1
|
Dishliyska V, Stoyancheva G, Abrashev R, Miteva-Staleva J, Spasova B, Angelova M, Krumova E. Catalase from the Antarctic Fungus Aspergillus fumigatus I-9-Biosynthesis and Gene Characterization. Indian J Microbiol 2023; 63:541-548. [PMID: 38031622 PMCID: PMC10682308 DOI: 10.1007/s12088-023-01110-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/07/2023] [Indexed: 12/01/2023] Open
Abstract
Extremely cold habitats are a serious challenge for the existing there organisms. Inhabitants of these conditions are mostly microorganisms and lower mycetae. The mechanisms of microbial adaptation to extreme conditions are still unclear. Low temperatures cause significant physiological and biochemical changes in cells. Recently, there has been increasing interest in the relationship between low-temperature exposure and oxidative stress events, as well as the importance of antioxidant enzymes for survival in such conditions. The catalase is involved in the first line of the cells' antioxidant defense. Published information supports the concept of a key role for catalase in antioxidant defense against cold stress in a wide range of organisms isolated from the Antarctic. Data on representatives of microscopic fungi, however, are rarely found. There is scarce information on the characterization of catalase synthesized by adapted to cold stress organisms. Overall, this study aimed to observe the role of catalase in the survival strategy of filamentous fungi in extremely cold habitats and to identify the gene encoded catalase enzyme. Our results clearly showed that catalase is the main part of antioxidant enzyme defense in fungal cells against oxidative stress caused by low temperature exposure.
Collapse
Affiliation(s)
- Vladislava Dishliyska
- Departament of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G, Bonchev Str. Bl.26, 1113 Sofia, Bulgaria
| | - Galina Stoyancheva
- Departament of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G, Bonchev Str. Bl.26, 1113 Sofia, Bulgaria
| | - Radoslav Abrashev
- Departament of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G, Bonchev Str. Bl.26, 1113 Sofia, Bulgaria
| | - Jeny Miteva-Staleva
- Departament of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G, Bonchev Str. Bl.26, 1113 Sofia, Bulgaria
| | - Boriana Spasova
- Departament of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G, Bonchev Str. Bl.26, 1113 Sofia, Bulgaria
| | - Maria Angelova
- Departament of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G, Bonchev Str. Bl.26, 1113 Sofia, Bulgaria
| | - Ekaterina Krumova
- Departament of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G, Bonchev Str. Bl.26, 1113 Sofia, Bulgaria
| |
Collapse
|
2
|
Salicari L, Baiesi M, Orlandini E, Trovato A. Folding kinetics of an entangled protein. PLoS Comput Biol 2023; 19:e1011107. [PMID: 37956216 PMCID: PMC10681328 DOI: 10.1371/journal.pcbi.1011107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 11/27/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
The possibility of the protein backbone adopting lasso-like entangled motifs has attracted increasing attention. After discovering the surprising abundance of natively entangled protein domain structures, it was shown that misfolded entangled subpopulations might become thermosensitive or escape the homeostasis network just after translation. To investigate the role of entanglement in shaping folding kinetics, we introduce a novel indicator and analyze simulations of a coarse-grained, structure-based model for two small single-domain proteins. The model recapitulates the well-known two-state folding mechanism of a non-entangled SH3 domain. However, despite its small size, a natively entangled antifreeze RD1 protein displays a rich refolding behavior, populating two distinct kinetic intermediates: a short-lived, entangled, near-unfolded state and a longer-lived, non-entangled, near-native state. The former directs refolding along a fast pathway, whereas the latter is a kinetic trap, consistently with known experimental evidence of two different characteristic times. Upon trapping, the natively entangled loop folds without being threaded by the N-terminal residues. After trapping, the native entangled structure emerges by either backtracking to the unfolded state or threading through the already formed but not yet entangled loop. Along the fast pathway, trapping does not occur because the native contacts at the closure of the lasso-like loop fold after those involved in the N-terminal thread, confirming previous predictions. Despite this, entanglement may appear already in unfolded configurations. Remarkably, a longer-lived, near-native intermediate, with non-native entanglement properties, recalls what was observed in cotranslational folding.
