1
|
Weber DK, Reddy UV, Robia SL, Veglia G. Pathological mutations in the phospholamban cytoplasmic region affect its topology and dynamics modulating the extent of SERCA inhibition. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184370. [PMID: 38986894 PMCID: PMC11457527 DOI: 10.1016/j.bbamem.2024.184370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Phospholamban (PLN) is a 52 amino acid regulin that allosterically modulates the activity of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) in the heart muscle. In its unphosphorylated form, PLN binds SERCA within its transmembrane (TM) domains, approximately 20 Å away from the Ca2+ binding site, reducing SERCA's apparent Ca2+ affinity (pKCa) and decreasing cardiac contractility. During the enzymatic cycle, the inhibitory TM domain of PLN remains anchored to SERCA, whereas its cytoplasmic region transiently binds the ATPase's headpiece. Phosphorylation of PLN at Ser16 by protein kinase A increases the affinity of its cytoplasmic domain to SERCA, weakening the TM interactions with the ATPase, reversing its inhibitory function, and augmenting muscle contractility. How the structural changes caused by pathological mutations in the PLN cytoplasmic region are transmitted to its inhibitory TM domain is still unclear. Using solid-state NMR spectroscopy and activity assays, we analyzed the structural and functional effects of a series of mutations and their phosphorylated forms located in the PLN cytoplasmic region and linked to dilated cardiomyopathy. We found that these missense mutations affect the overall topology and dynamics of PLN and ultimately modulate its inhibitory potency. Also, the changes in the TM tilt angle and cytoplasmic dynamics of PLN caused by these mutations correlate well with the extent of SERCA inhibition. Our study unveils new molecular determinants for designing variants of PLN that outcompete endogenous PLN to regulate SERCA in a tunable manner.
Collapse
Affiliation(s)
- Daniel K Weber
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - U Venkateswara Reddy
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Seth L Robia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
2
|
Chipot C, Dehez F, Schnell JR, Zitzmann N, Pebay-Peyroula E, Catoire LJ, Miroux B, Kunji ERS, Veglia G, Cross TA, Schanda P. Perturbations of Native Membrane Protein Structure in Alkyl Phosphocholine Detergents: A Critical Assessment of NMR and Biophysical Studies. Chem Rev 2018; 118:3559-3607. [PMID: 29488756 PMCID: PMC5896743 DOI: 10.1021/acs.chemrev.7b00570] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Indexed: 12/25/2022]
Abstract
Membrane proteins perform a host of vital cellular functions. Deciphering the molecular mechanisms whereby they fulfill these functions requires detailed biophysical and structural investigations. Detergents have proven pivotal to extract the protein from its native surroundings. Yet, they provide a milieu that departs significantly from that of the biological membrane, to the extent that the structure, the dynamics, and the interactions of membrane proteins in detergents may considerably vary, as compared to the native environment. Understanding the impact of detergents on membrane proteins is, therefore, crucial to assess the biological relevance of results obtained in detergents. Here, we review the strengths and weaknesses of alkyl phosphocholines (or foscholines), the most widely used detergent in solution-NMR studies of membrane proteins. While this class of detergents is often successful for membrane protein solubilization, a growing list of examples points to destabilizing and denaturing properties, in particular for α-helical membrane proteins. Our comprehensive analysis stresses the importance of stringent controls when working with this class of detergents and when analyzing the structure and dynamics of membrane proteins in alkyl phosphocholine detergents.
