1
|
Warrender AK, Pan J, Pudney C, Arcus VL, Kelton W. Red edge excitation shift spectroscopy is highly sensitive to tryptophan composition. J R Soc Interface 2023; 20:20230337. [PMID: 37935360 PMCID: PMC10645072 DOI: 10.1098/rsif.2023.0337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023] Open
Abstract
Red edge excitation shift (REES) spectroscopy relies on the unique emission profiles of fluorophore-solvent interactions to profile protein molecular dynamics. Recently, we reported the use of REES to compare the stability of 32 polymorphic IgG antibodies natively containing tryptophan reporter fluorophores. Here, we expand on this work to investigate the sensitivity of REES to variations in tryptophan content using a subset of IgG3 antibodies containing arginine to tryptophan polymorphisms. Structural analysis revealed that the additional tryptophan residues were situated in highly solvated environments. Subsequently, REES showed clear differences in fluorescence emission profiles when compared with the unmutated variants, thereby limiting direct comparison of their structural dynamics. These findings highlight the exquisite sensitivity of REES to minor variations in protein structure and tryptophan composition.
Collapse
Affiliation(s)
| | - Jolyn Pan
- Te Aka Mātuatua School of Science, University of Waikato, Hamilton, New Zealand
| | - Chris Pudney
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Vickery L. Arcus
- Te Aka Mātuatua School of Science, University of Waikato, Hamilton, New Zealand
| | - William Kelton
- Te Huataki Waiora School of Health, University of Waikato, Hamilton, New Zealand
- Te Aka Mātuatua School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
2
|
Rotamer Dynamics: Analysis of Rotamers in Molecular Dynamics Simulations of Proteins. Biophys J 2019; 116:2062-2072. [PMID: 31084902 DOI: 10.1016/j.bpj.2019.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/28/2019] [Accepted: 04/16/2019] [Indexed: 11/21/2022] Open
Abstract
Given by χ torsional angles, rotamers describe the side-chain conformations of amino acid residues in a protein based on the rotational isomers (hence the word rotamer). Constructed rotamer libraries, based on either protein crystal structures or dynamics studies, are the tools for classifying rotamers (torsional angles) in a way that reflect their frequency in nature. Rotamer libraries are routinely used in structure modeling and evaluation. In this perspective article, we would like to encourage researchers to apply rotamer analyses beyond their traditional use. Molecular dynamics (MD) of proteins highlight the in silico behavior of molecules in solution and thus can identify favorable side-chain conformations. In this article, we used simple computational tools to study rotamer dynamics (RD) in MD simulations. First, we isolated each frame in the MD trajectories in separate Protein Data Bank files via the cpptraj module in AMBER. Then, we extracted torsional angles via the Bio3D module in R language. The classification of torsional angles was also done in R according to the penultimate rotamer library. RD analysis is useful for various applications such as protein folding, study of rotamer-rotamer relationship in protein-protein interaction, real-time correlation between secondary structures and rotamers, study of flexibility of side chains in binding site for molecular docking preparations, use of RD as guide in functional analysis and study of structural changes caused by mutations, providing parameters for improving coarse-grained MD accuracy and speed, and many others. Major challenges facing RD to emerge as a new scientific field involve the validation of results via easy, inexpensive wet-lab methods. This realm is yet to be explored.
