1
|
Tan J, Wang W, Liu X, Xu J, Che Y, Liu Y, Hu J, Hu L, Li J, Zhou Q. C11orf54 promotes DNA repair via blocking CMA-mediated degradation of HIF1A. Commun Biol 2023; 6:606. [PMID: 37277441 DOI: 10.1038/s42003-023-04957-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/19/2023] [Indexed: 06/07/2023] Open
Abstract
C11orf54 is an ester hydrolase highly conserved across different species. C11orf54 has been identified as a biomarker protein of renal cancers, but its exact function remains poorly understood. Here we demonstrate that C11orf54 knockdown decreases cell proliferation and enhances cisplatin-induced DNA damage and apoptosis. On the one hand, loss of C11orf54 reduces Rad51 expression and nuclear accumulation, which results in suppression of homologous recombination repair. On the other hand, C11orf54 and HIF1A competitively interact with HSC70, knockdown of C11orf54 promotes HSC70 binding to HIF1A to target it for degradation via chaperone-mediated autophagy (CMA). C11orf54 knockdown-mediated HIF1A degradation reduces the transcription of ribonucleotide reductase regulatory subunit M2 (RRM2), which is a rate-limiting RNR enzyme for DNA synthesis and DNA repair by producing dNTPs. Supplement of dNTPs can partially rescue C11orf54 knockdown-mediated DNA damage and cell death. Furthermore, we find that Bafilomycin A1, an inhibitor of both macroautophagy and chaperone-mediated autophagy, shows similar rescue effects as dNTP treatment. In summary, we uncover a role of C11orf54 in regulating DNA damage and repair through CMA-mediated decreasing of HIF1A/RRM2 axis.
Collapse
Affiliation(s)
- Junyang Tan
- The Sixth Affiliated Hospital of Jinan University, Jinan University, 523573, Dongguan, Guangdong, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, 510632, Guangzhou, Guangdong, China
| | - Wenjun Wang
- The Sixth Affiliated Hospital of Jinan University, Jinan University, 523573, Dongguan, Guangdong, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, 510632, Guangzhou, Guangdong, China
| | - Xinjie Liu
- The Sixth Affiliated Hospital of Jinan University, Jinan University, 523573, Dongguan, Guangdong, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, 510632, Guangzhou, Guangdong, China
| | - Jinhong Xu
- The Sixth Affiliated Hospital of Jinan University, Jinan University, 523573, Dongguan, Guangdong, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, 510632, Guangzhou, Guangdong, China
| | - Yaping Che
- The Sixth Affiliated Hospital of Jinan University, Jinan University, 523573, Dongguan, Guangdong, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, 510632, Guangzhou, Guangdong, China
| | - Yanyan Liu
- The Sixth Affiliated Hospital of Jinan University, Jinan University, 523573, Dongguan, Guangdong, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, 510632, Guangzhou, Guangdong, China
| | - Jiaqiao Hu
- The Sixth Affiliated Hospital of Jinan University, Jinan University, 523573, Dongguan, Guangdong, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, 510632, Guangzhou, Guangdong, China
| | - Liubing Hu
- The Sixth Affiliated Hospital of Jinan University, Jinan University, 523573, Dongguan, Guangdong, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, 510632, Guangzhou, Guangdong, China
| | - Jianshuang Li
- The Sixth Affiliated Hospital of Jinan University, Jinan University, 523573, Dongguan, Guangdong, China.
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, 510632, Guangzhou, Guangdong, China.
| | - Qinghua Zhou
- The Sixth Affiliated Hospital of Jinan University, Jinan University, 523573, Dongguan, Guangdong, China.
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, 510632, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Abstract
Natural enzymes catalyze biochemical transformations in superior catalytic efficiency and remarkable substrate specificity. The excellent catalytic repertoire of enzymes is attributed to the sophisticated chemical structures of their active sites, as a result of billions-of-years natural evolution. However, large-scale practical applications of natural enzymes are restricted due to their poor stability, difficulty in modification, and high costs of production. One viable solution is to fabricate supramolecular catalysts with enzyme-mimetic active sites. In this review, we introduce the principles and strategies of designing peptide-based artificial enzymes which display catalytic activities similar to those of natural enzymes, such as aldolases, laccases, peroxidases, and hydrolases (mainly the esterases and phosphatases). We also discuss some multifunctional enzyme-mimicking systems which are capable of catalyzing orthogonal or cascade reactions. We highlight the relationship between structures of enzyme-like active sites and the catalytic properties, as well as the significance of these studies from an evolutionary point of view.
Collapse
|
3
|
Meep, a Novel Regulator of Insulin Signaling, Supports Development and Insulin Sensitivity via Maintenance of Protein Homeostasis in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2020; 10:4399-4410. [PMID: 32998936 PMCID: PMC7718763 DOI: 10.1534/g3.120.401688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Insulin signaling is critical for developmental growth and adult homeostasis, yet the downstream regulators of this signaling pathway are not completely understood. Using the model organism Drosophila melanogaster, we took a genomic approach to identify novel mediators of insulin signaling. These studies led to the identification of Meep, encoded by the gene CG32335. Expression of this gene is both insulin receptor- and diet-dependent. We found that Meep was specifically required in the developing fat body to tolerate a high-sugar diet (HSD). Meep is not essential on a control diet, but when reared on an HSD, knockdown of meep causes hyperglycemia, reduced growth, developmental delay, pupal lethality, and reduced longevity. These phenotypes stem in part from Meep’s role in promoting insulin sensitivity and protein stability. This work suggests a critical role for protein homeostasis in development during overnutrition. Because Meep is conserved and obesity-associated in mammals, future studies on Meep may help to understand the role of proteostasis in insulin-resistant type 2 diabetes.