Collapse
Affiliation(s)
- Christophe Chipot
- SRSMC, UMR 7019 Université de Lorraine CNRS, Vandoeuvre-les-Nancy F-54500, France
- Laboratoire
International Associé CNRS and University of Illinois at Urbana−Champaign, Vandoeuvre-les-Nancy F-54506, France
- Department
of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - François Dehez
- SRSMC, UMR 7019 Université de Lorraine CNRS, Vandoeuvre-les-Nancy F-54500, France
- Laboratoire
International Associé CNRS and University of Illinois at Urbana−Champaign, Vandoeuvre-les-Nancy F-54506, France
| | - Jason R. Schnell
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Nicole Zitzmann
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | - Laurent J. Catoire
- Laboratory
of Biology and Physico-Chemistry of Membrane Proteins, Institut de Biologie Physico-Chimique (IBPC), UMR
7099 CNRS, Paris 75005, France
- University
Paris Diderot, Paris 75005, France
- PSL
Research University, Paris 75005, France
| | - Bruno Miroux
- Laboratory
of Biology and Physico-Chemistry of Membrane Proteins, Institut de Biologie Physico-Chimique (IBPC), UMR
7099 CNRS, Paris 75005, France
- University
Paris Diderot, Paris 75005, France
- PSL
Research University, Paris 75005, France
| | - Edmund R. S. Kunji
- Medical
Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Gianluigi Veglia
- Department
of Biochemistry, Molecular Biology, and Biophysics, and Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy A. Cross
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
| | - Paul Schanda
- Université
Grenoble Alpes, CEA, CNRS, IBS, Grenoble F-38000, France
| |
Collapse
|
3
|
Wang S, Ladizhansky V. Recent advances in magic angle spinning solid state NMR of membrane proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 82:1-26. [PMID: 25444696 DOI: 10.1016/j.pnmrs.2014.07.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/16/2014] [Accepted: 07/20/2014] [Indexed: 05/14/2023]
Abstract
Membrane proteins mediate many critical functions in cells. Determining their three-dimensional structures in the native lipid environment has been one of the main objectives in structural biology. There are two major NMR methodologies that allow this objective to be accomplished. Oriented sample NMR, which can be applied to membrane proteins that are uniformly aligned in the magnetic field, has been successful in determining the backbone structures of a handful of membrane proteins. Owing to methodological and technological developments, Magic Angle Spinning (MAS) solid-state NMR (ssNMR) spectroscopy has emerged as another major technique for the complete characterization of the structure and dynamics of membrane proteins. First developed on peptides and small microcrystalline proteins, MAS ssNMR has recently been successfully applied to large membrane proteins. In this review we describe recent progress in MAS ssNMR methodologies, which are now available for studies of membrane protein structure determination, and outline a few examples, which highlight the broad capability of ssNMR spectroscopy.
Collapse
Affiliation(s)
- Shenlin Wang
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Vladimir Ladizhansky
- Department of Physics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada; Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
4
|
Hughes E, Middleton DA. Comparison of the structure and function of phospholamban and the arginine-14 deficient mutant associated with dilated cardiomyopathy. PLoS One 2014; 9:e106746. [PMID: 25225809 PMCID: PMC4165587 DOI: 10.1371/journal.pone.0106746] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 08/01/2014] [Indexed: 12/20/2022] Open
Abstract
Phospholamban (PLB) is a pentameric protein that plays an important role in regulating cardiac contractility via a reversible inhibitory association with the sarcoplasmic reticulum Ca2+ATPase (SERCA), the enzyme responsible for maintaining correct calcium homeostasis. Here we study the functional and biophysical characteristics of a PLB mutant associated with human dilated cardiomyopathy (DCM), with a deletion of arginine at position 14 (PLBR14Δ). In agreement with recent findings, we find that PLBR14Δ has a reduced inhibitory effect on SERCA compared to wild type PLB (PLBWT) when reconstituted into lipid membranes. The mutation also leads to a large reduction in the protein kinase A-catalysed phosphorylation of Ser-16 in the cytoplasmic domain of PLBR14Δ. Measurements on SERCA co-reconstituted with an equimolar mixture of PLBWT and PLBR14Δ (representing the lethal heterozygous state associated with DCM) indicates that the loss-of-function mutation has a dominant effect on PLBWT functionality and phosphorylation capacity, suggesting that mixed PLBWT/PLBR14Δ pentamers are formed that have characteristics typical of the mutant protein. Structural and biophysical analysis of PLBR14Δ indicates that the mutation perturbs slightly the helical structure of the PLB cytoplasmic domain and reduces its affinity for the phospholipid bilayer surface, thereby altering the orientation of the cytoplasmic domain relative to the wild-type protein. These results indicate that the structure and function consequences of the R14 deletion have profound effects on the regulation of SERCA which may contribute to the aetiology of DCM.
