yang X. Stress protein expression in early phase spinal cord ischemia/reperfusion injury. Neural Regen Res 2014; 8:2225-35. [PMID: 25206532 PMCID: PMC4146036 DOI: 10.3969/j.issn.1673-5374.2013.24.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/17/2013] [Indexed: 12/05/2022] Open
Abstract
Spinal cord ischemia/reperfusion injury is a stress injury to the spinal cord. Our previous studies using differential proteomics identified 21 differentially expressed proteins (n > 2) in rabbits with spinal cord ischemia/reperfusion injury. Of these proteins, stress-related proteins included protein disulfide isomerase A3, stress-induced-phosphoprotein 1 and heat shock cognate protein 70. In this study, we established New Zealand rabbit models of spinal cord ischemia/reperfusion injury by abdominal aorta occlusion. Results demonstrated that hind limb function initially improved after spinal cord ischemia/reperfusion injury, but then deteriorated. The pathological morphology of the spinal cord became aggravated, but lessened 24 hours after reperfusion. However, the numbers of motor neurons and interneurons in the spinal cord gradually decreased. The expression of protein disulfide isomerase A3, stress-induced-phosphoprotein 1 and heat shock cognate protein 70 was induced by ischemia/reperfusion injury. The expression of these proteins increased within 12 hours after reperfusion, and then decreased, reached a minimum at 24 hours, but subsequently increased again to similar levels seen at 6–12 hours, showing a characterization of induction-inhibition-induction. These three proteins were expressed only in cytoplasm but not in the nuclei. Moreover, the expression was higher in interneurons than in motor neurons, and the survival rate of interneurons was greater than that of motor neurons. It is assumed that the expression of stress-related proteins exhibited a protective effect on neurons.
Collapse
Affiliation(s)
- Shanyong Zhang
- Team of Spine and Spinal Cord, Department of Orthopedics, China-Japan Friendship Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Dankai Wu
- Team of Skeletal Trauma, Department of Orthopedics, the Second Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Jincheng Wang
- Team of Skeletal Trauma, Department of Orthopedics, the Second Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Yongming Wang
- Team of Spine and Spinal Cord, Department of Orthopedics, China-Japan Friendship Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Guoxiang Wang
- Team of Spine and Spinal Cord, Department of Orthopedics, China-Japan Friendship Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Maoguang Yang
- Team of Spine and Spinal Cord, Department of Orthopedics, China-Japan Friendship Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Xiaoyu Yang
- Team of Spine and Spinal Cord, Department of Orthopedics, China-Japan Friendship Hospital of Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
20
|
Wen W, Liu W, Shao Y, Chen L. VER-155008, a small molecule inhibitor of HSP70 with potent anti-cancer activity on lung cancer cell lines. Exp Biol Med (Maywood) 2014; 239:638-45. [PMID: 24676905 DOI: 10.1177/1535370214527899] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Lung cancer is the most common malignancy and exhibits significant morbidity and mortality worldwide. Among all lung cancer subtypes, non-small-cell lung cancer (NSCLC) accounts for the majority of all lung cancer cases. Although there have been intensive investigations on the underlying mechanism of NSCLC development and progression, the exact molecular basis is not well understood. Further insights on important molecular regulators of lung cancer are needed for development of novel therapeutics. The heat shock protein (HSP) family is a group of molecular chaperones that assist in protein folding, modification, and transportation. Different HSPs are essential for tumor cell survival by binding diverse client proteins and regulating homeostasis. In the current study, we sought to characterize HSP70 and HSP90 as potent regulators of NSCLC growth. Our results indicate that differential expression of HSP70 is associated with the malignant phenotype of NSCLC cell lines and plays an important regulatory role in NSCLC cell proliferation. Moreover, a specific inhibitor of HSP70, VER-155008 significantly inhibits NSCLC proliferation and cell cycle progression. We showed that this effect is largely abolished by HSP70 overexpression, indicating that the inhibitory effect of VER-155008 on cell growth is specifically through HSP70 inhibition. In addition, 17-AAD, an inhibitor of HSP90, exerts a potent synergistic effect on NSCLC proliferation with VER-155008. We also observed that inhibition of HSP70 by VER-155008 can sensitize A549 cells to ionizing radiation. These data provide proof-of-principle that VER-155008 can be a good candidate for NSCLC treatment and HSP machinery is a good target for developing NSCLC therapeutics.
Collapse
Affiliation(s)
- Wei Wen
- Department of Thoracic Surgery, People's Hospital of Jiangsu Province, Nanjing Medical University, Nanjing 210029, China
| | | | | | | |
Collapse
|
21
|
Trcka F, Durech M, Man P, Hernychova L, Muller P, Vojtesek B. The assembly and intermolecular properties of the Hsp70-Tomm34-Hsp90 molecular chaperone complex. J Biol Chem 2014; 289:9887-901. [PMID: 24567332 DOI: 10.1074/jbc.m113.526046] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maintenance of protein homeostasis by molecular chaperones Hsp70 and Hsp90 requires their spatial and functional coordination. The cooperation of Hsp70 and Hsp90 is influenced by their interaction with the network of co-chaperone proteins, some of which contain tetratricopeptide repeat (TPR) domains. Critical to these interactions are TPR domains that target co-chaperone binding to the EEVD-COOH motif that terminates Hsp70/Hsp90. Recently, the two-TPR domain-containing protein, Tomm34, was reported to bind both Hsp70 and Hsp90. Here we characterize the structural basis of Tomm34-Hsp70/Hsp90 interactions. Using multiple methods, including pull-down assays, fluorescence polarization, hydrogen/deuterium exchange, and site-directed mutagenesis, we defined the binding activities and specificities of Tomm34 TPR domains toward Hsp70 and Hsp90. We found that Tomm34 TPR1 domain specifically binds Hsp70. This interaction is partly mediated by a non-canonical TPR1 two-carboxylate clamp and is strengthened by so far unidentified additional intermolecular contacts. The two-carboxylate clamp of the isolated TPR2 domain has affinity for both chaperones, but as part of the full-length Tomm34 protein, the TPR2 domain binds specifically Hsp90. These binding properties of Tomm34 TPR domains thus enable simultaneous binding of Hsp70 and Hsp90. Importantly, we provide evidence for the existence of an Hsp70-Tomm34-Hsp90 tripartite complex. In addition, we defined the basic conformational demands of the Tomm34-Hsp90 interaction. These results suggest that Tomm34 represents a novel scaffolding co-chaperone of Hsp70 and Hsp90, which may facilitate Hsp70/Hsp90 cooperation during protein folding.
