1
|
Lucchi R, Bentanachs J, Oller-Salvia B. The Masking Game: Design of Activatable Antibodies and Mimetics for Selective Therapeutics and Cell Control. ACS CENTRAL SCIENCE 2021; 7:724-738. [PMID: 34079893 PMCID: PMC8161478 DOI: 10.1021/acscentsci.0c01448] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Indexed: 05/04/2023]
Abstract
The high selectivity and affinity of antibody binding have made antibodies all-pervasive tools in therapy, diagnosis, and basic science. A plethora of chemogenetic approaches has been devised to make antibodies responsive to stimuli ranging from light to enzymatic activity, temperature, pH, ions, and effector molecules. Within a single decade, the field of activatable antibodies has yielded marketed therapeutics capable of engaging antigens that could not be targeted with traditional antibodies, as well as new tools to control intracellular protein location and investigate biological processes. Many opportunities remain untapped, waiting for more efficient and generally applicable masking strategies to be developed at the interface between chemistry and biotechnology.
Collapse
Affiliation(s)
- Roberta Lucchi
- Grup d’Enginyeria
de Materials, Institut Químic de
Sarrià (IQS), Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Jordi Bentanachs
- Grup d’Enginyeria
de Materials, Institut Químic de
Sarrià (IQS), Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Benjamí Oller-Salvia
- Grup d’Enginyeria
de Materials, Institut Químic de
Sarrià (IQS), Universitat Ramon Llull, 08017 Barcelona, Spain
| |
Collapse
|
2
|
Khowsathit J, Bazzoli A, Cheng H, Karanicolas J. Computational Design of an Allosteric Antibody Switch by Deletion and Rescue of a Complex Structural Constellation. ACS CENTRAL SCIENCE 2020; 6:390-403. [PMID: 32232139 PMCID: PMC7099597 DOI: 10.1021/acscentsci.9b01065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Indexed: 05/08/2023]
Abstract
Therapeutic monoclonal antibodies have transformed medicine, especially with regards to treating cancers and disorders of the immune system. More than 50 antibody-derived drugs have already reached the clinic, the majority of which target cytokines or cell-surface receptors. Unfortunately, many of these targets have pleiotropic functions: they serve multiple different roles, and often not all of these roles are disease-related. This can be problematic because antibodies act throughout the body, and systemic neutralization of such targets can lead to safety concerns. To address this, we have developed a strategy whereby an antibody's ability to recognize its antigen is modulated by a second layer of control, relying on addition of an exogenous small molecule. In previous studies, we began to explore this idea by introducing a deactivating tryptophan-to-glycine mutation in the domain-domain interface of a single-chain variable fragment (scFv), and then restoring activity by adding back indole to fit the designed cavity. Here, we now describe a novel computational strategy for enumerating larger cavities that can be formed by simultaneously introducing multiple adjacent large-to-small mutations; we then carry out a complementary virtual screen to identify druglike compounds to match each candidate cavity. We first demonstrate the utility of this strategy in a fluorescein-binding single-chain variable fragment (scFv) and experimentally characterize a triple mutant with reduced antigen-binding (Rip-3) that can be rescued using a complementary ligand (Stitch-3). Because our design is built upon conserved residues in the antibody framework, we then show that the same mutation/ligand pair can also be used to modulate antigen-binding in an scFv build from a completely unrelated framework. This set of residues is present in many therapeutic antibodies as well, suggesting that this mutation/ligand pair may serve as a general starting point for introducing ligand-dependence into many clinically relevant antibodies.
Collapse
Affiliation(s)
- Jittasak Khowsathit
- Program
in Molecular Therapeutics, Fox Chase Cancer
Center, Philadelphia, Pennsylvania 19111, United States
- Department of Molecular
Biosciences and Center for Computational Biology, University
of Kansas, Lawrence, Kansas 66045, United
States
| | - Andrea Bazzoli
- Department of Molecular
Biosciences and Center for Computational Biology, University
of Kansas, Lawrence, Kansas 66045, United
States
| | - Hong Cheng
- Program
in Molecular Therapeutics, Fox Chase Cancer
Center, Philadelphia, Pennsylvania 19111, United States
| | - John Karanicolas
- Program
in Molecular Therapeutics, Fox Chase Cancer
Center, Philadelphia, Pennsylvania 19111, United States
- Department of Molecular
Biosciences and Center for Computational Biology, University
of Kansas, Lawrence, Kansas 66045, United
States
| |
Collapse
|
3
|
Kaiser CE, Rincon Pabon JP, Khowsathit J, Castaldi MP, Kazmirski SL, Weis DD, Zhang AX, Karanicolas J. Modulating Antibody Structure and Function through Directed Mutations and Chemical Rescue. ACS Synth Biol 2018; 7:1152-1162. [PMID: 29609459 DOI: 10.1021/acssynbio.8b00124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Monoclonal antibody therapeutics have revolutionized the treatment of diseases such as cancer and autoimmune disorders, and also serve as research reagents for diverse and unparalleled applications. To extend their utility in both contexts, we have begun development of tunable antibodies, whose activity can be controlled by addition of a small molecule. Conceptually, we envision that incorporating cavity-forming mutations into an antibody can disrupt its structure, thereby reducing its affinity for antigen; addition of a small molecule may then restore the active structure, and thus rescue antigen binding. As a first proof of concept toward implementing this strategy, we have incorporated individual tryptophan to glycine mutations into FITC-E2, an anti-fluorescein single-chain variable fragment (scFv). We find that these can disrupt the protein structure and diminish antigen binding, and further that both structure and function can be rescued by addition of indole to complement the deleted side chain. While the magnitude of the affinity difference triggered by indole is modest in this first model system, it nonetheless provides a framework for future mutation/ligand pairs that may induce more dramatic responses. Disrupting and subsequently rescuing antibody activity, as exemplified by this first example, may represent a new approach to "design in" fine-tuned control of antibody activity for a variety of future applications.
