1
|
Eisenberg AS, Nathan M, Juszczak LJ. Excited state electron distribution and role of the terminal amine in acidic and basic tryptophan dipeptide fluorescence. J Mol Struct 2016; 1118:56-67. [DOI: 10.1016/j.molstruc.2016.03.098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
2
|
Maurya JK, Mir MUH, Maurya N, Dohare N, Ali A, Patel R. A spectroscopic and molecular dynamic approach on the interaction between ionic liquid type gemini surfactant and human serum albumin. J Biomol Struct Dyn 2016; 34:2130-45. [DOI: 10.1080/07391102.2015.1109552] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jitendra Kumar Maurya
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Muzaffar Ul Hassan Mir
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Neha Maurya
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Neeraj Dohare
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Anwar Ali
- Department of Chemistry, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| |
Collapse
|
3
|
Changenet-Barret P, Gustavsson T, Markovitsi D, Manet I. Ultrafast Electron Transfer in Complexes of Doxorubicin with Human Telomeric G-Quadruplexes and GC Duplexes Probed by Femtosecond Fluorescence Spectroscopy. Chemphyschem 2016; 17:1264-72. [PMID: 26790038 DOI: 10.1002/cphc.201501091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Indexed: 01/23/2023]
Abstract
Doxorubicin (DOX) is a natural anthracycline widely used in chemotherapy; its combined application as a chemotherapeutic and photodynamic agent has been recently proposed. In this context, understanding the photoinduced properties of DOX complexes with nucleic acids is crucial. Herein, the study of photoinduced electron transfer in DOX-DNA complexes by femtosecond fluorescence spectroscopy is reported. The behaviour of complexes with two model DNA structures, a G-quadruplex (G4) formed by the human telomeric sequence (Tel21) and a d(GC) duplex, is compared. The DOX affinity for these two sequences is similar. Although both 1:1 and 2:1 stoichiometries have been reported for DOX-G4 complexes, only 1:1 complexes form with the duplex. The steady-state absorption indicates a strong binding interaction with the duplex due to drug intercalation between the GC base pairs. In contrast, the interaction of DOX with Tel21 is much weaker and arises from drug binding on the G4 external faces at two independent binding sites. As observed for DOX-d(GC) complexes, fluorescence of the drug in the first binding site of Tel21 exhibits decays within a few picoseconds following a biphasic pattern; this is attributed to the existence of two drug conformations. The fluorescence of the drug in the second binding site of Tel21 shows slower decays within 150 ps. These timescales are consistent with electron transfer from the guanines to the excited drug, as favoured by the lower oxidation potential of the stacked guanines of G4 with respect to those in the duplex.
Collapse
Affiliation(s)
- Pascale Changenet-Barret
- LIDYL, CEA, CNRS, Université Paris Saclay, F-91191, Gif-sur-Yvette, France. .,LOB, CNRS, INSERM, Université Paris Saclay, 91128, Palaiseau, France.
| | - Thomas Gustavsson
- LIDYL, CEA, CNRS, Université Paris Saclay, F-91191, Gif-sur-Yvette, France
| | - Dimitra Markovitsi
- LIDYL, CEA, CNRS, Université Paris Saclay, F-91191, Gif-sur-Yvette, France
| | - Ilse Manet
- Istituto per la Sintesi Organica e la Fotoreattività, CNR, via P. Gobetti 101, 40129, Bologna, Italy.