Collapse
Affiliation(s)
- Filip Trcka
- From the Masaryk Memorial Cancer Institute, Regional Centre for Applied Molecular Oncology, Zluty kopec 7, 656 53 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
22
|
Cho H, Kim S, Shin HY, Chung EJ, Kitano H, Hyon Park J, Park L, Chung JY, Hewitt SM, Kim JH. Expression of stress-induced phosphoprotein1 (STIP1) is associated with tumor progression and poor prognosis in epithelial ovarian cancer. Genes Chromosomes Cancer 2014; 53:277-88. [PMID: 24488757 DOI: 10.1002/gcc.22136] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 11/11/2022] Open
Abstract
Stress-induced phosphoprotein1 (STIP1) is a candidate biomarker in epithelial ovarian cancer (EOC). In this study, we investigated in detail the expression of STIP1, as well as its functions, in EOC. STIP1 expression was assessed by immunohistochemistry (IHC) and the results were compared with clinicopathologic factors, including survival data. The effects of STIP1 gene silencing via small interfering RNA (siRNA) were examined in EOC cells and a xenograft model. The expression of STIP1 protein in EOC was significantly higher than in the other study groups (P < 0.001), and this increase of expression was significantly associated with tumor stage (P = 0.005), tumor grade (P = 0.029), and lymph node metastasis (P = 0.020). In multivariate analysis, overall survival in EOC was significantly shorter in cases with high STIP1 expression (HR = 2.78 [1.01-7.63], P = 0.047). STIP1 silencing in EOC cells resulted in inhibition of cell proliferation and invasion. In addition, in vivo experiments using STIP1 siRNA clearly showed a strong inhibition of tumor growth and a modulation of expression of prosurvival and apoptotic genes, further suggesting that STIP1 silencing can prevent cell proliferation and invasion. In conclusion, increased STIP1 expression is associated with poor survival outcome in EOC, and STIP1 may represent a useful therapeutic target in EOC patients.
Collapse
Affiliation(s)
- Hanbyoul Cho
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea; Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Huang Y, Cai X, Zou Z, Wang S, Wang G, Wang Y, Zhang Z. Molecular cloning, characterization and expression analysis of three heat shock responsive genes from Haliotis diversicolor. FISH & SHELLFISH IMMUNOLOGY 2014; 36:590-599. [PMID: 24309137 DOI: 10.1016/j.fsi.2013.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 11/17/2013] [Accepted: 11/22/2013] [Indexed: 06/02/2023]
Abstract
In this study, molecular characterization and expression of three heat shock responsive genes were analyzed as indicators to understand the mechanism of heat shock response of small abalone Haliotis diversicolor under stresses. The full length cDNA of heat shock transcriptional factor 1 (HdHSF1), heat shock factor binding protein 1(HSBP1), and heat shock protein 90 (HdHSP90) are 1548 bp, 809 bp, and 2592 bp respectively, encoding a protein of 515 aa, 75 aa, and 728 aa respectively. Real time quantitative PCR analysis revealed that these three genes are constitutively expressed in 7 selected tissues. The expression level of HdHSF1 in gills was higher than that in other tissues (p < 0.05). The highest expression level of HdHSBP1 was detected in hemocytes. The highest expression level of HdHSP90 was in the digestive tract and colleterial gland. The HdHSF1 expression level in the gills was up-regulated significantly (p < 0.05) after thermal stress and hypoxia exposure respectively. On the contrary, HdHSBP1 was down-regulated both in gills and hemocytes after thermal stress and the same as in gills after hypoxia stress. HdHSP90 expression level was also up-regulated in gills and hemocytes after both thermal and hypoxia stresses. These results indicated that these three heat shock responsive genes play important roles in response to thermal and hypoxia stress.
Collapse
Affiliation(s)
- Yitao Huang
- Key Laboratory of Healthy Mariculture in the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xiuhong Cai
- Key Laboratory of Healthy Mariculture in the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Zhihua Zou
- Key Laboratory of Healthy Mariculture in the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Shuhong Wang
- Key Laboratory of Healthy Mariculture in the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Guodong Wang
- Key Laboratory of Healthy Mariculture in the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture in the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Ziping Zhang
- Department of Natural Sciences and Mathematics, State University of New York at Cobleskill, NY 12043, USA.