Collapse
|
4
|
O’Hare EA, Antin PB, Delany ME. Two Proximally Close Priority Candidate Genes for diplopodia-1, an Autosomal Inherited Craniofacial-Limb Syndrome in the Chicken: MRE11 and GPR83. J Hered 2019; 110:194-210. [PMID: 30597046 PMCID: PMC6399517 DOI: 10.1093/jhered/esy071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 12/29/2018] [Indexed: 11/12/2022] Open
Abstract
Next-generation sequencing (NGS) and expression technologies were utilized to investigate the genes and sequence elements in a 586 kb region of chicken chromosome 1 associated with the autosomal recessive diplopodia-1 (dp-1) mutation. This mutation shows a syndromic phenotype similar to known human developmental abnormalities (e.g., cleft palate, polydactyly, omphalocele [exposed viscera]). Toward our goal to ascertain the variant responsible, the entire 586 kb region was sequenced following utilization of a specifically designed capture array and to confirm/validate fine-mapping results. Bioinformatic analyses identified a total of 6142 sequence variants, which included SNPs, indels, and gaps. Of these, 778 SNPs, 146 micro-indels, and 581 gaps were unique to the UCD-Dp-1.003 inbred congenic line; those found within exons and splice sites were studied for contribution to the mutant phenotype. Upon further validation with additional mutant samples, a smaller subset (of variants [51]) remains linked to the mutation. Additionally, utilization of specific samples in the NGS technology was advantageous in that fine-mapping methodologies eliminated an additional 326 kb of sequence information on chromosome 1. Predicted and confirmed protein-coding genes within the smaller 260 kb region were assessed for their developmental expression patterns over several stages of early embryogenesis in regions/tissues of interest (e.g., digits, craniofacial region). Based on these results and known function in other vertebrates, 2 genes within 5 kb of each other, MRE11 and GPR83, are proposed as high-priority candidates for the dp-1 mutation.
Collapse
Affiliation(s)
- Elizabeth A O’Hare
- Department of Animal Science, University of California, Davis, CA
- Elizabeth A. O’Hare is now at the Department of Biological Sciences, Towson University, Towson, MD
| | - Parker B Antin
- Department of Molecular and Cellular Medicine, University of Arizona, Tucson, AZ
| | - Mary E Delany
- Department of Animal Science, University of California, Davis, CA
| |
Collapse
|
5
|
Cellular reactions to long-term volatile organic compound (VOC) exposures. Sci Rep 2016; 6:37842. [PMID: 27905399 PMCID: PMC5131358 DOI: 10.1038/srep37842] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 10/31/2016] [Indexed: 11/24/2022] Open
Abstract
Investigations of cellular processes initiated by volatile organic compounds (VOCs) are limited when modelling realistic long-term exposure scenarios at low concentrations. Exposure to indoor VOCs is associated with a range of adverse effects, but data on molecular changes at regulatory threshold limits are lacking. Activity analysis of VOC in vitro can be a valuable complement to inhalation toxicological evaluations. We developed an exposure platform that generates a stable VOC atmosphere and allows the exposure of cells for longer periods. Using formaldehyde as a model analyte, air-liquid interface cultured A549 lung epithelial cells were exposed to critical concentrations of 0.1 and 0.5 ppm for 3 days. Owing to the lack of known exposure biomarkers, we applied a genome-wide transcriptional analysis to investigate cellular responses at these sublethal concentrations. We demonstrate a minor overlap of differentially expressed transcripts for both treatment concentrations, which can be further analyzed for their use as exposure biomarkers. Moreover, distinct expression patterns emerge for 0.1 and 0.5 ppm formaldehyde exposure, which is reflected in significant enrichment of distinct biological processes. More specifically, metabolism of specific compound classes, lipid biosynthesis and lung-associated functions are affected by lower exposure levels and processes affecting proliferation and apoptosis dominate the higher exposure levels.
Collapse
|
7
|
Brizard JP, Ramos J, Robert A, Lafitte D, Bigi N, Sarda P, Laoudj-Chenivesse D, Navarro F, Blanc P, Assenat E, Maurel P, Pascussi JM, Vilarem MJ. Identification of proteomic changes during human liver development by 2D-DIGE and mass spectrometry. J Hepatol 2009; 51:114-26. [PMID: 19443070 DOI: 10.1016/j.jhep.2009.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 02/06/2009] [Accepted: 02/18/2009] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS The aim of this study was to identify human liver proteins that are associated with different stages of liver development. METHODS We collected liver samples from 14 fetuses between 14 and 41 weeks of development, one child and four adults. Proteins which exhibited consistent and significant variations during development by two-dimensional differential in gel electrophoresis (2D-DIGE) were subjected to peptide mass fingerprint analysis by MALDI-TOF mass spectrometry. Real-time PCR analysis confirmed, at the transcriptional level, the data obtained by the proteomic approach. RESULTS Among a total of 80 protein spots showing differential expression, we identified 42 different proteins or polypeptide chains, of which 26 were upregulated and 16 downregulated in developing in comparison to adult liver. These proteins could be classified in specific groups according to their function. By comparing their temporal expression profiles, we identified protein groups that were associated with different developmental stages of human fetal liver and suggest that the changes in protein expression observed during the 20- to 36-week time window play a pivotal role in liver development. CONCLUSIONS The identification of these proteins may represent good markers of human liver and stem cells differentiation.
Collapse
Affiliation(s)
- Jean Paul Brizard
- Institut de Recherche pour le Développement, UMR 5096 (CNRS-IRD-Université Perpignan), Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|