| |
Collapse
|
4
|
Callis PR. Binding phenomena and fluorescence quenching. II: Photophysics of aromatic residues and dependence of fluorescence spectra on protein conformation. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.04.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Mozziconacci O, Schöneich C. Effect of Conformation on the Photodegradation of Trp- And Cystine-Containing Cyclic Peptides: Octreotide and Somatostatin. Mol Pharm 2014; 11:3537-46. [DOI: 10.1021/mp5003174] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Olivier Mozziconacci
- Department of Pharmaceutical
Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047, United States
| | - Christian Schöneich
- Department of Pharmaceutical
Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047, United States
| |
Collapse
|
6
|
Rohamare SB, Gaikwad SM. Tryptophan environment and functional characterization of a kinetically stable serine protease containing a polyproline II fold. J Fluoresc 2014; 24:1363-70. [PMID: 25169767 DOI: 10.1007/s10895-014-1445-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/20/2014] [Indexed: 11/24/2022]
Abstract
The single tryptophan residue from Nocardiopsis sp. serine protease (NprotI) was studied for its microenvironment using steady state and time-resolved fluorescence. The emission maximum was observed at 353 nm with excitation at 295 nm indicating tryptophan to be solvent exposed. Upon denaturation with 6 M guanidinum thiocyanate (GuSCN) the emission maxima was shifted to 360 nm. Solute quenching studies were performed with neutral (acrylamide) and ionic (I(-) and Cs(+)) quenchers to probe the exposure and accessibility of tryptophan residue of the protein. Maximum quenching was observed with acrylamide. In the native state, quenching was not observed with Cs(+) indicating presence of only positively charged environment surrounding tryptophan. However; in denatured protein, quenching was observed with Cs(+), indicating charge reorientation after denaturation. No quenching was observed with Cs(+) even at pH 1.0 or 10.0; while at acidic pH, a higher rate of quenching was observed with KI. This indicated presence of more positive charge surrounding tryptophan at acidic pH. In time resolved fluorescence measurements, the fluorescence decay curves could be best fitted to monoexponential pattern with lifetimes of 5.13 ns for NprotI indicating one conformer of the trp. Chemical modification studies with phenyl glyoxal suggested presence of Arg near the active site of the enzyme. No inhibition was seen with soyabean trypsin and limabean inhibitors, while, CanPI uncompetitively inhibited NprotI. Various salts from Hofmeister series were shown to decrease the activity and PPII content of NprotI.
Collapse
Affiliation(s)
- Sonali B Rohamare
- Division of Biochemical Sciences, National Chemical Laboratory, Dr. HomoBhabha Road, Pune, 411008, India
| | | |
Collapse
|
7
|
Eisenberg AS, Juszczak LJ. The broken ring: reduced aromaticity in Lys-Trp cations and high pH tautomer correlates with lower quantum yield and shorter lifetimes. J Phys Chem B 2014; 118:7059-69. [PMID: 24882092 PMCID: PMC4165537 DOI: 10.1021/jp503355h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several nonradiative processes compete with tryptophan fluorescence emission. The difficulty in spectral interpretation lies in associating specific molecular environmental features with these processes and thereby utilizing the fluorescence spectral data to identify the local environment of tryptophan. Here, spectroscopic and molecular modeling study of Lys-Trp dipeptide charged species shows that backbone-ring interactions are undistinguished. Instead, quantum mechanical ground state isosurfaces reveal variations in indole π electron distribution and density that parallel charge (as a function of pK(1), pK(2), and pK(R)) on the backbone and residues. A pattern of aromaticity-associated quantum yield and fluorescence lifetime changes emerges. Where quantum yield is high, isosurfaces have a charge distribution similar to the highest occupied molecular orbital (HOMO) of indole, which is the dominant fluorescent ground state of the (1)L(a) transition dipole moment. Where quantum yield is low, isosurface charge distribution over the ring is uneven, diminished, and even found off ring. At pH 13, the indole amine is deprotonated, and Lys-Trp quantum yield is extremely low due to tautomer structure that concentrates charge on the indole amine; the isosurface charge distribution bears scant resemblance to the indole HOMO. Such greatly diminished fluorescence has been observed for proteins where the indole nitrogen is hydrogen bonded, lending credence to the association of aromaticity changes with diminished quantum yield in proteins as well. Thus tryptophan ground state isosurfaces are an indicator of indole aromaticity, signaling the partition of excitation energy between radiative and nonradiative processes.