Collapse
Affiliation(s)
- Eleri Hughes
- Department of Chemistry, Lancaster University, Lancaster, United Kingdom
| | - David A Middleton
- Department of Chemistry, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
5
|
Maltsev S, Hudson SM, Sahu ID, Liu L, Lorigan GA. Solid-state NMR (31)P paramagnetic relaxation enhancement membrane protein immersion depth measurements. J Phys Chem B 2014; 118:4370-7. [PMID: 24689497 PMCID: PMC4002136 DOI: 10.1021/jp500267y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/01/2014] [Indexed: 11/29/2022]
Abstract
Paramagnetic relaxation enhancement (PRE) is a widely used approach for measuring long-range distance constraints in biomolecular solution NMR spectroscopy. In this paper, we show that (31)P PRE solid-state NMR spectroscopy can be utilized to determine the immersion depth of spin-labeled membrane peptides and proteins. Changes in the (31)P NMR PRE times coupled with modeling studies can be used to describe the spin-label position/amino acid within the lipid bilayer and the corresponding helical tilt. This method provides valuable insight on protein-lipid interactions and membrane protein structural topology. Solid-state (31)P NMR data on the 23 amino acid α-helical nicotinic acetylcholine receptor nAChR M2δ transmembrane domain model peptide followed predicted behavior of (31)P PRE rates of the phospholipid headgroup as the spin-label moves from the membrane surface toward the center of the membrane. Residue 11 showed the smallest changes in (31)P PRE (center of the membrane), while residue 22 shows the largest (31)P PRE change (near the membrane surface), when compared to the diamagnetic control M2δ sample. This PRE SS-NMR technique can be used as a molecular ruler to measure membrane immersion depth.
Collapse
Affiliation(s)
- Sergey Maltsev
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Stephen M. Hudson
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Indra D. Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Lishan Liu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
6
|
Yu X, Lorigan GA. Secondary structure, backbone dynamics, and structural topology of phospholamban and its phosphorylated and Arg9Cys-mutated forms in phospholipid bilayers utilizing 13C and 15N solid-state NMR spectroscopy. J Phys Chem B 2014; 118:2124-33. [PMID: 24511878 PMCID: PMC3983341 DOI: 10.1021/jp500316s] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Phospholamban (PLB) is a membrane protein that regulates heart muscle relaxation rates via interactions with the sarcoplasmic reticulum Ca(2+) ATPase (SERCA). When PLB is phosphorylated or Arg9Cys (R9C) is mutated, inhibition of SERCA is relieved. (13)C and (15)N solid-state NMR spectroscopy is utilized to investigate conformational changes of PLB upon phosphorylation and R9C mutation. (13)C═O NMR spectra of the cytoplasmic domain reveal two α-helical structural components with population changes upon phosphorylation and R9C mutation. The appearance of an unstructured component is observed on domain Ib. (15)N NMR spectra indicate an increase in backbone dynamics of the cytoplasmic domain. Wild-type PLB (WT-PLB), Ser16-phosphorylated PLB (P-PLB), and R9C-mutated PLB (R9C-PLB) all have a very dynamic domain Ib, and the transmembrane domain has an immobile component. (15)N NMR spectra indicate that the cytoplasmic domain of R9C-PLB adopts an orientation similar to P-PLB and shifts away from the membrane surface. Domain Ib (Leu28) of P-PLB and R9C-PLB loses the alignment. The R9C-PLB adopts a conformation similar to P-PLB with a population shift to a more extended and disordered state. The NMR data suggest the more extended and disordered forms of PLB may relate to inhibition relief.
Collapse
Affiliation(s)
- Xueting Yu
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | | |
Collapse
|
7
|
Miao Y, Cross TA. Solid state NMR and protein-protein interactions in membranes. Curr Opin Struct Biol 2013; 23:919-28. [PMID: 24034903 DOI: 10.1016/j.sbi.2013.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/17/2013] [Accepted: 08/12/2013] [Indexed: 11/17/2022]
Abstract
Solid state NMR spectroscopy has evolved rapidly in recent years into an excellent tool for the characterization of membrane proteins and their complexes. In the past few years it has also become clear that the structure of membrane proteins, especially helical membrane proteins is determined, in part, by the membrane environment. Therefore, the modeling of this environment by a liquid crystalline lipid bilayer for solid state NMR has generated a unique tool for the characterization of native conformational states, local and global dynamics, and high-resolution structure for these proteins. Protein-protein interactions can also benefit from this solid state NMR capability to characterize membrane proteins in a native-like environment. These complexes take the form of oligomeric structures and hetero-protein interactions both with water-soluble proteins and other membrane proteins.