Collapse
Affiliation(s)
- Leonardo Salicari
- Department of Physics and Astronomy “G. Galilei”, University of Padova, Padova, Italy
- National Institute of Nuclear Physics (INFN), Padova Section, Padova, Italy
| | - Marco Baiesi
- Department of Physics and Astronomy “G. Galilei”, University of Padova, Padova, Italy
- National Institute of Nuclear Physics (INFN), Padova Section, Padova, Italy
| | - Enzo Orlandini
- Department of Physics and Astronomy “G. Galilei”, University of Padova, Padova, Italy
- National Institute of Nuclear Physics (INFN), Padova Section, Padova, Italy
| | - Antonio Trovato
- Department of Physics and Astronomy “G. Galilei”, University of Padova, Padova, Italy
- National Institute of Nuclear Physics (INFN), Padova Section, Padova, Italy
| |
Collapse
|
3
|
Bui PT, Hoang TX. The protein escape process at the ribosomal exit tunnel has conserved mechanisms across the domains of life. J Chem Phys 2023; 158:015102. [PMID: 36610950 DOI: 10.1063/5.0129532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The ribosomal exit tunnel is the primary structure affecting the release of nascent proteins at the ribosome. The ribosomal exit tunnels from different species have elements of conservation and differentiation in structural and physico-chemical properties. In this study, by simulating the elongation and escape processes of nascent proteins at the ribosomal exit tunnels of four different organisms, we show that the escape process has conserved mechanisms across the domains of life. Specifically, it is found that the escape process of proteins follows the diffusion mechanism given by a simple diffusion model, and the median escape time positively correlates with the number of hydrophobic residues and the net charge of a protein for all the exit tunnels considered. These properties hold for 12 distinct proteins considered in two slightly different and improved Gō-like models. It is also found that the differences in physico-chemical properties of the tunnels lead to quantitative differences in the protein escape times. In particular, the relatively strong hydrophobicity of E. coli's tunnel and the unusually high number of negatively charged amino acids on the tunnel's surface of H. marismortui lead to substantially slower escapes of proteins at these tunnels than at those of S. cerevisiae and H. sapiens.
Collapse
Affiliation(s)
- Phuong Thuy Bui
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 11307, Vietnam
| | - Trinh Xuan Hoang
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 11307, Vietnam
| |
Collapse
|
4
|
Ma Q, Shibata M, Hagiwara T. Ice crystal recrystallization inhibition of type I antifreeze protein, type III antifreeze protein, and antifreeze glycoprotein: effects of AF(G)Ps concentration and heat treatment. Biosci Biotechnol Biochem 2022; 86:635-645. [PMID: 35134820 DOI: 10.1093/bbb/zbac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/19/2022] [Indexed: 11/12/2022]
Abstract
This study compared ice recrystallization behaviors of frozen dessert model systems containing type I antifreeze protein (AFP I), type III antifreeze protein (AFP III), and antifreeze glycoprotein (AFGP) at -10 °C. Specifically, effects of AF(G)P concentration and heat treatment (95 °C for 10 min) were examined. The concentration dependence of the ice recrystallization rate constant reasonably well fit a sigmoidal function: the fitting procedure was proposed, along with cooperative coefficient α, and a new index of AF(G)P ice recrystallization inhibition (IRI) activity (C50). After 95 °C heat treatment for 10 min, AFP III lost its ice crystal recrystallization inhibitory activity the most: AFP I was less affected; AFGP was almost entirely unaffected. These different thermal treatment effects might reflect a lower degree of protein aggregation because of hydrophobic interaction after heat treatment or might reflect the simplicity and flexibility of the higher order structures of AFP I and AFGP.