Collapse
Affiliation(s)
- Azaria Solomon Eisenberg
- Department of Chemistry, Brooklyn College of The City University of New York , 2900 Bedford Ave., Brooklyn, NY 11210, United States
| | | |
Collapse
|
8
|
Kishore M, Krishnamoorthy G, Udgaonkar JB. Critical Evaluation of the Two-State Model Describing the Equilibrium Unfolding of the PI3K SH3 Domain by Time-Resolved Fluorescence Resonance Energy Transfer. Biochemistry 2013; 52:9482-96. [DOI: 10.1021/bi401337k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Megha Kishore
- National
Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - G. Krishnamoorthy
- Department
of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Jayant B. Udgaonkar
- National
Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| |
Collapse
|
9
|
Lv C, Bai Y, Yang S, Zhao G, Chen B. NADH induces iron release from pea seed ferritin: a model for interaction between coenzyme and protein components in foodstuffs. Food Chem 2013; 141:3851-8. [PMID: 23993558 DOI: 10.1016/j.foodchem.2013.06.102] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/09/2013] [Accepted: 06/24/2013] [Indexed: 01/17/2023]
Abstract
Plant ferritin from legume seeds co-exists with coenzyme NADH (a reduced form of nicotinamide-adenine dinucleotide) in many foodstuffs. In the present study, the interaction of NADH with apo pea seed ferritin (PSF) was investigated by fluorescence resonance energy transfer (FRET), fluorescence titration, transmission electron microscope (TEM), and isothermal titration calorimetry (ITC). We found that NADH molecules bound on the outer surface of PSF close to the 4-fold channels, which was 1.58 nm from tryptophan residue (Trp). Consequently, such binding facilitates iron release from holo PSF, which might have a negative effect on PSF as an iron supplement, while NADH was oxidised into NAD(+). However, the binding of NADH to the protein does not affect the entry of toxic ferrous ions into the apo protein shell, where these ferrous ions were oxidised into less toxic ferric ions. Moreover, NADH binding markedly affects the tertiary structure around Trp residues of PSF. These findings advanced our understanding of the interactions between different naturally occurring components in a complex food system.
Collapse
Affiliation(s)
- Chenyan Lv
- CAU & ACC Joint-Laboratory of Space Food, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | | | | | | | | |
Collapse
|
10
|
de Foresta B, Vincent M, Garrigos M, Gallay J. Transverse and tangential orientation of predicted transmembrane fragments 4 and 10 from the human multidrug resistance protein (hMRP1/ABCC1) in membrane mimics. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:1043-60. [DOI: 10.1007/s00249-011-0721-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/23/2011] [Accepted: 06/01/2011] [Indexed: 01/29/2023]
|
11
|
Zaman RT, Rajaram N, Walsh A, Oliver J, Rylander HG, Tunnell JW, Welch AJ, Mahadevan-Jansen A. Variation of fluorescence in tissue with temperature. Lasers Surg Med 2011; 43:36-42. [DOI: 10.1002/lsm.21023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Roach CA. Multivariate analysis of emission decay matrices for distinguishing ground state heterogeneity and excited state reactions of tryptophan. Analyst 2011; 136:2770-4. [DOI: 10.1039/c1an15293a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Carol A Roach
- University of Delaware, Department of Chemistry and Biochemistry, Newark, USA.