Collapse
Affiliation(s)
- Yimin Miao
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, United States; National High Magnetic Field Lab, 1800 E. Paul Dirac Dr., Florida State University, Tallahassee, FL 32310, United States
| | | |
Collapse
|
8
|
Yu X, Lorigan GA. Probing the interaction of Arg9Cys mutated phospholamban with phospholipid bilayers by solid-state NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2444-9. [PMID: 23850636 DOI: 10.1016/j.bbamem.2013.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 06/10/2013] [Accepted: 07/01/2013] [Indexed: 01/05/2023]
Abstract
Phospholamban (PLB) is a 52 amino acid integral membrane protein that interacts with the sarcoplasmic reticulum Ca(2+) ATPase (SERCA) and helps to regulate Ca(2+) flow. PLB inhibits SERCA impairing Ca(2+) translocation. The inhibition can be relieved upon phosphorylation of PLB. The Arg9 to Cys (R9C) mutation is a loss of function mutation with reduced inhibitory potency. The effect R9C PLB has on the membrane surface and the hydrophobic region dynamics was investigated by (31)P and (2)H solid-state NMR spectroscopy in multilamellar vesicles (MLVs). The (31)P NMR spectra indicate that, like the phosphorylated PLB (P-PLB), the mutated R9C-PLB protein has significantly less interaction with the lipid bilayer headgroup when compared to wild-type PLB (WT-PLB). Similar to P-PLB, R9C-PLB slightly decreases (31)P T1 values in the lipid headgroup region. (2)H SCD order parameters of (2)H nuclei along the lipid acyl chain decrease less dramatically for R9C-PLB and P-PLB when compared to WT-PLB. The results suggest that R9C-PLB interacts less with the membrane surface and hydrophobic region than WT-PLB. Detachment of the cytoplasmic domain of R9C-PLB from the membrane surface could be related to its loss of function.
Collapse
Affiliation(s)
- Xueting Yu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | | |
Collapse
|
9
|
Ghimire H, Abu-Baker S, Sahu ID, Zhou A, Mayo DJ, Lee RT, Lorigan GA. Probing the helical tilt and dynamic properties of membrane-bound phospholamban in magnetically aligned bicelles using electron paramagnetic resonance spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:645-50. [PMID: 22172806 DOI: 10.1016/j.bbamem.2011.11.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 11/18/2011] [Accepted: 11/24/2011] [Indexed: 10/14/2022]
Abstract
Wild-type phospholamban (WT-PLB), a Ca(2+)-ATPase (SERCA) regulator in the sarcoplasmic reticulum membrane, was studied using TOAC nitroxide spin labeling, magnetically aligned bicelles, and electron paramagnetic resonance (EPR) spectroscopy to ascertain structural and dynamic information. Different structural domains of PLB (transmembrane segment: positions 42 and 45, loop region: position 20, and cytoplasmic domain: position 10) were probed with rigid TOAC spin labels to extract the transmembrane helical tilt and structural dynamic information, which is crucial for understanding the regulatory function of PLB in modulating Ca(2+)-ATPase activity. Aligned experiments indicate that the transmembrane domain of wild-type PLB has a helical tilt of 13°±4° in DMPC/DHPC bicelles. TOAC spin labels placed on the WT-PLB transmembrane domain showed highly restricted motion with more than 100ns rotational correlation time (τ(c)); whereas the loop, and the cytoplasmic regions each consists of two distinct motional dynamics: one fast component in the sub-nanosecond scale and the other component is slower dynamics in the nanosecond range.
Collapse
|
10
|
Abstract
We review the current state of membrane protein structure determination using solid-state nuclear magnetic resonance (NMR) spectroscopy. Multidimensional magic-angle-spinning correlation NMR combined with oriented-sample experiments has made it possible to measure a full panel of structural constraints of membrane proteins directly in lipid bilayers. These constraints include torsion angles, interatomic distances, oligomeric structure, protein dynamics, ligand structure and dynamics, and protein orientation and depth of insertion in the lipid bilayer. Using solid-state NMR, researchers have studied potassium channels, proton channels, Ca(2+) pumps, G protein-coupled receptors, bacterial outer membrane proteins, and viral fusion proteins to elucidate their mechanisms of action. Many of these membrane proteins have also been investigated in detergent micelles using solution NMR. Comparison of the solid-state and solution NMR structures provides important insights into the effects of the solubilizing environment on membrane protein structure and dynamics.