| |
Collapse
|
24
|
Calderwood SK. Molecular cochaperones: tumor growth and cancer treatment. SCIENTIFICA 2013; 2013:217513. [PMID: 24278769 PMCID: PMC3820307 DOI: 10.1155/2013/217513] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/01/2013] [Indexed: 05/12/2023]
Abstract
Molecular chaperones play important roles in all cellular organisms by maintaining the proteome in an optimally folded state. They appear to be at a premium in cancer cells whose evolution along the malignant pathways requires the fostering of cohorts of mutant proteins that are employed to overcome tumor suppressive regulation. To function at significant rates in cells, HSPs interact with cochaperones, proteins that assist in catalyzing individual steps in molecular chaperoning as well as in posttranslational modification and intracellular localization. We review current knowledge regarding the roles of chaperones such as heat shock protein 90 (Hsp90) and Hsp70 and their cochaperones in cancer. Cochaperones are potential targets for cancer therapy in themselves and can be used to assess the likely prognosis of individual malignancies. Hsp70 cochaperones Bag1, Bag3, and Hop play significant roles in the etiology of some cancers as do Hsp90 cochaperones Aha1, p23, Cdc37, and FKBP1. Others such as the J domain protein family, HspBP1, TTC4, and FKBPL appear to be associated with more benign tumor phenotypes. The key importance of cochaperones for many pathways of protein folding in cancer suggests high promise for the future development of novel pharmaceutical agents.
Collapse
Affiliation(s)
- Stuart K. Calderwood
- Division of Molecular and Cellular Biology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA
- *Stuart K. Calderwood:
| |
Collapse
|
25
|
Lakhssassi N, Doblas VG, Rosado A, del Valle AE, Posé D, Jimenez AJ, Castillo AG, Valpuesta V, Borsani O, Botella MA. The Arabidopsis tetratricopeptide thioredoxin-like gene family is required for osmotic stress tolerance and male sporogenesis. PLANT PHYSIOLOGY 2012; 158:1252-66. [PMID: 22232384 PMCID: PMC3291270 DOI: 10.1104/pp.111.188920] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 01/06/2012] [Indexed: 05/23/2023]
Abstract
TETRATRICOPEPTIDE THIOREDOXIN-LIKE (TTL) proteins are characterized by the presence of six tetratricopeptide repeats in conserved positions and a carboxyl-terminal region known as the thioredoxin-like domain with homology to thioredoxins. In Arabidopsis (Arabidopsis thaliana), the TTL gene family is composed by four members, and the founder member, TTL1, is required for osmotic stress tolerance. Analysis of sequenced genomes indicates that TTL genes are specific to land plants. In this study, we report the expression profiles of Arabidopsis TTL genes using data mining and promoter-reporter β-glucuronidase fusions. Our results show that TTL1, TTL3, and TTL4 display ubiquitous expression in normal growing conditions but differential expression patterns in response to osmotic and NaCl stresses. TTL2 shows a very different expression pattern, being specific to pollen grains. Consistent with the expression data, ttl1, ttl3, and ttl4 mutants show reduced root growth under osmotic stress, and the analysis of double and triple mutants indicates that TTL1, TTL3, and TTL4 have partially overlapping yet specific functions in abiotic stress tolerance while TTL2 is involved in male gametophytic transmission.
Collapse
MESH Headings
- Adaptation, Physiological
- Arabidopsis/drug effects
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis/physiology
- Arabidopsis Proteins/classification
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Computational Biology
- Data Mining
- Gene Expression Profiling
- Gene Expression Regulation, Plant
- Genes, Plant
- Genes, Reporter
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Multigene Family
- Mutation
- Phylogeny
- Plant Roots/genetics
- Plant Roots/metabolism
- Plant Roots/physiology
- Plants, Genetically Modified/drug effects
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/physiology
- Pollen/genetics
- Pollen/metabolism
- Pollen/physiology
- Promoter Regions, Genetic
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sodium Chloride/pharmacology
- Stress, Physiological
Collapse
|
26
|
Allan RK, Ratajczak T. Versatile TPR domains accommodate different modes of target protein recognition and function. Cell Stress Chaperones 2011; 16:353-67. [PMID: 21153002 PMCID: PMC3118826 DOI: 10.1007/s12192-010-0248-0] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/21/2010] [Accepted: 11/24/2010] [Indexed: 12/30/2022] Open
Abstract
The tetratricopeptide repeat (TPR) motif is one of many repeat motifs that form structural domains in proteins that can act as interaction scaffolds in the formation of multi-protein complexes involved in numerous cellular processes such as transcription, the cell cycle, protein translocation, protein degradation and host defence against invading pathogens. The crystal structures of many TPR domain-containing proteins have been determined, showing TPR motifs as two anti-parallel α-helices packed in tandem arrays to form a structure with an amphipathic groove which can bind a target peptide. This is however not the only mode of target recognition by TPR domains, with short amino acid insertions and alternative TPR motif conformations also shown to contribute to protein interactions, highlighting diversity in TPR domains and the versatility of this structure in mediating biological events.
Collapse
Affiliation(s)
- Rudi Kenneth Allan
- Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009 Australia
- The Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, WA 6009 Australia
| | - Thomas Ratajczak
- Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009 Australia
- The Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, WA 6009 Australia
| |
Collapse
|
27
|
Walsh N, Larkin A, Swan N, Conlon K, Dowling P, McDermott R, Clynes M. RNAi knockdown of Hop (Hsp70/Hsp90 organising protein) decreases invasion via MMP-2 down regulation. Cancer Lett 2011; 306:180-9. [PMID: 21470770 DOI: 10.1016/j.canlet.2011.03.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/09/2011] [Accepted: 03/11/2011] [Indexed: 11/18/2022]
Abstract
We previously identified Hop as over expressed in invasive pancreatic cancer cell lines and malignant tissues of pancreatic cancer patients, suggesting an important role for Hop in the biology of invasive pancreatic cancer. Hop is a co-chaperone protein that binds to both Hsp70/Hsp90. We hypothesised that by targeting Hop, signalling pathways modulating invasion and client protein stabilisation involving Hsp90-dependent complexes may be altered. In this study, we show that Hop knockdown by small interfering (si)RNA reduces the invasion of pancreatic cancer cells, resulting in decreased expression of the downstream target gene, matrix metalloproteinases-2 (MMP-2). Hop in conditioned media co-immunoprecipitates with MMP-2, implicating a possible extracellular function for Hop. Knockdown of Hop expression also reduced expression levels of Hsp90 client proteins, HER2, Bcr-Abl, c-MET and v-Src. Furthermore, Hop is strongly expressed in high grade PanINs compared to lower PanIN grades, displaying differential localisation in invasive ductal pancreatic cancer, indicating that the localisation of Hop is an important factor in pancreatic tumours. Our data suggests that the attenuation of Hop expression inactivates key signal transduction proteins which may decrease the invasiveness of pancreatic cancer cells possibly through the modulation of Hsp90 activity. Therefore, targeting Hop in pancreatic cancer may constitute a viable strategy for targeted cancer therapy.