Collapse
|
3
|
Baghaee PT, Divsalar A, Chamani J, Donya A. Human serum albumin–malathion complex study in the presence of silver nanoparticles at different sizes by multi spectroscopic techniques. J Biomol Struct Dyn 2018; 37:2254-2264. [DOI: 10.1080/07391102.2018.1491416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Parisa Teimoori Baghaee
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Adeleh Divsalar
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Jamshikhan Chamani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Atena Donya
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
4
|
Frotscher E, Krainer G, Schlierf M, Keller S. Dissecting Nanosecond Dynamics in Membrane Proteins with Dipolar Relaxation upon Tryptophan Photoexcitation. J Phys Chem Lett 2018; 9:2241-2245. [PMID: 29652505 DOI: 10.1021/acs.jpclett.8b00834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The structural dynamics of proteins on the nanosecond time scale can be probed with dipolar relaxation in response to photoexcitation of intrinsic tryptophan (Trp) residues. For membrane proteins, however, the complexity due to overlapping contributions from the protein itself, the membrane mimic, and the aqueous solvent impairs detailed analysis and interpretation. To disentangle these contributions, we measured time-resolved emission spectra of Trp in the protein Mistic in detergent micelles of various polarities. By comparison with Trp analogues in water and micelles, we could dissect the contributions from hydration, micelle, and protein matrix to dipolar relaxation on the nanosecond time scale. Our results demonstrate that ultrafast, subnanosecond relaxation reports on the extent of Trp shielding from water, with micelle and protein moieties making additive contributions. By contrast, relaxation in the low nanosecond regime is due to dipolar rearrangement of micelle and protein moieties upon photoexcitation, thereby probing conformational dynamics around the intrinsic fluorophore.
Collapse
Affiliation(s)
- Erik Frotscher
- Molecular Biophysics , Technische Universität Kaiserslautern (TUK) , Erwin-Schrödinger-Str. 13 , 67663 Kaiserslautern , Germany
| | - Georg Krainer
- Molecular Biophysics , Technische Universität Kaiserslautern (TUK) , Erwin-Schrödinger-Str. 13 , 67663 Kaiserslautern , Germany
- B CUBE - Center for Molecular Bioengineering , Technische Universität Dresden , Arnoldstr. 18 , 01307 Dresden , Germany
| | - Michael Schlierf
- B CUBE - Center for Molecular Bioengineering , Technische Universität Dresden , Arnoldstr. 18 , 01307 Dresden , Germany
| | - Sandro Keller
- Molecular Biophysics , Technische Universität Kaiserslautern (TUK) , Erwin-Schrödinger-Str. 13 , 67663 Kaiserslautern , Germany
| |
Collapse
|
5
|
Comprehensive spectroscopic probing the interaction and conformation impairment of bovine serum albumin (BSA) by herbicide butachlor. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:332-339. [DOI: 10.1016/j.jphotobiol.2016.07.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 07/04/2016] [Accepted: 07/07/2016] [Indexed: 11/27/2022]
|
6
|
Catici DAM, Amos HE, Yang Y, van den Elsen JMH, Pudney CR. The red edge excitation shift phenomenon can be used to unmask protein structural ensembles: implications for NEMO-ubiquitin interactions. FEBS J 2016; 283:2272-84. [PMID: 27028374 DOI: 10.1111/febs.13724] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 03/29/2016] [Indexed: 02/02/2023]
Abstract
To understand complex molecular interactions, it is necessary to account for molecular flexibility and the available equilibrium of conformational states. Only a small number of experimental approaches can access such information. Potentially steady-state red edge excitation shift (REES) spectroscopy can act as a qualitative metric of changes to the protein free energy landscape (FEL) and the equilibrium of conformational states. First, we validate this hypothesis using a single Trp-containing protein, NF-κB essential modulator (NEMO). We provide detailed evidence from chemical denaturation studies, macromolecular crowding studies, and the first report of the pressure dependence of the REES effect. Combination of these data demonstrate that the REES effect can report on the 'ruggedness' of the FEL and we present a phenomenological model, based on realistic physical interpretations, for fitting steady-state REES data to allow quantification of this aspect of the REES effect. We test the conceptual framework we have developed by correlating findings from NEMO ligand-binding studies with the REES data in a range of NEMO-ligand binary complexes. Our findings shed light on the nature of the interaction between NEMO and poly-ubiquitin, suggesting that NEMO is differentially regulated by poly-ubiquitin chain length and that this regulation occurs via a modulation of the available equilibrium of conformational states, rather than gross structural change. This study therefore demonstrates the potential of REES as a powerful tool for tackling contemporary issues in structural biology and biophysics and elucidates novel information on the structure-function relationship of NEMO and key interaction partners.