| |
Collapse
|
13
|
de Foresta B, Vincent M, Gallay J, Garrigos M. Interaction with membrane mimics of transmembrane fragments 16 and 17 from the human multidrug resistance ABC transporter 1 (hMRP1/ABCC1) and two of their tryptophan variants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:401-14. [DOI: 10.1016/j.bbamem.2009.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 11/12/2009] [Accepted: 11/30/2009] [Indexed: 10/20/2022]
|
14
|
Moors SLC, Jonckheer A, De Maeyer M, Engelborghs Y, Ceulemans A. Tryptophan conformations associated with partial unfolding in ribonuclease T1. Biophys J 2009; 97:1778-86. [PMID: 19751684 DOI: 10.1016/j.bpj.2009.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 07/06/2009] [Accepted: 07/14/2009] [Indexed: 11/29/2022] Open
Abstract
The origin of the biexponential fluorescence decay of Trp in ribonuclease T1 under mildly destabilizing conditions, such as increased pH or temperature, or the presence of detergent, is still not understood. We have performed two extended replica-exchange molecular dynamics simulations to obtain a detailed representation of the native state at two protonation states corresponding to a high and low pH. At high pH, the appearance of partially unfolded states is evident. We found that this pH-induced destabilization originates from increased global repulsion as well as reduced local favorable electrostatic interactions and reduced H-bonding strength of His(27), His(40), and His(92). At high pH, alternative tryptophan rotamers appear and are linked to a distorted environment of the tryptophan, which also acts as a separate source of ground-state heterogeneity. The total population of these alternative conformations agrees well with the amplitude of the experimentally observed secondary fluorescence lifetime.
Collapse
Affiliation(s)
- Samuel L C Moors
- Laboratory of Quantum Chemistry and INPAC Institute for Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | | | | | |
Collapse
|
15
|
Callis PR. Exploring the Electrostatic Landscape of Proteins with Tryptophan Fluorescence. REVIEWS IN FLUORESCENCE 2009. [DOI: 10.1007/978-0-387-88722-7_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
P2X3 receptor gating near normal body temperature. Pflugers Arch 2007; 456:339-47. [DOI: 10.1007/s00424-007-0376-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 10/19/2007] [Indexed: 10/22/2022]
|
17
|
Portugal CAM, Crespo JG, Lima JC. Anomalous “unquenching” of the fluorescence decay times of β-lactoglobulin induced by the known quencher acrylamide. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2006; 82:117-26. [PMID: 16288883 DOI: 10.1016/j.jphotobiol.2005.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 08/22/2005] [Accepted: 09/09/2005] [Indexed: 10/25/2022]
Abstract
Picosecond time-resolved fluorescence, together with the addition of quenching agents, was employed to discriminate the fluorescence contributions of the two tryptophans of beta-lactoglobulin (Trp19 and Trp61) to the fluorescence decays of the protein. The fluorescence decays of beta-lactoglobulin at pH 3, 5 and 8 are best fitted using sums of three exponentials and show a dominant contribution (98%) of the components associated with the buried Trp19, which decays according to a double exponential function. The addition of acrylamide (0.05 M) causes an increase of the decay times associated with Trp19. This effect is observed at all pH values studied, but the effect is stronger at pH 3 and pH 5, than at pH 8. The unexpected increase of the decay times of Trp19 and the variation of the respective amplitudes were rationalized in terms of alterations of Trp19 mobility. The hindrance of Trp19 upon acrylamide binding was also monitored and supported by fluorescence anisotropy measurements.