Collapse
MESH Headings
- Adenocarcinoma, Mucinous/metabolism
- Adenocarcinoma, Mucinous/prevention & control
- Adenocarcinoma, Mucinous/secondary
- Blotting, Western
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/prevention & control
- Carcinoma, Pancreatic Ductal/secondary
- Cell Adhesion
- Cell Movement
- Down-Regulation
- Gene Expression Regulation, Neoplastic
- HSP70 Heat-Shock Proteins/metabolism
- HSP90 Heat-Shock Proteins/metabolism
- Heat-Shock Proteins/antagonists & inhibitors
- Heat-Shock Proteins/genetics
- Heat-Shock Proteins/metabolism
- Humans
- Immunoenzyme Techniques
- Immunoprecipitation
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase Inhibitors
- Molecular Chaperones
- Neoplasm Invasiveness
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/prevention & control
- RNA, Small Interfering/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Naomi Walsh
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | | | | | | | | | | | | |
Collapse
|
28
|
Murakami MT, Sforça ML, Neves JL, Paiva JH, Domingues MN, Pereira ALA, Zeri ACDM, Benedetti CE. The repeat domain of the type III effector protein PthA shows a TPR-like structure and undergoes conformational changes upon DNA interaction. Proteins 2010; 78:3386-95. [PMID: 20848643 DOI: 10.1002/prot.22846] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/16/2010] [Accepted: 07/24/2010] [Indexed: 11/11/2022]
Abstract
Many plant pathogenic bacteria rely on effector proteins to suppress defense and manipulate host cell mechanisms to cause disease. The effector protein PthA modulates the host transcriptome to promote citrus canker. PthA possesses unusual protein architecture with an internal region encompassing variable numbers of near-identical tandem repeats of 34 amino acids termed the repeat domain. This domain mediates protein-protein and protein-DNA interactions, and two polymorphic residues in each repeat unit determine DNA specificity. To gain insights into how the repeat domain promotes protein-protein and protein-DNA contacts, we have solved the structure of a peptide corresponding to 1.5 units of the PthA repeat domain by nuclear magnetic resonance (NMR) and carried out small-angle X-ray scattering (SAXS) and spectroscopic studies on the entire 15.5-repeat domain of PthA2 (RD2). Consistent with secondary structure predictions and circular dichroism data, the NMR structure of the 1.5-repeat peptide reveals three α-helices connected by two turns that fold into a tetratricopeptide repeat (TPR)-like domain. The NMR structure corroborates the theoretical TPR superhelix predicted for RD2, which is also in agreement with the elongated shape of RD2 determined by SAXS. Furthermore, RD2 undergoes conformational changes in a pH-dependent manner and upon DNA interaction, and shows sequence similarities to pentatricopeptide repeat (PPR), a nucleic acid-binding motif structurally related to TPR. The results point to a model in which the RD2 structure changes its compactness as it embraces the DNA with the polymorphic diresidues facing the interior of the superhelix oriented toward the nucleotide bases.
Collapse
Affiliation(s)
- Mário Tyago Murakami
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, 13083-970, Campinas, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Hsp 70/Hsp 90 organizing protein as a nitrosylation target in cystic fibrosis therapy. Proc Natl Acad Sci U S A 2010; 107:11393-8. [PMID: 20534503 DOI: 10.1073/pnas.0909128107] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The endogenous signaling molecule S-nitrosoglutathione (GSNO) and other S-nitrosylating agents can cause full maturation of the abnormal gene product DeltaF508 cystic fibrosis (CF) transmembrane conductance regulator (CFTR). However, the molecular mechanism of action is not known. Here we show that Hsp70/Hsp90 organizing protein (Hop) is a critical target of GSNO, and its S-nitrosylation results in DeltaF508 CFTR maturation and cell surface expression. S-nitrosylation by GSNO inhibited the association of Hop with CFTR in the endoplasmic reticulum. This effect was necessary and sufficient to mediate GSNO-induced cell-surface expression of DeltaF508 CFTR. Hop knockdown using siRNA recapitulated the effect of GSNO on DeltaF508 CFTR maturation and expression. Moreover, GSNO acted additively with decreased temperature, which promoted mutant CFTR maturation through a Hop-independent mechanism. We conclude that GSNO corrects DeltaF508 CFTR trafficking by inhibiting Hop expression, and that combination therapies--using differing mechanisms of action--may have additive benefits in treating CF.