Collapse
Affiliation(s)
- Christine E. Kaiser
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Juan Pablo Rincon Pabon
- Department of Chemistry and Ralph Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Jittasak Khowsathit
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, United States
| | - M. Paola Castaldi
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Steven L. Kazmirski
- Structure and Biophysics, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, Massachusetts 02451, United States
| | - David D. Weis
- Department of Chemistry and Ralph Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Andrew X. Zhang
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, Massachusetts 02451, United States
| | - John Karanicolas
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, United States
| |
Collapse
|
4
|
Liu L, Wang H, Han Y, Lv S, Chen J. Using single molecule force spectroscopy to facilitate a rational design of Ca2+-responsive β-roll peptide-based hydrogels. J Mater Chem B 2018; 6:5303-5312. [DOI: 10.1039/c8tb01511b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanical stability of Ca2+-responsive β-roll peptides (RTX) is largely responsible for the Ca2+-dependent mechanical properties of the RTX-based hydrogels.
Collapse
Affiliation(s)
- Lichao Liu
- State Key Laboratory of Organic–Inorganic Composite Materials
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Han Wang
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| | - Yueying Han
- State Key Laboratory of Organic–Inorganic Composite Materials
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Shanshan Lv
- State Key Laboratory of Organic–Inorganic Composite Materials
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Department of Chemistry
| | - Jianfeng Chen
- State Key Laboratory of Organic–Inorganic Composite Materials
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
5
|
Jannuzzi GP, Souza NDA, Françoso KS, Pereira RH, Santos RP, Kaihami GH, Almeida JRFD, Batista WL, Amaral AC, Maranhão AQ, Almeida SRD, Ferreira KS. Therapeutic treatment with scFv-PLGA nanoparticles decreases pulmonary fungal load in a murine model of paracoccidioidomycosis. Microbes Infect 2017; 20:48-56. [PMID: 28951317 DOI: 10.1016/j.micinf.2017.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/28/2017] [Accepted: 09/04/2017] [Indexed: 10/18/2022]
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis with lymphatic dissemination that is caused by Paracoccidioides species. Treatment of PCM consists of chemotherapeutics such as itraconazole, trimethoprim, sulfamethoxazole or amphotericin B. However, several studies are aiming to develop therapeutic alternatives for the treatment of fungal infection using new molecules as adjuvants. The single-chain variable fragments (scFv) from an antibody that mimics the main fungal component incorporated within poly(lactide-co-glycolic) acid (PLGA) nanoparticles helped treat the fungal disease. After expressing the scFv in Picchia pastoris (P. pastoris), the recombinant molecules were coupled with PLGA, and the BALB/c mice were immunized before or after infection with yeast Paracoccidioides brasiliensis (P. brasiliensis). Our results showed decreased disease progression and decreased fungal burden. Taken together, our results showed an increased of IFN-γ and IL-12 cytokine production and an increased number of macrophages and dendritic cells in the pulmonary tissue of BALB/c mice treated with a high concentration of our molecule. Our data further confirm that the scFv plays an important role in the treatment of experimental PCM.
Collapse
Affiliation(s)
- Grasielle Pereira Jannuzzi
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Brazil
| | - Nicole de Araújo Souza
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Brazil
| | - Kátia Sanches Françoso
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Brazil
| | - Roney Henrique Pereira
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Brazil
| | - Raquel Possemozer Santos
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Brazil
| | | | | | - Wagner Luiz Batista
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Brazil
| | - André Corrêa Amaral
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Sandro Rogério de Almeida
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Brazil
| | - Karen Spadari Ferreira
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Brazil.