Collapse
Affiliation(s)
- Mei Hong
- Department of Chemistry, Iowa State University, Ames, 50011, USA.
| | | | | |
Collapse
|
11
|
Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method. Proc Natl Acad Sci U S A 2011; 108:9101-6. [PMID: 21576492 DOI: 10.1073/pnas.1016535108] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Phospholamban (PLN) is a type II membrane protein that inhibits the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA), thereby regulating calcium homeostasis in cardiac muscle. In membranes, PLN forms pentamers that have been proposed to function either as a storage for active monomers or as ion channels. Here, we report the T-state structure of pentameric PLN solved by a hybrid solution and solid-state NMR method. In lipid bilayers, PLN adopts a pinwheel topology with a narrow hydrophobic pore, which excludes ion transport. In the T state, the cytoplasmic amphipathic helices (domains Ia) are absorbed into the lipid bilayer with the transmembrane domains arranged in a left-handed coiled-coil configuration, crossing the bilayer with a tilt angle of approximately 11° with respect to the membrane normal. The tilt angle difference between the monomer and pentamer is approximately 13°, showing that intramembrane helix-helix association forces dominate over the hydrophobic mismatch, driving the overall topology of the transmembrane assembly. Our data reveal that both topology and function of PLN are shaped by the interactions with lipids, which fine-tune the regulation of SERCA.
Collapse
|
12
|
Lethal Arg9Cys phospholamban mutation hinders Ca2+-ATPase regulation and phosphorylation by protein kinase A. Proc Natl Acad Sci U S A 2011; 108:2735-40. [PMID: 21282613 DOI: 10.1073/pnas.1013987108] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The regulatory interaction of phospholamban (PLN) with Ca(2+)-ATPase controls the uptake of calcium into the sarcoplasmic reticulum, modulating heart muscle contractility. A missense mutation in PLN cytoplasmic domain (R9C) triggers dilated cardiomyopathy in humans, leading to premature death. Using a combination of biochemical and biophysical techniques both in vitro and in live cells, we show that the R9C mutation increases the stability of the PLN pentameric assembly via disulfide bridge formation, preventing its binding to Ca(2+)-ATPase as well as phosphorylation by protein kinase A. These effects are enhanced under oxidizing conditions, suggesting that oxidative stress may exacerbate the cardiotoxic effects of the PLN(R9C) mutant. These results reveal a regulatory role of the PLN pentamer in calcium homeostasis, going beyond the previously hypothesized role of passive storage for active monomers.
Collapse
|
13
|
Saitô H, Ando I, Ramamoorthy A. Chemical shift tensor - the heart of NMR: Insights into biological aspects of proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2010; 57:181-228. [PMID: 20633363 PMCID: PMC2905606 DOI: 10.1016/j.pnmrs.2010.04.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 04/26/2010] [Indexed: 05/19/2023]
Affiliation(s)
- Hazime Saitô
- Department of Life Science, Himeji Institute of Technology, University of Hyogo, Kamigori, Hyog, 678-1297, Japan
| | - Isao Ando
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-0033, Japan
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
14
|
Chu S, Abu-Baker S, Lu J, Lorigan GA. (15)N Solid-state NMR spectroscopic studies on phospholamban at its phosphorylated form at ser-16 in aligned phospholipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:312-7. [PMID: 20044975 DOI: 10.1016/j.bbamem.2009.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 12/18/2009] [Accepted: 12/22/2009] [Indexed: 11/17/2022]
Abstract
Wild-type phospholamban (WT-PLB) is a pentameric transmembrane protein that regulates the cardiac cycle (contraction and relaxation). From a physiological prospective, unphosphorylated WT-PLB inhibits sarcoplasmic reticulum ATPase activity; whereas, its phosphorylated form relieves the inhibition in a mechanism that is not completely understood. In this study, site-specifically (15)N-Ala-11- and (15)N-Leu-7-labeled WT-PLB and the corresponding phosphorylated forms (P-PLB) were incorporated into 1,2-dioleoyl-sn-glycero-3-phosphocholine/2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPC/DOPE) mechanically oriented lipid bilayers. The aligned (15)N-labeled Ala-11 and Leu-7 WT-PLB samples show (15)N resonance peaks at approximately 71ppm and 75ppm, respectively, while the corresponding phosphorylated forms P-PLB show (15)N peaks at 92ppm and 99ppm, respectively. These (15)N chemical shift changes upon phosphorylation are significant and in agreement with previous reports, which indicate that phosphorylation of WT-PLB at Ser-16 alters the structural properties of the cytoplasmic domain with respect to the lipid bilayers.