Collapse
|
30
|
Hong SM, Yamashita J, Mitsunobu H, Uchino K, Kobayashi I, Sezutsu H, Tamura T, Nakajima H, Miyagawa Y, Lee JM, Mon H, Miyata Y, Kawaguchi Y, Kusakabe T. Efficient soluble protein production on transgenic silkworms expressing cytoplasmic chaperones. Appl Microbiol Biotechnol 2010; 87:2147-56. [DOI: 10.1007/s00253-010-2617-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/07/2010] [Accepted: 04/12/2010] [Indexed: 11/29/2022]
|
31
|
C-terminal sequences of hsp70 and hsp90 as non-specific anchors for tetratricopeptide repeat (TPR) proteins. Biochem J 2009; 423:411-9. [PMID: 19689428 DOI: 10.1042/bj20090543] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Steroid-hormone-receptor maturation is a multi-step process that involves several TPR (tetratricopeptide repeat) proteins that bind to the maturation complex via the C-termini of hsp70 (heat-shock protein 70) and hsp90 (heat-shock protein 90). We produced a random T7 peptide library to investigate the roles played by the C-termini of the two heat-shock proteins in the TPR-hsp interactions. Surprisingly, phages with the MEEVD sequence, found at the C-terminus of hsp90, were not recovered from our biopanning experiments. However, two groups of phages were isolated that bound relatively tightly to HsPP5 (Homo sapiens protein phosphatase 5) TPR. Multiple copies of phages with a C-terminal sequence of LFG were isolated. These phages bound specifically to the TPR domain of HsPP5, although mutation studies produced no evidence that they bound to the domain's hsp90-binding groove. However, the most abundant family obtained in the initial screen had an aspartate residue at the C-terminus. Two members of this family with a C-terminal sequence of VD appeared to bind with approximately the same affinity as the hsp90 C-12 control. A second generation pseudo-random phage library produced a large number of phages with an LD C-terminus. These sequences acted as hsp70 analogues and had relatively low affinities for hsp90-specific TPR domains. Unfortunately, we failed to identify residues near hsp90's C-terminus that impart binding specificity to individual hsp90-TPR interactions. The results suggest that the C-terminal sequences of hsp70 and hsp90 act primarily as non-specific anchors for TPR proteins.
Collapse
|
32
|
Gaiser AM, Brandt F, Richter K. The Non-canonical Hop Protein from Caenorhabditis elegans Exerts Essential Functions and Forms Binary Complexes with Either Hsc70 or Hsp90. J Mol Biol 2009; 391:621-34. [DOI: 10.1016/j.jmb.2009.06.051] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 05/28/2009] [Accepted: 06/18/2009] [Indexed: 10/20/2022]
|
33
|
Mills RD, Trewhella J, Qiu TW, Welte T, Ryan TM, Hanley T, Knott RB, Lithgow T, Mulhern TD. Domain Organization of the Monomeric Form of the Tom70 Mitochondrial Import Receptor. J Mol Biol 2009; 388:1043-58. [DOI: 10.1016/j.jmb.2009.03.070] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/24/2009] [Accepted: 03/30/2009] [Indexed: 11/28/2022]
|
34
|
Chen Y, Zhao M, Wang S, Chen J, Wang Y, Cao Q, Zhou W, Liu J, Xu Z, Tong G, Li J. A novel role for DYX1C1, a chaperone protein for both Hsp70 and Hsp90, in breast cancer. J Cancer Res Clin Oncol 2009; 135:1265-76. [PMID: 19277710 DOI: 10.1007/s00432-009-0568-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 02/23/2009] [Indexed: 01/24/2023]
Abstract
AIMS With three consecutive tetratricopeptide repeat (TPR) motifs at its C-terminus essential for neuronal migration, and a p23 domain at its N-terminus, DYX1C1 was the first gene proposed to have a role in developmental dyslexia. In this study, we attempted to identify the potential interaction of DYX1C1 and heat shock protein, and the role of DYX1C1 in breast cancer. MAIN METHODS GST pull-down, a yeast two-hybrid system, RT-PCR, site-directed mutagenesis approach. KEY FINDINGS Our study initially confirmed DYX1C1, a dyslexia related protein, could interact with Hsp70 and Hsp90 via GST pull-down and a yeast two-hybrid system. And we verified that EEVD, the C-terminal residues of DYX1C1, is responsible for the identified association. Further, DYX1C1 mRNA was significantly overexpressed in malignant breast tumor, linking with the up-regulated expression of Hsp70 and Hsp90. SIGNIFICANCE These results suggest that DYX1C1 is a novel Hsp70 and Hsp90-interacting co-chaperone protein and its expression is associated with malignancy.
Collapse
Affiliation(s)
- Yuxin Chen
- Lab of Reproductive Medicine, Department of Cell Biology and Medical Genetics, Nanjing Medical University, 210029 Nanjing, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sun JN, Li W, Jang WS, Nayyar N, Sutton MD, Edgerton M. Uptake of the antifungal cationic peptide Histatin 5 by Candida albicans Ssa2p requires binding to non-conventional sites within the ATPase domain. Mol Microbiol 2009; 70:1246-60. [PMID: 19006817 PMCID: PMC2643122 DOI: 10.1111/j.1365-2958.2008.06480.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Candida albicans Hsp70 Ssa1/2 proteins have been identified as cell wall binding partners for the antifungal cationic peptide Histatin 5 (Hst 5) in vivo. C. albicans Ssa2p plays a major role in binding and translocation of Hst 5 into fungal cells, as demonstrated by defective peptide uptake and killing in C. albicans SSA2 null mutants. Candidal Hsp70 proteins are classical chaperone proteins with two discrete functional domains consisting of peptide binding and ATP binding regions. Pull-down assays with full-length and truncated Ssa2 proteins found that the ATPase domain was required for Hst 5 binding. Further mapping of Ssa2p by limited digestion and peptide array analyses identified two discrete Hst 5-binding epitopes within the ATPase region. Expression of Ssa2p in C. albicans cells carrying mutations in the first epitope identified by thermolysin digestion (Ssa2128−132A3) significantly reduced intracellular transport and fungicidal activity of Hst 5, confirming its importance as a binding site for Hst 5 function in vivo. Since this Hst 5 binding site lies within the Ssa2p ATPase domain near the ATP-binding cleft, it is possible that ATP modulates Hst 5 binding to Ssa2p. Indeed, gel filtration assays demonstrated that although nucleotides are not required for Hst 5 binding, their presence improved binding affinity by 10-fold. Thus, C. albicans Ssa2p binds Hst 5 at a surface-localized epitope in a subunit of the ATPase domain; and this region is required for intracellular translocation and killing functions of Hst 5.