Collapse
Affiliation(s)
- Dragana A M Catici
- Department of Biology and Biochemistry, Faculty of Science, University of Bath, UK
| | - Hope E Amos
- Department of Biology and Biochemistry, Faculty of Science, University of Bath, UK
| | - Yi Yang
- Department of Biology and Biochemistry, Faculty of Science, University of Bath, UK
| | | | - Christopher R Pudney
- Department of Biology and Biochemistry, Faculty of Science, University of Bath, UK
| |
Collapse
|
7
|
Meadows CW, Ou R, Klinman JP. Picosecond-resolved fluorescent probes at functionally distinct tryptophans within a thermophilic alcohol dehydrogenase: relationship of temperature-dependent changes in fluorescence to catalysis. J Phys Chem B 2014; 118:6049-61. [PMID: 24892947 PMCID: PMC4056859 DOI: 10.1021/jp500825x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two single-tryptophan variants were generated in a thermophilic alcohol dehydrogenase with the goal of correlating temperature-dependent changes in local fluorescence with the previously demonstrated catalytic break at ca. 30 °C (Kohen et al., Nature 1999, 399, 496). One tryptophan variant, W87in, resides at the active site within van der Waals contact of bound alcohol substrate; the other variant, W167in, is a remote-site surface reporter located >25 Å from the active site. Picosecond-resolved fluorescence measurements were used to analyze fluorescence lifetimes, time-dependent Stokes shifts, and the extent of collisional quenching at Trp87 and Trp167 as a function of temperature. A subnanosecond fluorescence decay rate constant has been detected for W87in that is ascribed to the proximity of the active site Zn(2+) and shows a break in behavior at 30 °C. For the remainder of the reported lifetime measurements, there is no detectable break between 10 and 50 °C, in contrast with previously reported hydrogen/deuterium exchange experiments that revealed a temperature-dependent break analogous to catalysis (Liang et al., Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 9556). We conclude that the motions that lead to the rigidification of ht-ADH below 30 °C are likely to be dominated by global processes slower than the picosecond to nanosecond motions measured herein. In the case of collisional quenching of fluorescence by acrylamide, W87in and W167in behave in a similar manner that resembles free tryptophan in water. Stokes shift measurements, by contrast, show distinctive behaviors in which the active-site tryptophan relaxation is highly temperature-dependent, whereas the solvent-exposed tryptophan's dynamics are temperature-independent. These data are concluded to reflect a significantly constrained environment surrounding the active site Trp87 that both increases the magnitude of the Stokes shift and its temperature-dependence. The results are discussed in the context of spatially distinct differences in enthalpic barriers for protein conformational sampling that may be related to catalysis.
Collapse
Affiliation(s)
- Corey W Meadows
- Department of Chemistry, ‡Department of Molecular and Cell Biology, and the §California Institute for Quantitative Biosciences, University of California, Berkeley , Berkeley, California 94720, United States
| | | | | |
Collapse
|
8
|
Safi M, Lilien RH. Efficient a Priori Identification of Drug Resistant Mutations Using Dead-End Elimination and MM-PBSA. J Chem Inf Model 2012; 52:1529-41. [DOI: 10.1021/ci200626m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Maria Safi
- Department of Computer Science, University of Toronto,
Toronto, Ontario M5S 3G4, Canada
| | - Ryan H. Lilien
- Department of Computer Science, University of Toronto,
Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
9
|
Paul BK, Guchhait N. Spectroscopic probing of location and dynamics of an environment-sensitive intramolecular charge transfer probe within liposome membranes. J Colloid Interface Sci 2011; 363:529-39. [DOI: 10.1016/j.jcis.2011.07.074] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 01/08/2023]
|
10
|
Paul BK, Guchhait N. Modulation of Prototropic Activity and Rotational Relaxation Dynamics of a Cationic Biological Photosensitizer within the Motionally Constrained Bio-environment of a Protein. J Phys Chem B 2011; 115:10322-34. [DOI: 10.1021/jp2015275] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bijan Kumar Paul
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Calcutta-700009, India
| | - Nikhil Guchhait
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Calcutta-700009, India
| |
Collapse
|
11
|
Mandal P, Mandal DK. Localization and environment of tryptophans in different structural states of concanavalin A. J Fluoresc 2011; 21:2123-32. [PMID: 21748239 DOI: 10.1007/s10895-011-0913-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 07/04/2011] [Indexed: 10/18/2022]
Abstract