Collapse
Affiliation(s)
- Carla A M Portugal
- Requimte-CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, Monte da Caparica, 2825-516 Caparica, Portugal
| | | | | |
Collapse
|
18
|
Coïc YM, Vincent M, Gallay J, Baleux F, Mousson F, Beswick V, Neumann JM, de Foresta B. Single-spanning membrane protein insertion in membrane mimetic systems: role and localization of aromatic residues. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2005; 35:27-39. [PMID: 16025323 DOI: 10.1007/s00249-005-0002-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 05/13/2005] [Accepted: 05/23/2005] [Indexed: 10/25/2022]
Abstract
Membrane protein insertion in the lipid bilayer is determining for their activity and is governed by various factors such as specific sequence motifs or key amino-acids. A detailed fluorescence study of such factors is exemplified with PMP1, a small (38 residues) single-membrane span protein that regulates the plasma membrane H(+)-ATPase in yeast and specifically interacts with phosphatidylserines. Such interactions may stabilize raft domains that have been shown to contain H(+)-ATPase. Previous NMR studies of various fragments have focused on the critical role of interfacial residues in the PMP1 structure and intermolecular interactions. The C-terminal domain contains a terminal Phe (F38), a single Trp (W28) and a single Tyr (Y25) that may act together to anchor the protein in the membrane. In order to describe the location and dynamics of W28 and the influence of Y25 on protein insertion within membrane, we carried out a detailed steady-state and time-resolved fluorescence study of the synthetic G13-F38 fragment and its Tyr-less mutant, Y25L in various membrane mimetic systems. Detergent micelles are conveniently used for this purpose. We used dodecylphosphocholine (DPC) in order to compare with and complement previous NMR results. In addition, dodecylmaltoside (DM) was used so that we could apply our recently described new quenching method by two brominated analogs of DM (de Foresta et al. 2002, Eur. Biophys. J. 31:185-97). In both systems, and in the presence and absence of Y25, W28 was shown to be located below but close to the polar headgroup region, as shown by its maximum emission wavelengths (lambda(max)), curves for the quenching of Trp by the brominated analogs of DM and bimolecular constants for quenching (k(q)) by acrylamide. Results were interpreted by comparison with calibration data obtained with fluorescent model peptides. Time-resolved anisotropy measurements were consistent with PMP1 fragment immobilization within peptide-detergent complexes. We tentatively assigned the two major Trp lifetimes to the Trp (chi(1)=60 degrees and 180 degrees ) rotamers, based on the recent lifetime-rotamer correlation proposed for model cyclic peptides (Pan and Barkley 2004, Biophys J 86:3828-35). We also analyzed the role of the hydrophobic anchor, by comparing the micelle binding of fragments of various lengths including the synthesized full-length protein and detected peculiar differences for protein interaction with the polar headgroups of DM or DPC.
Collapse
Affiliation(s)
- Yves-Marie Coïc
- Unité de Chimie Organique, Institut Pasteur, URA CNRS 487, 28 rue du Dr. Roux, 75724 Paris Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The peptide bond quenches tryptophan fluorescence by excited-state electron transfer, which probably accounts for most of the variation in fluorescence intensity of peptides and proteins. A series of seven peptides was designed with a single tryptophan, identical amino acid composition, and peptide bond as the only known quenching group. The solution structure and side-chain chi(1) rotamer populations of the peptides were determined by one-dimensional and two-dimensional (1)H-NMR. All peptides have a single backbone conformation. The -, psi-angles and chi(1) rotamer populations of tryptophan vary with position in the sequence. The peptides have fluorescence emission maxima of 350-355 nm, quantum yields of 0.04-0.24, and triple exponential fluorescence decays with lifetimes of 4.4-6.6, 1.4-3.2, and 0.2-1.0 ns at 5 degrees C. Lifetimes were correlated with ground-state conformers in six peptides by assigning the major lifetime component to the major NMR-determined chi(1) rotamer. In five peptides the chi(1) = -60 degrees rotamer of tryptophan has lifetimes of 2.7-5.5 ns, depending on local backbone conformation. In one peptide the chi(1) = 180 degrees rotamer has a 0.5-ns lifetime. This series of small peptides vividly demonstrates the dominant role of peptide bond quenching in tryptophan fluorescence.