Collapse
Affiliation(s)
- Jianing N Sun
- Department of Oral Biology, School of Dental Medicine, Public Health and Health Professions and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | | | | | | | | | | |
Collapse
|
36
|
Lai KC, Chang KW, Liu CJ, Kao SY, Lee TC. IFN-induced protein with tetratricopeptide repeats 2 inhibits migration activity and increases survival of oral squamous cell carcinoma. Mol Cancer Res 2008; 6:1431-9. [PMID: 18819931 DOI: 10.1158/1541-7786.mcr-08-0141] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The function of the IFN-stimulated gene family protein, IFN-induced protein with tetratricopeptide repeats 2 (IFIT2), is poorly understood. Here, we report that IFIT2 colocalizes with cytokeratin 18 in oral squamous cell carcinoma (OSCC) cells. Treatment of OSCC cells with IFN-beta significantly increased the expression of IFIT2 and remarkably inhibited cell migration. To further explore the effect of IFIT2 on cell migration, IFIT2 expression was either silenced with a small interfering RNA or increased by ectopic expression. IFIT2 knockdown in OSCC cells led to a significantly higher level of migration in vitro (P < 0.05) compared with control cells; by contrast, IFIT2 overexpression led to a significantly lower level of migration in vitro (P < 0.05). Immunohistochemically, 71.4% of OSCC tissues had elevated IFIT2 protein levels compared with noncancerous matched tissues. Elevated IFIT2 protein expression was positively associated with tumor differentiation status and inversely associated with nodal stage in OSCC specimens (P < 0.05). Higher IFIT2 protein levels in tumor tissues were also associated with better patient survival (P < 0.01). Our present study shows an inverse correlation between IFIT2 expression and cell migration, suggesting that IFIT2 plays an important role in inhibiting this process and that its expression may be associated with better prognosis in patients with OSCC.
Collapse
Affiliation(s)
- Kuo-Chu Lai
- Institute of Pharmacology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
37
|
A direct interaction between the Utp6 half-a-tetratricopeptide repeat domain and a specific peptide in Utp21 is essential for efficient pre-rRNA processing. Mol Cell Biol 2008; 28:6547-56. [PMID: 18725399 DOI: 10.1128/mcb.00906-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The small subunit (SSU) processome is a ribosome biogenesis intermediate that assembles from its subcomplexes onto the pre-18S rRNA with yet unknown order and structure. Here, we investigate the architecture of the UtpB subcomplex of the SSU processome, focusing on the interaction between the half-a-tetratricopeptide repeat (HAT) domain of Utp6 and a specific peptide in Utp21. We present a comprehensive map of the interactions within the UtpB subcomplex and further show that the N-terminal domain of Utp6 interacts with Utp18 while the HAT domain interacts with Utp21. Using a panel of point and deletion mutants of Utp6, we show that an intact HAT domain is essential for efficient pre-rRNA processing and cell growth. Further investigation of the Utp6-Utp21 interaction using both genetic and biophysical methods shows that the HAT domain binds a specific peptide ligand in Utp21, the first example of a HAT domain peptide ligand, with a dissociation constant of 10 muM.
Collapse
|
38
|
Liu Q, Gao J, Chen X, Chen Y, Chen J, Wang S, Liu J, Liu X, Li J. HBP21: a novel member of TPR motif family, as a potential chaperone of heat shock protein 70 in proliferative vitreoretinopathy (PVR) and breast cancer. Mol Biotechnol 2008; 40:231-40. [PMID: 18587674 DOI: 10.1007/s12033-008-9080-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 06/11/2008] [Indexed: 11/25/2022]
Abstract
A large number of tetratricopeptide repeat (TPR)-containing proteins have been shown to interact with the C-terminal domain of the 70 kDa heat-shock protein (Hsp70), especially those with three consecutive TPR motifs. The TPR motifs in these proteins are necessary and sufficient for mediating the interaction with Hsp70. Here, we investigate HBP21, a novel human protein of unknown function having three tandem TPR motifs predicted by computational sequence analysis. We confirmed the high expression of HBP21 in breast cancer and proliferative vitreoretinopathy (PVR) proliferative membrane and examined whether HBP21 could interact with Hsp70 using a yeast two-hybrid system and glutathione S-transferase pull-down assay. Previous studies have demonstrated the importance of Hsp70 C-terminal residues EEVD and PTIEEVD for interaction with TPR-containing proteins. Here, we tested an assortment of truncation and amino acid substitution mutants of Hsp70 to determine their ability to bind to HBP21 using a yeast two-hybrid system. The newly discovered interaction between HBP21 and Hsp70 along with observations from other studies leads to our hypothesis that HBP21 may be involved in the inhibition of progression and metastasis of tumor cells.