Collapse
Affiliation(s)
- Qingbao Ma
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Mario Shibata
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Tomoaki Hagiwara
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| |
Collapse
|
5
|
Deeva AA, Glukhova KA, Isoyan LS, Okulova YD, Uversky VN, Melnik BS. Design and Analysis of a Mutant form of the Ice-Binding Protein from Choristoneura fumiferana. Protein J 2022; 41:304-314. [PMID: 35366124 DOI: 10.1007/s10930-022-10049-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2022] [Indexed: 10/18/2022]
Abstract
Ice-binding proteins are expressed in the cells of some cold adapted organisms, helping them to survive at extremely low temperatures. One of the problems in studying such proteins is the difficulty of their isolation and purification. For example, eight cysteine residues in the cfAF (antifreeze protein from the eastern spruce budworm Choristoneura fumiferana) form intermolecular bridges during the overexpression of this protein. This impedes the process of the protein purification dramatically. To overcome this issue, in this work, we designed a mutant form of the ice-binding protein cfAFP, which is much easier to isolate that the wild-type protein. The mutant form named mIBP83 did not lose the ability to bind to ice surface. Besides, observation of the processes of freezing and melting of ice in the presence of mIBP83 showed that this protein affects the process of ice melting, increasing its melting temperature, and does not decrease the water freezing temperature.
Collapse
Affiliation(s)
- Anna A Deeva
- Biophysics Department, Siberian Federal University, Svobodny 79, Krasnoyarsk, Russia, 660041
| | - Ksenia A Glukhova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Puschino, Russia
| | - Lala S Isoyan
- Biophysics Department, Siberian Federal University, Svobodny 79, Krasnoyarsk, Russia, 660041
| | - Yuliya D Okulova
- Institute of Protein Research of the Russian Academy of Sciences, 4 Institutskaya Str., Pushchino, Moscow Region, Russia, 142290
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institure, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Bogdan S Melnik
- Institute of Protein Research of the Russian Academy of Sciences, 4 Institutskaya Str., Pushchino, Moscow Region, Russia, 142290.
| |
Collapse
|
6
|
Gharib G, Saeidiharzand S, Sadaghiani AK, Koşar A. Antifreeze Proteins: A Tale of Evolution From Origin to Energy Applications. Front Bioeng Biotechnol 2022; 9:770588. [PMID: 35186912 PMCID: PMC8851421 DOI: 10.3389/fbioe.2021.770588] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/31/2021] [Indexed: 11/19/2022] Open
Abstract
Icing and formation of ice crystals is a major obstacle against applications ranging from energy systems to transportation and aviation. Icing not only introduces excess thermal resistance, but it also reduces the safety in operating systems. Many organisms living under harsh climate and subzero temperature conditions have developed extraordinary survival strategies to avoid or delay ice crystal formation. There are several types of antifreeze glycoproteins with ice-binding ability to hamper ice growth, ice nucleation, and recrystallization. Scientists adopted similar approaches to utilize a new generation of engineered antifreeze and ice-binding proteins as bio cryoprotective agents for preservation and industrial applications. There are numerous types of antifreeze proteins (AFPs) categorized according to their structures and functions. The main challenge in employing such biomolecules on industrial surfaces is the stabilization/coating with high efficiency. In this review, we discuss various classes of antifreeze proteins. Our particular focus is on the elaboration of potential industrial applications of anti-freeze polypeptides.
Collapse
Affiliation(s)
- Ghazaleh Gharib
- Faculty of Engineering and Natural Sciences (FENS), Sabanci University, Istanbul, Turkey
- Sabanci University Nanotechnology and Application Center (SUNUM), Sabanci University, Istanbul, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano-Diagnostics (EFSUN), Sabanci University, Istanbul, Turkey
| | - Shaghayegh Saeidiharzand
- Faculty of Engineering and Natural Sciences (FENS), Sabanci University, Istanbul, Turkey
- Sabanci University Nanotechnology and Application Center (SUNUM), Sabanci University, Istanbul, Turkey
| | - Abdolali K. Sadaghiani
- Faculty of Engineering and Natural Sciences (FENS), Sabanci University, Istanbul, Turkey
- Sabanci University Nanotechnology and Application Center (SUNUM), Sabanci University, Istanbul, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano-Diagnostics (EFSUN), Sabanci University, Istanbul, Turkey
- *Correspondence: Abdolali K. Sadaghiani, ; Ali Koşar,
| | - Ali Koşar