Collapse
Affiliation(s)
- Chia-Pin Pan
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | | |
Collapse
|
20
|
Faria TQ, Lima JC, Bastos M, Maçanita AL, Santos H. Protein Stabilization by Osmolytes from Hyperthermophiles. J Biol Chem 2004; 279:48680-91. [PMID: 15347691 DOI: 10.1074/jbc.m408806200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
2-O-alpha-Mannosylglycerate, a negatively charged osmolyte widely distributed among (hyper)thermophilic microorganisms, is known to provide notable protection to proteins against thermal denaturation. To study the mechanism responsible for protein stabilization, pico-second time-resolved fluorescence spectroscopy was used to characterize the thermal unfolding of a model protein, Staphylococcus aureus recombinant nuclease A (SNase), in the presence or absence of mannosylglycerate. The fluorescence decay times are signatures of the protein state, and the pre-exponential coefficients are used to evaluate the molar fractions of the folded and unfolded states. Hence, direct determination of equilibrium constants of unfolding from molar fractions was carried out. Van't Hoff plots of the equilibrium constants provided reliable thermodynamic data for SNase unfolding. Differential scanning calorimetry was used to validate this thermodynamic analysis. The presence of 0.5 m potassium mannosylglycerate caused an increase of 7 degrees C in the SNase melting temperature and a 2-fold increase in the unfolding heat capacity. Despite the considerable degree of stabilization rendered by this solute, the nature and population of protein states along unfolding were not altered in the presence of mannosylglycerate, denoting that the unfolding pathway of SNase was unaffected. The stabilization of SNase by mannosylglycerate arises from decreased unfolding entropy up to 65 degrees C and from an enthalpy increase above this temperature. In molecular terms, stabilization is interpreted as resulting from destabilization of the denatured state caused by preferential exclusion of the solute from the protein hydration shell upon unfolding, and stabilization of the native state by specific interactions. The physiological significance of charged solutes in hyperthermophiles is discussed.
Collapse
Affiliation(s)
- Tiago Q Faria
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Rua da Quinta Grande 6, Apartado 127, 2780-156 Oeiras, Portugal
| | | | | | | | | |
Collapse
|
21
|
Hellings M, De Maeyer M, Verheyden S, Hao Q, Van Damme EJM, Peumans WJ, Engelborghs Y. The dead-end elimination method, tryptophan rotamers, and fluorescence lifetimes. Biophys J 2003; 85:1894-902. [PMID: 12944302 PMCID: PMC1303361 DOI: 10.1016/s0006-3495(03)74617-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2002] [Accepted: 05/30/2003] [Indexed: 11/17/2022] Open
Abstract
The Dead-End Elimination method was used to identify 40 low energy microconformations of 16 tryptophan residues in eight proteins. Single Trp-mutants of these proteins all show a double- or triple-exponential fluorescence decay. For ten of these lifetimes the corresponding rotameric state could be identified by comparing the bimolecular acrylamide quenching constant (k(q)) and the relative solvent exposure of the side chain in that microstate. In the absence of any identifiable quencher, the origin of the lifetime heterogeneity is interpreted in terms of the electron transfer process from the indole C epsilon 3 atom to the carbonyl carbon of the peptide bond. Therefore it is expected that a shorter [C epsilon 3-C[double bond]O] distance leads to a shorter lifetime as observed for these ten rotamers. Applying the same rule to the other 30 lifetimes, a link with their corresponding rotameric state could also be made. In agreement with the theory of Marcus and Sutin, the nonradiative rate constant shows an exponential relationship with the [C epsilon 3-C[double bond]O] distance for the 40 datapoints.
Collapse
Affiliation(s)
- Mario Hellings
- Laboratory of Biomolecular Dynamics, Catholic University of Leuven, Heverlee, Belgium
| | | | | | | | | | | | | |
Collapse
|
22
|
Verheyden S, Sillen A, Gils A, Declerck PJ, Engelborghs Y. Tryptophan properties in fluorescence and functional stability of plasminogen activator inhibitor 1. Biophys J 2003; 85:501-10. [PMID: 12829505 PMCID: PMC1303106 DOI: 10.1016/s0006-3495(03)74495-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2002] [Accepted: 03/13/2003] [Indexed: 11/18/2022] Open
Abstract
Plasminogen activator inhibitor 1 harbors four tryptophan residues at positions 86, 139, 175, and 262. To investigate the contribution of each tryptophan residue to the total fluorescence and to reveal the mutual interactions of the tryptophan residues and interactions with the other amino acids, 15 mutants in which tryptophan residues have been replaced by phenylalanines were constructed, purified, and characterized. Conformational distribution analysis revealed that the tryptophan mutants have a similar conformational distribution pattern as wild-type plasminogen activator inhibitor 1. Mutants in which tryptophan residue 175 was replaced by a phenylalanine displayed an increased functional half-life of the active conformation, whereas the functional half-life of mutants in which tryptophan residue 262 was replaced by a phenylalanine was substantially decreased. Comparative analysis of the fluorescence lifetimes, the extinction coefficients, and the quantum yields of the individual tryptophan residues demonstrates that tryptophan residue 262 gives the highest contribution to the total fluorescence. The other tryptophan residues have a very low quantum yield. In the wild-type protein, the fluorescence of all tryptophan residues is partially quenched as compared to the mutants that contain single tryptophan residues, due to conformational effects. The fluorescence of tryptophan residue 262 is very likely also partially quenched by energy transfer to tryptophan residue 175.