Collapse
Affiliation(s)
- Qinghuai Liu
- Lab of Reproductive Medicine, Department of Cell Biology and Medical Genetics, Nanjing Medical University, 140 Han Zhong Road, Nanjing, Jiangsu 210029, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Onuoha SC, Coulstock ET, Grossmann JG, Jackson SE. Structural studies on the co-chaperone Hop and its complexes with Hsp90. J Mol Biol 2008; 379:732-44. [PMID: 18485364 DOI: 10.1016/j.jmb.2008.02.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 01/25/2008] [Accepted: 02/08/2008] [Indexed: 12/22/2022]
Abstract
The tetratricopeptide repeat domain (TPR)-containing co-chaperone Hsp-organising protein (Hop) plays a critical role in mediating interactions between Heat Shock Protein (Hsp)70 and Hsp90 as part of the cellular assembly machine. It also modulates the ATPase activity of both Hsp70 and Hsp90, thus facilitating client protein transfer between the two. Despite structural work on the individual domains of Hop, no structure for the full-length protein exists, nor is it clear exactly how Hop interacts with Hsp90, although it is known that its primary binding site is the C-terminal MEEVD motif. Here, we have undertaken a biophysical analysis of the structure and binding of Hop to Hsp90 using a variety of truncation mutants of both Hop and Hsp90, in addition to mutants of Hsp90 that are thought to modulate the conformation, in particular the N-terminal dimerisation of the chaperone. The results establish that whilst the primary binding site of Hop is the C-terminal MEEVD peptide of Hsp90, binding also occurs at additional sites in the C-terminal and middle domain. In contrast, we show that another TPR-containing co-chaperone, CyP40, binds solely to the C-terminus of Hsp90. Truncation mutants of Hop were generated and used to investigate the dimerisation interface of the protein. In good agreement with recently published data, we find that the TPR2a domain that contains the Hsp90-binding site is also the primary site for dimerisation. However, our results suggest that residues within the TPR2b may play a role. Together, these data along with shape reconstruction analysis from small-angle X-ray scattering measurements are used to generate a solution structure for full-length Hop, which we show has an overall butterfly-like quaternary structure. Studies on the nucleotide dependence of Hop binding to Hsp90 establish that Hop binds to the nucleotide-free, 'open' state of Hsp90. However, the Hsp90-Hop complex is weakened by the conformational changes that occur in Hsp90 upon ATP binding. Together, the data are used to propose a detailed model of how Hop may help present the client protein to Hsp90 by aligning the bound client on Hsp70 with the middle domain of Hsp90. It is likely that Hop binds to both monomers of Hsp90 in the form of a clamp, interacting with residues in the middle domain of Hsp90, thus preventing ATP hydrolysis, possibly by the prevention of association of N-terminal and middle domains in individual Hsp90 monomers.
Collapse
Affiliation(s)
- S C Onuoha
- Chemistry Department, Lensfield Road, University of Cambridge, Cambridge CB2 1EW, UK
| | | | | | | |
Collapse
|
40
|
Flom G, Behal R, Rosen L, Cole D, Johnson J. Definition of the minimal fragments of Sti1 required for dimerization, interaction with Hsp70 and Hsp90 and in vivo functions. Biochem J 2007; 404:159-67. [PMID: 17300223 PMCID: PMC1868838 DOI: 10.1042/bj20070084] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The molecular chaperone Hsp (heat-shock protein) 90 is critical for the activity of diverse cellular client proteins. In a current model, client proteins are transferred from Hsp70 to Hsp90 in a process mediated by the co-chaperone Sti1/Hop, which may simultaneously interact with Hsp70 and Hsp90 via separate TPR (tetratricopeptide repeat) domains, but the mechanism and in vivo importance of this function is unclear. In the present study, we used truncated forms of Sti1 to determine the minimal regions required for the Hsp70 and Hsp90 interaction, as well as Sti1 dimerization. We found that both TPR1 and TPR2B contribute to the Hsp70 interaction in vivo and that mutations in both TPR1 and TPR2B were required to disrupt the in vitro interaction of Sti1 with the C-terminus of the Hsp70 Ssa1. The TPR2A domain was required for the Hsp90 interaction in vivo, but the isolated TPR2A domain was not sufficient for the Hsp90 interaction unless combined with the TPR2B domain. However, isolated TPR2A was both necessary and sufficient for purified Sti1 to migrate as a dimer in solution. The DP2 domain, which is essential for in vivo function, was dispensable for the Hsp70 and Hsp90 interaction, as well as Sti1 dimerization. As evidence for the role of Sti1 in mediating the interaction between Hsp70 and Hsp90 in vivo, we identified Sti1 mutants that result in reduced recovery of Hsp70 in Hsp90 complexes. We also identified two Hsp90 mutants that exhibit a reduced Hsp70 interaction, which may help clarify the mechanism of client transfer between the two molecular chaperones.