- Faculty of Engineering and Natural Sciences (FENS), Sabanci University, Istanbul, Turkey
- Sabanci University Nanotechnology and Application Center (SUNUM), Sabanci University, Istanbul, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano-Diagnostics (EFSUN), Sabanci University, Istanbul, Turkey
- *Correspondence: Abdolali K. Sadaghiani, ; Ali Koşar,
| |
Collapse
|
7
|
Ghalamara S, Silva S, Brazinha C, Pintado M. Structural diversity of marine anti-freezing proteins, properties and potential applications: a review. BIORESOUR BIOPROCESS 2022; 9:5. [PMID: 38647561 PMCID: PMC10992025 DOI: 10.1186/s40643-022-00494-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/08/2022] [Indexed: 11/10/2022] Open
Abstract
Cold-adapted organisms, such as fishes, insects, plants and bacteria produce a group of proteins known as antifreeze proteins (AFPs). The specific functions of AFPs, including thermal hysteresis (TH), ice recrystallization inhibition (IRI), dynamic ice shaping (DIS) and interaction with membranes, attracted significant interest for their incorporation into commercial products. AFPs represent their effects by lowering the water freezing point as well as preventing the growth of ice crystals and recrystallization during frozen storage. The potential of AFPs to modify ice growth results in ice crystal stabilizing over a defined temperature range and inhibiting ice recrystallization, which could minimize drip loss during thawing, improve the quality and increase the shelf-life of frozen products. Most cryopreservation studies using marine-derived AFPs have shown that the addition of AFPs can increase post-thaw viability. Nevertheless, the reduced availability of bulk proteins and the need of biotechnological techniques for industrial production, limit the possible usage in foods. Despite all these drawbacks, relatively small concentrations are enough to show activity, which suggests AFPs as potential food additives in the future. The present work aims to review the results of numerous investigations on marine-derived AFPs and discuss their structure, function, physicochemical properties, purification and potential applications.
Collapse
Affiliation(s)
- Soudabeh Ghalamara
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Sara Silva
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Carla Brazinha
- LAQV/Requimte, Faculdade de Ciências E Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
8
|
Khan NMMU, Arai T, Tsuda S, Kondo H. Characterization of microbial antifreeze protein with intermediate activity suggests that a bound-water network is essential for hyperactivity. Sci Rep 2021; 11:5971. [PMID: 33727595 PMCID: PMC7966756 DOI: 10.1038/s41598-021-85559-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/03/2021] [Indexed: 12/27/2022] Open
Abstract
Antifreeze proteins (AFPs) inhibit ice growth by adsorbing onto specific ice planes. Microbial AFPs show diverse antifreeze activity and ice plane specificity, while sharing a common molecular scaffold. To probe the molecular mechanisms responsible for AFP activity, we here characterized the antifreeze activity and crystal structure of TisAFP7 from the snow mold fungus Typhula ishikariensis. TisAFP7 exhibited intermediate activity, with the ability to bind the basal plane, compared with a hyperactive isoform TisAFP8 and a moderately active isoform TisAFP6. Analysis of the TisAFP7 crystal structure revealed a bound-water network arranged in a zigzag pattern on the surface of the protein's ice-binding site (IBS). While the three AFP isoforms shared the water network pattern, the network on TisAFP7 IBS was not extensive, which was likely related to its intermediate activity. Analysis of the TisAFP7 crystal structure also revealed the presence of additional water molecules that form a ring-like network surrounding the hydrophobic side chain of a crucial IBS phenylalanine, which might be responsible for the increased adsorption of AFP molecule onto the basal plane. Based on these observations, we propose that the extended water network and hydrophobic hydration at IBS together determine the TisAFP activity.
Collapse
Affiliation(s)
- N M-Mofiz Uddin Khan
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan.,Department of Chemistry, Dhaka University of Engineering and Technology, Gazipur Gazipur, 1700, Bangladesh
| | - Tatsuya Arai
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Sakae Tsuda
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1, Tsukisamu-Higashi, Toyohira, Sapporo, Hokkaido, 062-8517, Japan.,OPERANDO Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8563, Japan
| | - Hidemasa Kondo
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan. .,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1, Tsukisamu-Higashi, Toyohira, Sapporo, Hokkaido, 062-8517, Japan.