We have investigated the localization and environment of tryptophan residues in different quaternary and conformational states (tetrameric, dimeric, monomeric and unfolded) of metallized and demetallized concanavalin A (ConA) by selective chemical modification, fluorescence, and phosphorescence. ConA has four tryptophan residues (Trp 40, Trp 88, Trp 109 and Trp 182) per subunit. The pattern of oxidation by N-bromosuccinimide (NBS) shows that NBS modifies, in dimer, only Trp 182 which remains inaccessible in tetramer, two (Trp 88 along with Trp 182) in monomer, all four in unfolded form in presence of EDTA, and three (possibly Trp 40 along with Trp 88 and Trp 182) in unfolded form from native or remetallized ConA. Utilizing wavelength-selective fluorescence approach, we have observed a red edge excitation shift (REES) of 6-8 nm for tetramer and dimer. A more pronounced REES (11 nm) is observed for oxidized monomer compared to REES (3 nm) for unoxidized species. Acrylamide quenching shows the Stern-Volmer constant (K(SV)) for dimer, monomer, unfolded ConA and unfolded apo-ConA being 3.8, 5.2, 12.8, 14.0 M(-1), respectively. Phosphorescence studies at 77 K give more structured spectra, with two (0,0) bands at 406.2 (weak) and 413.2 nm for tetramer. However, a single (0,0) band appears at 413.2 for dimer and 412.6 nm for monomer, while the (0,0) band of the oxidized monomer is red shifted to 414.4 nm. These results may provide important insight into subtlety of organization and environment of tryptophans in the context of folding and structural studies of oligomeric proteins including lectins.
Collapse
Affiliation(s)
- Pritha Mandal
- Department of Chemistry & Biochemistry, Presidency University, Kolkata 700 073, India
| | | |
Collapse
|
12
|
Sen D, Mandal DK. Pea lectin unfolding reveals a unique molten globule fragment chain. Biochimie 2011; 93:409-17. [DOI: 10.1016/j.biochi.2010.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
|
13
|
Yang CM, Zhang J. Insights into intramolecular Trp and His side-chain orientation and stereospecific π interactions surrounding metal centers: an investigation using protein metal-site mimicry in solution. Chemistry 2011; 16:10854-65. [PMID: 20669189 DOI: 10.1002/chem.200903149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Metal-binding scaffolds incorporating a Trp/His-paired epitope are instrumental in giving novel insights into the physicochemical basis of functional and mechanistic versatility conferred by the Trp-His interplay at a metal site. Herein, by coupling biometal site mimicry and (1)H and (13)C NMR spectroscopy experiments, modular constructs EDTA-(L-Trp, L-His) (EWH; EDTA=ethylenediamino tetraacetic acid) and DTPA-(L-Trp, L-His) (DWH; DTPA=diethylenetriamino pentaacetic acid) were employed to dissect the static and transient physicochemical properties of hydrophobic/hydrophilic aromatic interactive modes surrounding biometal centers. The binding feature and identities of the stoichiometric metal-bound complexes in solution were investigated by using (1)H and (13)C NMR spectroscopy, which facilitated a cross-validation of the carboxylate, amide oxygen, and tertiary amino groups as the primary ligands and indole as the secondary ligand, with the imidazole (Im) N3 nitrogen being weakly bound to metals such as Ca(2+) owing to a multivalency effect. Surrounding the metal centers, the stereospecific orientation of aromatic rings in the diastereoisomerism is interpreted with the Ca(2+)-EWH complex. With respect to perturbed Trp side-chain rotamer heterogeneity, drastically restricted Trp side-chain flexibility and thus a dynamically constrained rotamer interconversion due to π interactions is evident from the site-selective (13)C NMR spectroscopic signal broadening of the Trp indolyl C3 atom. Furthermore, effects of Trp side-chain fluctuation on indole/Im orientation were the subject of a 2D NMR spectroscopy study by using the Ca(2+)-bound state; a C-H2(indolyl)/C-H5(Im(+)) connectivity observed in the NOESY spectra captured direct evidence that the N-H1 of the Ca(2+)-Im(+) unit interacted with the pyrrole ring of the indole unit in Ca(2+)-bound EWH but not in DWH, which is assignable to a moderately static, anomalous, T-shaped, interplanar π(+)-π stacking alignment. Nevertheless, a comparative (13)C NMR spectroscopy study of the two homologous scaffolds revealed that the overall response of the indole unit arises predominantly from global attractions between the indole ring and the entire positively charged first coordination sphere. The study thus demonstrates the coordination-sphere/geometry dependence of the Trp/His side-chain interplay, and established that π interactions allow (13)C NMR spectroscopy to offer a new window for investigating Trp rotamer heterogeneity near metal-binding centers.