Collapse
Affiliation(s)
- Shidong Chu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, USA
| | | | | | | |
Collapse
|
15
|
Holt A, Killian JA. Orientation and dynamics of transmembrane peptides: the power of simple models. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:609-21. [PMID: 20020122 PMCID: PMC2841270 DOI: 10.1007/s00249-009-0567-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Revised: 11/17/2009] [Accepted: 11/19/2009] [Indexed: 02/02/2023]
Abstract
In this review we discuss recent insights obtained from well-characterized model systems into the factors that determine the orientation and tilt angles of transmembrane peptides in lipid bilayers. We will compare tilt angles of synthetic peptides with those of natural peptides and proteins, and we will discuss how tilt can be modulated by hydrophobic mismatch between the thickness of the bilayer and the length of the membrane spanning part of the peptide or protein. In particular, we will focus on results obtained on tryptophan-flanked model peptides (WALP peptides) as a case study to illustrate possible consequences of hydrophobic mismatch in molecular detail and to highlight the importance of peptide dynamics for the experimental determination of tilt angles. We will conclude with discussing some future prospects and challenges concerning the use of simple peptide/lipid model systems as a tool to understand membrane structure and function.
Collapse
Affiliation(s)
- Andrea Holt
- Biochemistry of Membranes, Bijvoet Center for Biomolecular Research, Utrecht University, 3584CH Utrecht, The Netherlands.
| | | |
Collapse
|
16
|
Solid-state (2)H and (15)N NMR studies of side-chain and backbone dynamics of phospholamban in lipid bilayers: investigation of the N27A mutation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:210-5. [PMID: 19840770 DOI: 10.1016/j.bbamem.2009.09.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 09/18/2009] [Accepted: 09/30/2009] [Indexed: 11/23/2022]
Abstract
Phospholamban (PLB) is an integral membrane protein regulating Ca(2+) transport through inhibitory interaction with sarco(endo)plasmic reticulum calcium ATPase (SERCA). The Asn27 to Ala (N27A) mutation of PLB has been shown to function as a superinhibitor of the affinity of SERCA for Ca(2+) and of cardiac contractility in vivo. The effects of this N27A mutation on the side-chain and backbone dynamics of PLB were investigated with (2)H and (15)N solid-state NMR spectroscopy in phospholipid multilamellar vesicles (MLVs). (2)H and (15)N NMR spectra indicate that the N27A mutation does not significantly change the side-chain or backbone dynamics of the transmembrane and cytoplasmic domains when compared to wild-type PLB. However, dynamic changes are observed for the hinge region, in which greater mobility is observed for the CD(3)-labeled Ala24 N27A-PLB. The increased dynamics in the hinge region of PLB upon N27A mutation may allow the cytoplasmic helix to more easily interact with the Ca(2+)-ATPase; thus, showing increased inhibition of Ca(2+)-ATPase.
Collapse
|
17
|
Tiburu EK, Gulla SV, Tiburu M, Janero DR, Budil DE, Makriyannis A. Dynamic conformational responses of a human cannabinoid receptor-1 helix domain to its membrane environment. Biochemistry 2009; 48:4895-904. [PMID: 19485422 DOI: 10.1021/bi802235w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The influence of membrane environment on human cannabinoid 1 (hCB(1)) receptor transmembrane helix (TMH) conformational dynamics was investigated by solid-state NMR and site-directed spin labeling/EPR with a synthetic peptide, hCB(1)(T377-E416), corresponding to the receptor's C-terminal component, i.e., TMH7 and its intracellular alpha-helical extension (H8) (TMH7/H8). Solid-state NMR experiments with mechanically aligned hCB(1)(T377-E416) specifically (2)H- or (15)N-labeled at Ala380 and reconstituted in membrane-mimetic dimyristoylphosphocholine (DMPC) or 1-palmitoyl-2-oleoyl-sn-glycerophosphocholine (POPC) bilayers demonstrate that the conformation of the TMH7/H8 peptide is more heterogeneous in the thinner DMPC bilayer than in the thicker POPC bilayer. As revealed by EPR studies on hCB(1)(T377-E416) spin-labeled at Cys382 and reconstituted into the phospholipid bilayers, the spin label partitions actively between hydrophobic and hydrophilic environments. In the DMPC bilayer, the hydrophobic component dominates, regardless of temperature. Mobility parameters (DeltaH(0)(-1)) are 0.3 and 0.73 G for the peptide in the DMPC or POPC bilayer environment, respectively. Interspin distances of doubly labeled hCB(1)(T377-E416) peptide reconstituted into a TFE/H(2)O mixture or a POPC or DMPC bilayer were estimated to be 10.6 +/- 0.5, 16.8 +/- 1, and 11.6 +/- 0.8 A, respectively. The extent of coupling (>or=50%) between spin labels located at i and i + 4 in a TFE/H(2)O mixture or a POPC bilayer is indicative of an alpha-helical TMH conformation, whereas the much lower coupling (14%) when the peptide is in a DMPC bilayer suggests a high degree of peptide conformational heterogeneity. These data demonstrate that hCB(1)(T377-E416) backbone dynamics as well as spin-label rotameric freedom are sensitive to and altered by the peptide's phospholipid bilayer environment, which exerts a dynamic influence on the conformation of a TMH critical to signal transmission by the hCB(1) receptor.