| |
Collapse
|
9
|
Deciphering the Cold Adaptive Mechanisms in Pseudomonas psychrophila MTCC12324 Isolated from the Arctic at 79° N. Curr Microbiol 2020; 77:2345-2355. [DOI: 10.1007/s00284-020-02006-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/24/2020] [Indexed: 11/26/2022]
|
10
|
Santiago Á, Razo-Hernández RS, Pastor N. Revealing the Structural Contributions to Thermal Adaptation of the TATA-Box Binding Protein: Molecular Dynamics and QSPR Analyses. J Chem Inf Model 2020; 60:866-879. [PMID: 31917925 DOI: 10.1021/acs.jcim.9b00824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The TATA-box binding protein (TBP) is an important element of the transcription machinery in archaea and eukaryotic organisms. TBP is expressed in organisms adapted to different temperatures, indicating a robust structure, and experimental studies have shown that the mid-unfolding temperature (Tm) of TBP is directly correlated with the optimal growth temperature (OGT) of the organism. To understand which are the relevant structural requirements for its stability, we present the first structural and dynamic computational study of TBPs, combining molecular dynamics (MD) simulations and a quantitative structure-property relationship (QSPR) over a set of TBPs of organisms adapted to different temperatures. We found that the main structural properties of TBP used to adapt to high temperatures are an increase in the ease of desolvation of charged residues at the surface, an increase in the local resiliency, the presence of Leu clusters in the protein core, and an increase in the loss of hydrophobic packing in the N-terminal subdomain. In view of our results, we consider that TBP is a good model to study thermal adaptation, and our analysis opens the possibility of performing protein engineering on TBPs to study transcription at high or low temperatures.
Collapse
Affiliation(s)
- Ángel Santiago
- Laboratorio de Dinámica de Proteínas, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas , Universidad Autónoma del Estado de Morelos , Av. Universidad 1001, Col. Chamilpa , Cuernavaca , Morelos 62209 , México
| | - Rodrigo Said Razo-Hernández
- Laboratorio de Dinámica de Proteínas, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas , Universidad Autónoma del Estado de Morelos , Av. Universidad 1001, Col. Chamilpa , Cuernavaca , Morelos 62209 , México
| | - Nina Pastor
- Laboratorio de Dinámica de Proteínas, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas , Universidad Autónoma del Estado de Morelos , Av. Universidad 1001, Col. Chamilpa , Cuernavaca , Morelos 62209 , México.,Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología , Universidad Nacional Autónoma de México , Av. Universidad 2001, Col. Chamilpa , Cuernavaca , Morelos 62210 , México
| |
Collapse
|
11
|
Feller G. Protein folding at extreme temperatures: Current issues. Semin Cell Dev Biol 2017; 84:129-137. [PMID: 28941878 DOI: 10.1016/j.semcdb.2017.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 08/18/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
Abstract
The range of temperatures compatible with life is currently estimated from -25°C, as exemplified by metabolically active bacteria between sea ice crystals, and up to 122°C in hydrothermal vents as exemplified by the archaeon Methanopyrus kandleri. In the context of protein folding, as soon as a polypeptide emerges from the ribosome, it is exposed to the effects of environmental temperatures. Recent investigations have shown that the rate of protein folding is not adapted to extreme temperatures and should be very fast at high temperature and low in cold environments. This lack of adaptation is driven by kinetic constraints on protein stability. To counteract the deleterious effects of fast protein folding in hyperthermophiles, chaperones such as the Trigger Factor hold and slow down the rate of folding intermediates. Prolyl isomerization, a rate-limiting step in the folding of many proteins, is strongly temperature-dependent and impairs folding of psychrophilic proteins in the cold. This is compensated by reduction of the proline content in cold-adapted proteins, by an increased number of prolyl isomerases encoded in the genome of psychrophilic microorganisms and by overexpression of prolyl isomerases under low temperature cultivation. After folding, the native state is reached and although extremophilic proteins share the same fold, dramatic differences in stability have been recorded by differential scanning calorimetry.