Collapse
Affiliation(s)
- Gary Flom
- Department of Microbiology, Molecular Biology and Biochemistry, and the Center for Reproductive Biology, University of Idaho, Moscow, ID 83844-3052, U.S.A
| | - Robert H. Behal
- Department of Microbiology, Molecular Biology and Biochemistry, and the Center for Reproductive Biology, University of Idaho, Moscow, ID 83844-3052, U.S.A
| | - Luke Rosen
- Department of Microbiology, Molecular Biology and Biochemistry, and the Center for Reproductive Biology, University of Idaho, Moscow, ID 83844-3052, U.S.A
| | - Douglas G. Cole
- Department of Microbiology, Molecular Biology and Biochemistry, and the Center for Reproductive Biology, University of Idaho, Moscow, ID 83844-3052, U.S.A
| | - Jill L. Johnson
- Department of Microbiology, Molecular Biology and Biochemistry, and the Center for Reproductive Biology, University of Idaho, Moscow, ID 83844-3052, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
41
|
Travers SAA, Fares MA. Functional coevolutionary networks of the Hsp70-Hop-Hsp90 system revealed through computational analyses. Mol Biol Evol 2007; 24:1032-44. [PMID: 17267421 DOI: 10.1093/molbev/msm022] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Currently, the identification of groups of amino acid residues that are important in the function, structure, or interaction of a protein can be both costly and prohibitively complex, involving vast numbers of mutagenesis experiments. Here, we present the application of a novel computational method, which identifies the presence of coevolution in a data set, thereby enabling the a priori identification of amino acid residues that play an important role in protein function. We have applied this method to the heat shock protein (Hsp) protein-folding system, studying the network between Hsp70, Hsp90, and Hop (heat shock-organizing protein). Our analysis has identified functional residues within the tetratricopeptide repeat (TPR) 1 and 2A domains in Hop, previously shown to be interacting with Hsp70 and Hsp90, respectively. Further, we have identified significant residues elsewhere in Hop within domains that have been recently proposed as being important for Hop interaction with Hsp70 and/or Hsp90. In addition, several amino acid sites present in groups of coevolution were identified as 3-dimensionally or linearly proximal to functionally important sites or domains. Based on our results, we also investigate a further functional domain within Hop, between TPR1 and TPR2A, which we suggest as being functionally important in the interaction of Hop with both Hsp70 and Hsp90 whether directly or otherwise. Our method has identified all the previously characterized functionally important regions in this system, thereby indicating the power of this method in the a priori identification of important regions for site-directed mutagenesis studies.
Collapse
Affiliation(s)
- Simon A A Travers
- Molecular Evolution and Bioinformatics Laboratory, Department of Biology, National University of Ireland, Maynooth, Ireland
| | | |
Collapse
|
42
|
Coitinho AS, Lopes MH, Hajj GNM, Rossato JI, Freitas AR, Castro CC, Cammarota M, Brentani RR, Izquierdo I, Martins VR. Short-term memory formation and long-term memory consolidation are enhanced by cellular prion association to stress-inducible protein 1. Neurobiol Dis 2007; 26:282-90. [PMID: 17329112 DOI: 10.1016/j.nbd.2007.01.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 01/11/2007] [Accepted: 01/14/2007] [Indexed: 11/20/2022] Open
Abstract
Cellular prion protein (PrP(C)) is a cell surface glycoprotein that interacts with several ligands such as laminin, NCAM (Neural-Cell Adhesion Molecule) and the stress-inducible protein 1 (STI1). PrP(C) association with these proteins in neurons mediates adhesion, differentiation and protection against programmed cell death. Herein, we used an aversively motivated learning paradigm in rats to investigate whether STI1 interaction with PrP(C) affects short-term memory (STM) formation and long-term memory (LTM) consolidation. Blockage of PrP(C)-STI1 interaction with intra-hippocampal infusion of antibodies against PrP(C) or STI1 immediately after training impaired both STM and LTM. Furthermore, infusion of PrP(C) peptide 106-126, which competes for PrP(C)-STI1 interaction, also inhibited both forms of memory. Remarkably, STI1 peptide 230-245, which includes the PrP(C) binding site, had a potent enhancing effect on memory performance, which could be blocked by co-treatment with the competitive PrP(C) peptide 106-126. Taken together, these results demonstrate that PrP(C)-STI1 interaction modulates both STM and LTM and suggests a potential use of ST11 peptide 230-245 as a pharmacological agent.
Collapse
Affiliation(s)
- Adriana S Coitinho
- Centro Universitário Feevale, Instituto de Ciências da Saúde, RS 239, 2755, 93352-000, Novo Hamburgo, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Aviezer-Hagai K, Skovorodnikova J, Galigniana M, Farchi-Pisanty O, Maayan E, Bocovza S, Efrat Y, von Koskull-Döring P, Ohad N, Breiman A. Arabidopsis immunophilins ROF1 (AtFKBP62) and ROF2 (AtFKBP65) exhibit tissue specificity, are heat-stress induced, and bind HSP90. PLANT MOLECULAR BIOLOGY 2007; 63:237-55. [PMID: 17080288 DOI: 10.1007/s11103-006-9085-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2006] [Accepted: 08/30/2006] [Indexed: 05/03/2023]
Abstract
The plant co-chaperones FK506-binding proteins (FKBPs) are peptidyl prolyl cis-trans isomerases that function in protein folding, signal transduction and chaperone activity. We report the characterization of the Arabidopsis large FKBPs ROF1 (AtFKBP62) and ROF2 (AtFKBP65) expression and protein accumulation patterns. Transgenic plants expressing ROF1 promoter fused to GUS reporter gene reveal that ROF1 expression is organ specific. High expression was observed in the vascular elements of roots, in hydathodes and trichomes of leaves and in stigma, sepals, and anthers. The tissue specificity and temporal expression of ROF1 and ROF2 show that they are developmentally regulated. Although ROF1 and ROF2 share 85% identity, their expression in response to heat stress is differentially regulated. Both genes are induced in plants exposed to 37 degrees C, but only ROF2 is a bonafide heat-stress protein, undetected when plants are grown at 22 degrees C. ROF1/ROF2 proteins accumulate at 37 degrees C, remain stable for at least 4 h upon recovery at 22 degrees C, whereas, their mRNA level is reduced after 1 h at 22 degrees C. By protein interaction assays, it was demonstrated, that ROF1 is a novel partner of HSP90. The five amino acids identified as essential for recognition and interaction between the mammalian chaperones and HSP90 are conserved in the plant ROF1-HSP90. We suggest that ROF/HSP90 complexes assemble in vivo. We propose that specific complexes formation between an HSP90 and ROF isoforms depends on their spatial and temporal expression. Such complexes might be regulated by environmental conditions such as heat stress or internal cues such as different hormones.
Collapse
|