Collapse
Affiliation(s)
- Elvis K Tiburu
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115-5000, USA
| | | | | | | | | | | |
Collapse
|
18
|
McDermott A. Structure and dynamics of membrane proteins by magic angle spinning solid-state NMR. Annu Rev Biophys 2009; 38:385-403. [PMID: 19245337 DOI: 10.1146/annurev.biophys.050708.133719] [Citation(s) in RCA: 288] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Membrane proteins remain difficult to study by traditional methods. Magic angle spinning solid-state NMR (MAS SSNMR) methods present an important approach for studying membrane proteins of moderate size. Emerging MAS SSNMR methods are based on extensive assignments of the nuclei as a basis for structure determination and characterization of function. These methods have already been used to characterize fibrils and globular proteins and are being increasingly used to study membrane proteins embedded in lipids. This review highlights recent applications to intrinsic membrane proteins and summarizes recent technical advances that will enable these methods to be utilized for more complex membrane protein systems in the near future.
Collapse
Affiliation(s)
- Ann McDermott
- Department of Chemistry, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
19
|
Structure and topology of monomeric phospholamban in lipid membranes determined by a hybrid solution and solid-state NMR approach. Proc Natl Acad Sci U S A 2009; 106:10165-70. [PMID: 19509339 DOI: 10.1073/pnas.0904290106] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phospholamban (PLN) is an essential regulator of cardiac muscle contractility. The homopentameric assembly of PLN is the reservoir for active monomers that, upon deoligomerization form 1:1 complexes with the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA), thus modulating the rate of calcium uptake. In lipid bilayers and micelles, monomeric PLN exists in equilibrium between a bent (or resting) T state and a more dynamic (or active) R state. Here, we report the high-resolution structure and topology of the T state of a monomeric PLN mutant in lipid bilayers, using a hybrid of solution and solid-state NMR restraints together with molecular dynamics simulations in explicit lipid environments. Unlike the previous structural ensemble determined in micelles, this approach gives a complete picture of the PLN monomer structure in a lipid bilayer. This hybrid ensemble exemplifies the tilt, rotation, and depth of membrane insertion, revealing the interaction with the lipids for all protein domains. The N-terminal amphipathic helical domain Ia (residues 1-16) rests on the surface of the lipid membrane with the hydrophobic face of domain Ia embedded in the membrane bilayer interior. The helix comprised of domain Ib (residues 23-30) and transmembrane domain II (residues 31-52) traverses the bilayer with a tilt angle of approximately 24 degrees . The specific interactions between PLN and lipid membranes may represent an additional regulatory element of its inhibitory function. We propose this hybrid method for the simultaneous determination of structure and topology for membrane proteins with compact folds or proteins whose spatial arrangement is dictated by their specific interactions with lipid bilayers.