Collapse
Affiliation(s)
- Georges Feller
- Laboratory of Biochemistry, Center for Protein Engineering-InBioS, University of Liège, Institute of Chemistry B6a, 4000 Liège-Sart Tilman, Belgium.
| |
Collapse
|
12
|
Hawes TC. A root bond between ice and antifreeze protein. Cryobiology 2016; 73:147-51. [DOI: 10.1016/j.cryobiol.2016.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/03/2016] [Accepted: 08/14/2016] [Indexed: 11/27/2022]
|
13
|
Leiter A, Rau S, Winger S, Muhle-Goll C, Luy B, Gaukel V. Influence of heating temperature, pressure and pH on recrystallization inhibition activity of antifreeze protein type III. J FOOD ENG 2016. [DOI: 10.1016/j.jfoodeng.2016.04.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Yoshida K, Baron AQR, Uchiyama H, Tsutsui S, Yamaguchi T. Structure and collective dynamics of hydrated anti-freeze protein type III from 180 K to 298 K by X-ray diffraction and inelastic X-ray scattering. J Chem Phys 2016; 144:134505. [PMID: 27059578 DOI: 10.1063/1.4944987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigated hydrated antifreeze protein type III (AFP III) powder with a hydration level h (=mass of water/mass of protein) of 0.4 in the temperature range between 180 K and 298 K using X-ray diffraction and inelastic X-ray scattering (IXS). The X-ray diffraction data showed smooth, largely monotonic changes between 180 K and 298 K without freezing water. Meanwhile, the collective dynamics observed by IXS showed a strong change in the sound velocity at 180 K, after being largely temperature independent at higher temperatures (298-220 K). We interpret this change in terms of the dynamic transition previously discussed using other probes including THz IR absorption spectroscopy and incoherent elastic and quasi-elastic neutron scattering. This finding suggests that the dynamic transition of hydrated proteins is observable on the subpicosecond time scale as well as nano- and pico-second scales, both in collective dynamics from IXS and single particle dynamics from neutron scattering. Moreover, it is most likely that the dynamic transition of hydrated AFP III is not directly correlated with its hydration structure.
Collapse
Affiliation(s)
- Koji Yoshida
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Alfred Q R Baron
- Materials Dynamics Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hiroshi Uchiyama
- Research and Utilization Division, Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Satoshi Tsutsui
- Research and Utilization Division, Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Toshio Yamaguchi
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
15
|
Kingsley CN, Bierma JC, Pham V, Martin RW. γS-crystallin proteins from the Antarctic nototheniid toothfish: a model system for investigating differential resistance to chemical and thermal denaturation. J Phys Chem B 2014; 118:13544-53. [PMID: 25372016 PMCID: PMC4254003 DOI: 10.1021/jp509134d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
The γS1- and γS2-crystallins,
structural eye lens proteins
from the Antarctic toothfish (Dissostichus mawsoni), are homologues of the human lens protein γS-crystallin.
Although γS1 has the higher thermal stability of the two, it
is more susceptible to chemical denaturation by urea. The lower thermodynamic
stability of both toothfish crystallins relative to human γS-crystallin
is consistent with the current picture of how proteins from organisms
endemic to perennially cold environments have achieved low-temperature
functionality via greater structural flexibility. In some respects,
the sequences of γS1- and γS2-crystallin are typical of
psychrophilic proteins; however, their amino acid compositions also
reflect their selection for a high refractive index increment. Like
their counterparts in the human lens and those of mesophilic fish,
both toothfish crystallins are relatively enriched in aromatic residues
and methionine and exiguous in aliphatic residues. The sometimes contradictory
requirements of selection for cold tolerance and high refractive index
make the toothfish crystallins an excellent model system for further
investigation of the biophysical properties of structural proteins.