Collapse
Affiliation(s)
- Chi Ming Yang
- Neurochemistry & Biophysical Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | | |
Collapse
|
14
|
de Foresta B, Vincent M, Gallay J, Garrigos M. Interaction with membrane mimics of transmembrane fragments 16 and 17 from the human multidrug resistance ABC transporter 1 (hMRP1/ABCC1) and two of their tryptophan variants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:401-14. [DOI: 10.1016/j.bbamem.2009.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 11/12/2009] [Accepted: 11/30/2009] [Indexed: 10/20/2022]
|
15
|
Algorithm for the Analysis of Tryptophan Fluorescence Spectra and Their Correlation with Protein Structural Parameters. ALGORITHMS 2009. [DOI: 10.3390/a2031155] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
16
|
Ramsey JD, Gill ML, Kamerzell TJ, Price ES, Joshi SB, Bishop SM, Oliver CN, Middaugh CR. Using empirical phase diagrams to understand the role of intramolecular dynamics in immunoglobulin G stability. J Pharm Sci 2009; 98:2432-47. [PMID: 19072858 DOI: 10.1002/jps.21619] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Understanding the relationship between protein dynamics and stability is of paramount importance to the fields of biology and pharmaceutics. Clarifying this relationship is complicated by the large amount of experimental data that must be generated and analyzed if motions that exist over the wide range of timescales are to be included. To address this issue, we propose an approach that utilizes a multidimensional vector-based empirical phase diagram (EPD) to analyze a set of dynamic results acquired across a temperature-pH perturbation plane. This approach is applied to a humanized immunoglobulin G1 (IgG1), a protein of major biological and pharmaceutical importance whose dynamic nature is linked to its multiple biological roles. Static and dynamic measurements are used to characterize the IgG and to construct both static and dynamic EPDs. Between pH 5 and 8, a single, pH-dependent transition is observed that corresponds to thermal unfolding of the IgG. Under more acidic conditions, evidence exists for the formation of a more compact, aggregation resistant state of the immunoglobulin, known as A-form. The dynamics-based EPD presents a considerably more detailed pattern of apparent phase transitions over the temperature-pH plane. The utility and potential applications of this approach are discussed.
Collapse
Affiliation(s)
- Joshua D Ramsey
- Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Safi M, Lilien RH. Restricted dead-end elimination: Protein redesign with a bounded number of residue mutations. J Comput Chem 2009; 31:1207-15. [DOI: 10.1002/jcc.21407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Pronchik J, Giurleo JT, Talaga DS. Separation and Analysis of Dynamic Stokes Shift with Multiple Fluorescence Environments: Coumarin 153 in Bovine β-Lactoglobulin A. J Phys Chem B 2008; 112:11422-34. [DOI: 10.1021/jp802666n] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jeremy Pronchik
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854
| | - Jason T. Giurleo
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854
| | - David S. Talaga
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854
| |
Collapse
|