Collapse
Affiliation(s)
- Stefan Verheyden
- Laboratory of Biomolecular Dynamics, Katholieke Universiteit Leuven, B3001 Leuven, Belgium
| | | | | | | | | |
Collapse
|
23
|
Callis PR, Vivian JT. Understanding the variable fluorescence quantum yield of tryptophan in proteins using QM-MM simulations. Quenching by charge transfer to the peptide backbone. Chem Phys Lett 2003. [DOI: 10.1016/s0009-2614(02)02046-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Sopkova J, Raguenes-Nicol C, Vincent M, Chevalier A, Lewit-Bentley A, Russo-Marie F, Gallay J. Ca(2+) and membrane binding to annexin 3 modulate the structure and dynamics of its N terminus and domain III. Protein Sci 2002; 11:1613-25. [PMID: 12070314 PMCID: PMC2373663 DOI: 10.1110/ps.4230102] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Annexin 3 (ANX A3) represents approximately 1% of the total protein of human neutrophils and promotes tight contact between membranes of isolated specific granules in vitro leading to their aggregation. Like for other annexins, the primary molecular events of the action of this protein is likely its binding to negatively charged phospholipid membranes in a Ca(2+)-dependent manner, via Ca(2+)-binding sites located on the convex side of the highly conserved core of the molecule. The conformation and dynamics of domain III can be affected by this process, as it was shown for other members of the family. The 20 amino-acid, N-terminal segment of the protein also could be affected and also might play a role in the modulation of its binding to the membranes. The structure and dynamics of these two regions were investigated by fluorescence of the two tryptophan residues of the protein (respectively, W190 in domain III and W5 in the N-terminal segment) in the wild type and in single-tryptophan mutants. By contrast to ANX A5, which shows a closed conformation and a buried W187 residue in the absence of Ca(2+), domain III of ANX A3 exhibits an open conformation and a widely solvent-accessible W190 residue in the same conditions. This is in agreement with the three-dimensional structure of the ANX A3-E231A mutant lacking the bidentate Ca(2+) ligand in domain III. Ca(2+) in the millimolar concentration range provokes nevertheless a large mobility increase of the W190 residue, while interaction with the membranes reduces it slightly. In the N-terminal region, the W5 residue, inserted in the central pore of the protein, is weakly accessible to the solvent and less mobile than W190. Its amplitude of rotation increases upon binding of Ca(2+) and returns to its original value when interacting with membranes. Ca(2+) concentration for half binding of the W5A mutant to negatively charged membranes is approximately 0.5 mM while it increases to approximately 1 mM for the ANX A3 wild type and to approximately 3 mM for the W190 ANX A3 mutant. In addition to the expected perturbation of the W190 environment at the contact surface between the protein and the membrane bilayer, binding of the protein to Ca(2+) and to membranes modulates the flexibility of the ANX A3 hinge region at the opposite of this interface and might affect its membrane permeabilizing properties.
Collapse
Affiliation(s)
- Jana Sopkova
- L.U.R.E., Bâtiment 209D, Centre Universitaire Paris-Sud, F-91898 Orsay, France
| | | | | | | | | | | | | |
Collapse
|