Collapse
Affiliation(s)
- Carolyn N Kingsley
- Department of Chemistry, University of California-Irvine , 1102 Natural Sciences 2, Irvine, California, 92697-2025, United States
| | | | | | | |
Collapse
|
16
|
Friis DS, Johnsen JL, Kristiansen E, Westh P, Ramløv H. Low thermodynamic but high kinetic stability of an antifreeze protein from Rhagium mordax. Protein Sci 2014; 23:760-8. [PMID: 24652821 DOI: 10.1002/pro.2459] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 11/12/2022]
Abstract
The equilibrium heat stability and the kinetic heat tolerance of a recombinant antifreeze protein (AFP) from the beetle Rhagium mordax (RmAFP1) are studied through differential scanning calorimetry and circular dichroism spectroscopy. In contrast to other insect AFPs studied with this respect, the RmAFP1 has only one disulfide bridge. The melting temperature, Tm , of the protein is determined to be 28.5°C (pH 7.4), which is much lower than most of those reported for AFPs or globular proteins in general. Despite its low melting temperature, both biophysical and activity measurements show that the protein almost completely refolds into the native state after repeated exposure of 70°C. RmAFP1 thus appears to be kinetically stable even far above its melting temperature. Thermodynamically, the insect AFPs seem to be dividable in three groups, relating to their content of disulfide bridges and widths of the ice binding motifs; high melting temperature AFPs (high disulfide content, TxT motifs), low melting temperature but high refolding capability AFPs (one disulfide bridge, TxTxTxT motifs) and irreversibly unfolded AFPs at low temperatures (no disulfide bridges, TxTxTxTxT motifs). The property of being able to cope with high temperature exposures may appear peculiar for proteins which strictly have their effect at subzero temperatures. Different aspects of this are discussed.
Collapse
Affiliation(s)
- Dennis S Friis
- Department of Science, Systems and Models, Roskilde University, DK-4000, Roskilde, Denmark
| | | | | | | | | |
Collapse
|
17
|
Thermodynamic stability of psychrophilic and mesophilic pheromones of the protozoan ciliate euplotes. BIOLOGY 2013; 2:142-50. [PMID: 24832655 PMCID: PMC4009864 DOI: 10.3390/biology2010142] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 12/27/2012] [Accepted: 12/31/2012] [Indexed: 11/17/2022]
Abstract
Three psychrophilic protein pheromones (En-1, En-2 and En-6) from the polar ciliate, Euplotes nobilii, and six mesophilic pheromones (Er-1, Er-2, Er-10, Er-11, Er-22 and Er-23) from the temperate-water sister species, Euplotes raikovi,were studied in aqueous solution for their thermal unfolding and refolding based on the temperature dependence of their circular dichroism (CD) spectra. The three psychrophilic proteins showed thermal unfolding with mid points in the temperature range 55–70 °C. In contrast, no unfolding was observed for any of the six mesophilic proteins and their regular secondary structures were maintained up to 95 °C. Possible causes of these differences are discussed based on comparisons of the NMR structures of the nine proteins.
Collapse
|
18
|
Feller G. Psychrophilic enzymes: from folding to function and biotechnology. SCIENTIFICA 2013; 2013:512840. [PMID: 24278781 PMCID: PMC3820357 DOI: 10.1155/2013/512840] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 11/06/2012] [Indexed: 05/10/2023]
Abstract
Psychrophiles thriving permanently at near-zero temperatures synthesize cold-active enzymes to sustain their cell cycle. Genome sequences, proteomic, and transcriptomic studies suggest various adaptive features to maintain adequate translation and proper protein folding under cold conditions. Most psychrophilic enzymes optimize a high activity at low temperature at the expense of substrate affinity, therefore reducing the free energy barrier of the transition state. Furthermore, a weak temperature dependence of activity ensures moderate reduction of the catalytic activity in the cold. In these naturally evolved enzymes, the optimization to low temperature activity is reached via destabilization of the structures bearing the active site or by destabilization of the whole molecule. This involves a reduction in the number and strength of all types of weak interactions or the disappearance of stability factors, resulting in improved dynamics of active site residues in the cold. These enzymes are already used in many biotechnological applications requiring high activity at mild temperatures or fast heat-inactivation rate. Several open questions in the field are also highlighted.