Collapse
|
20
|
Newstadt JP, Mayo DJ, Inbaraj JJ, Subbaraman N, Lorigan GA. Determining the helical tilt of membrane peptides using electron paramagnetic resonance spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2009; 198:1-7. [PMID: 19254856 PMCID: PMC2666113 DOI: 10.1016/j.jmr.2008.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 12/05/2008] [Accepted: 12/05/2008] [Indexed: 05/26/2023]
Abstract
Theoretical calculations of hyperfine splitting values derived from the EPR spectra of TOAC spin-labeled rigid aligned alpha-helical membrane peptides reveal a unique periodic variation. In the absence of helical motion, a plot of the corresponding hyperfine splitting values as a function of residue number results in a sinusoidal curve that depends on the helical tilt angle that the peptide makes with respect to the magnetic field. Motion about the long helical axis reduces the amplitude of the curve and averages out the corresponding hyperfine splitting values. The corresponding spectra can be used to determine the director axis tilt angle from the TOAC spin label, which can be used to calculate the helical tilt angle due to the rigidity of the TOAC spin label. Additionally, this paper describes a method to experimentally determine this helical tilt angle from the hyperfine splitting values of three consecutive residues.
Collapse
Affiliation(s)
- Justin P Newstadt
- Department of Chemistry and Biochemistry, Miami University of Ohio, Room 137, Hughes Laboratories, Oxford, OH 45056-1465, USA
| | | | | | | | | |
Collapse
|
21
|
Kandasamy SK, Lee DK, Nanga RP, Xu J, Santos JS, Larson RG, Ramamoorthy A. Solid-state NMR and molecular dynamics simulations reveal the oligomeric ion-channels of TM2-GABAA stabilized by intermolecular hydrogen bonding. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:686-95. [DOI: 10.1016/j.bbamem.2008.11.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 10/31/2008] [Accepted: 11/03/2008] [Indexed: 11/16/2022]
|
22
|
Ramamoorthy A, Lee DK, Santos JS, Henzler-Wildman KA. Nitrogen-14 Solid-State NMR Spectroscopy of Aligned Phospholipid Bilayers to Probe Peptide−Lipid Interaction and Oligomerization of Membrane Associated Peptides. J Am Chem Soc 2008; 130:11023-9. [DOI: 10.1021/ja802210u] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055
| | - Dong-Kuk Lee
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055
| | - Jose S. Santos
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055
| | | |
Collapse
|
23
|
Kelly EM, Hou Z, Bossuyt J, Bers DM, Robia SL. Phospholamban oligomerization, quaternary structure, and sarco(endo)plasmic reticulum calcium ATPase binding measured by fluorescence resonance energy transfer in living cells. J Biol Chem 2008; 283:12202-11. [PMID: 18287099 DOI: 10.1074/jbc.m707590200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholamban (PLB) oligomerization, quaternary structure, and sarco(endo)plasmic reticulum calcium ATPase (SERCA) binding were quantified by fluorescence resonance energy transfer (FRET) in an intact cellular environment. FRET between cyan fluorescent protein-PLB and yellow fluorescent protein-PLB in AAV-293 cells showed hyperbolic dependence on protein concentration, with a maximum efficiency of 45.1 +/- 1.3%. The observed FRET corresponds to a probe separation distance of 58.7 +/- 0.5A(,) according to a computational model of intrapentameric FRET. This is consistent with models of the PLB pentamer in which cytoplasmic domains fan out from the central bundle of transmembrane helices. An I40A mutation of PLB did not alter pentamer conformation but increased the concentration of half-maximal FRET (K(D)) by >4-fold. This is consistent with the previous observation that this putatively monomeric mutant still oligomerizes in intact membranes but forms more dynamic pentamers than wild type PLB. PLB association with SERCA, measured by FRET between cyan fluorescent protein-SERCA and yellow fluorescent protein-PLB, was increased by the I40A mutation without any detectable change in probe separation distance. The data indicate that the regulatory complex conformation is not altered by the I40A mutation. A naturally occurring human mutation (L39Stop) greatly reduced PLB oligomerization and SERCA binding and caused mislocalization of PLB to the cytoplasm and nucleus. Overall, the data suggest that the PLB pentamer adopts a "pinwheel" shape in cell membranes, as opposed to a more compact "bellflower" conformation. I40A mutation decreases oligomerization and increases PLB binding to SERCA. Truncation of the transmembrane domain by L39Stop mutation prevents anchoring of the protein in the membrane, greatly reducing PLB binding to itself or its regulatory target, SERCA.
Collapse
Affiliation(s)
- Eileen M Kelly
- Department of Physiology, Loyola University Chicago, Maywood, Illinois 60153,USA
| | | | | | | | | |
Collapse
|