Collapse
Affiliation(s)
- Georges Feller
- Laboratory of Biochemistry, Centre for Protein Engineering, Institute of Chemistry, University of Liège, B6a, 4000 Liège, Belgium
- *Georges Feller:
| |
Collapse
|
19
|
Assefa NG, Niiranen L, Willassen NP, Smalås A, Moe E. Thermal unfolding studies of cold adapted uracil-DNA N-glycosylase (UNG) from Atlantic cod (Gadus morhua). A comparative study with human UNG. Comp Biochem Physiol B Biochem Mol Biol 2012; 161:60-8. [DOI: 10.1016/j.cbpb.2011.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 09/12/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
|
20
|
Salvay AG, Gabel F, Pucci B, Santos J, Howard EI, Ebel C. Structure and interactions of fish type III antifreeze protein in solution. Biophys J 2010; 99:609-18. [PMID: 20643081 DOI: 10.1016/j.bpj.2010.04.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 04/12/2010] [Accepted: 04/14/2010] [Indexed: 10/19/2022] Open
Abstract
It has been suggested that above a critical protein concentration, fish Type III antifreeze protein (AFP III) self-assembles to form micelle-like structures that may play a key role in antifreeze activity. To understand the complex activity of AFP III, a comprehensive description of its association state and structural organization in solution is necessary. We used analytical ultracentrifugation, analytical size-exclusion chromatography, and dynamic light scattering to characterize the interactions and homogeneity of AFP III in solution. Small-angle neutron scattering was used to determine the low-resolution structure in solution. Our results clearly show that at concentrations up to 20 mg mL(-1) and at temperatures of 20 degrees C, 6 degrees C, and 4 degrees C, AFP III is monomeric in solution and adopts a structure compatible with that determined by crystallography. Surface tension measurements show a propensity of AFP III to localize at the air/water interface, but this surface activity is not correlated with any aggregation in the bulk. These results support the hypothesis that each AFP III molecule acts independently of the others, and that specific intermolecular interactions between monomers are not required for binding to ice. The lack of attractive interactions between monomers may be functionally important, allowing for more efficient binding and covering of the ice surface.
Collapse
Affiliation(s)
- Andrés G Salvay
- Instituto de Física de Líquidos y Sistemas Biológicos, Universidad Nacional de La Plata, La Plata, Argentina.
| | | | | | | | | | | |
Collapse
|
21
|
Kundu S, Roy D. Comparative structural studies of psychrophilic and mesophilic protein homologues by molecular dynamics simulation. J Mol Graph Model 2009; 27:871-80. [DOI: 10.1016/j.jmgm.2009.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 01/14/2009] [Accepted: 01/15/2009] [Indexed: 11/25/2022]
|
22
|
Safety of ‘Ice Structuring Protein (ISP) - Scientific Opinion of the Panel on Dietetic Products, Nutrition and Allergies and of the Panel on Genetically Modified Organisms. EFSA J 2008. [DOI: 10.2903/j.efsa.2008.768] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
23
|
Kundu S, Roy D. Temperature-induced unfolding pathway of a type III antifreeze protein: Insight from molecular dynamics simulation. J Mol Graph Model 2008; 27:88-94. [DOI: 10.1016/j.jmgm.2008.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 02/15/2008] [Accepted: 03/11/2008] [Indexed: 10/22/2022]
|
24
|
Salvay AG, Santos J, Howard EI. Electro-optical properties characterization of fish type III antifreeze protein. J Biol Phys 2008; 33:389-97. [PMID: 19669526 DOI: 10.1007/s10867-008-9080-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 04/15/2008] [Indexed: 10/22/2022] Open
Abstract
Antifreeze proteins (AFPs) are ice-binding proteins that depress the freezing point of water in a non-colligative manner without a significant modification of the melting point. Found in the blood and tissues of some organisms (such as fish, insects, plants, and soil bacteria), AFPs play an important role in subzero temperature survival. Fish Type III AFP is present in members of the subclass Zoarcoidei. AFPIII are small 7-kDa-or 14-kDa tandem-globular proteins. In the present work, we study the behavior of several physical properties, such as the low-frequency dielectric permittivity spectrum, circular dichroism, and electrical conductivity of Fish Type III AFP solutions measured at different concentrations. The combination of the information obtained from these measurements could be explained through the formation of AFP molecular aggregates or, alternatively, by the existence of some other type of interparticle interactions. Thermal stability and electro-optical behavior, when proteins are dissolved in deuterated water, were also investigated.
Collapse
Affiliation(s)
- Andrés G Salvay
- Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB), Universidad Nacional de La Plata, 1900BTE La Plata, Argentina
| | | | | |
Collapse
|