| |
Collapse
|
6
|
Ojima-Kato T, Fukui K, Yamamoto H, Hashimura D, Miyake S, Hirakawa Y, Yamasaki T, Kojima T, Nakano H. 'Zipbody' leucine zipper-fused Fab in E. coli in vitro and in vivo expression systems. Protein Eng Des Sel 2016; 29:149-57. [PMID: 26902097 DOI: 10.1093/protein/gzw001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 01/12/2016] [Indexed: 02/06/2023] Open
Abstract
A small antibody fragment, fragment of antigen binding (Fab), is favorable for various immunological assays. However, production efficiency of active Fab in microorganisms depends considerably on the clones. In this study, leucine zipper-peptide pairs that dimerize in parallel (ACID-p1 (LZA)/BASE-p1 (LZB) or c-Jun/c-Fos) were fused to the C-terminus of heavy chain (Hc, VH-CH1) and light chain (Lc, VL-CL), respectively, to accelerate the association of Hc and Lc to form Fab in Escherichia coli in vivo and in vitro expression systems. The leucine zipper-fused Fab named 'Zipbody' was constructed using anti-E. coli O157 monoclonal antibody obtained from mouse hybridoma and produced in both in vitro and in vivo expression systems in an active form, whereas Fab without the leucine zipper fusion was not. Similarly, Zipbody of rabbit monoclonal antibody produced in in vitro expression showed significant activity. The purified, mouse Zipbody produced in the E. coli strain Shuffle T7 Express had specificity toward the antigen; in bio-layer interferometry analysis, the KD value was measured to be 1.5-2.0 × 10(-8) M. These results indicate that leucine zipper fusion to Fab C-termini markedly enhances active Fab formation in E. coli.
Collapse
Affiliation(s)
- Teruyo Ojima-Kato
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan Knowledge Hub Aichi, Aichi Science and Technology Foundation, Yakusa-cho, Toyota 470-0356, Japan
| | - Kansuke Fukui
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hiroaki Yamamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Dai Hashimura
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Shiro Miyake
- Advanced Scientific Technology and Management Research Institute of Kyoto, Chudoji Minamimachi, Shimogyo-ku, Kyoto 600-8813, Japan
| | - Yuki Hirakawa
- Advanced Scientific Technology and Management Research Institute of Kyoto, Chudoji Minamimachi, Shimogyo-ku, Kyoto 600-8813, Japan
| | - Tomomi Yamasaki
- Advanced Scientific Technology and Management Research Institute of Kyoto, Chudoji Minamimachi, Shimogyo-ku, Kyoto 600-8813, Japan
| | - Takaaki Kojima
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hideo Nakano
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
7
|
Farajnia S, Ahmadzadeh V, Tanomand A, Veisi K, Khosroshahi SA, Rahbarnia L. Development trends for generation of single-chain antibody fragments. Immunopharmacol Immunotoxicol 2014; 36:297-308. [DOI: 10.3109/08923973.2014.945126] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Huang HC, Nanda A, Rege K. Investigation of phase separation behavior and formation of plasmonic nanocomposites from polypeptide-gold nanorod nanoassemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:6645-6655. [PMID: 22394160 DOI: 10.1021/la203340y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Genetically engineered elastin-like polypeptides (ELP) can be interfaced with cetyltrimethyl ammonium bromide (CTAB)-stabilized gold nanorods (GNRs) resulting in the formation of stable dispersions (nanoassemblies). Increasing the dispersion temperature beyond the ELP transition temperature results in phase separation and formation of solid-phase ELP-GNR matrices (nanocomposites). Here, we investigated different physicochemical conditions that influence nanocomposite formation from temperature-induced phase separation of ELP-GNR nanoassemblies. The presence of cetyltrimethyl ammonium bromide (CTAB), used to template the formation of gold nanorods, plays a significant role in the phase separation behavior, with high concentrations of the surfactant leading to dramatic enhancements in ELP transition temperature. Nanocomposites could be generated at 37 °C in the presence of low CTAB concentrations (<1.5 mM); higher concentrations of CTAB necessitated higher temperatures (60 °C) due to elevated transition temperatures. The concentration of gold nanorods, however, had minimal influence on the phase separation behavior and nanocomposite formation. Further analysis of the kinetics of nanocomposite formation using a mathematical model indicated that CTAB largely influenced the early event of coacervation of ELP-GNR nanoassemblies leading to nanocomposites, but had minimal effect on nanocomposite maturation, which is a later-stage longer event. Finally, nanocomposites prepared in the presence of low CTAB concentrations demonstrated a superior photothermal response following laser irradiation compared to those generated using higher CTAB concentrations. Our results on understanding the formation of plasmonic/photothermal ELP-GNR nanocomposites have significant implications for tissue engineering, regenerative medicine, and drug delivery.
Collapse
Affiliation(s)
- Huang-Chiao Huang
- Chemical Engineering, Arizona State University , Tempe, Arizona 85287-6106, United States
| | | | | |
Collapse
|
9
|
Topcic D, Kim W, Holien JK, Jia F, Armstrong PC, Hohmann JD, Straub A, Krippner G, Haller CA, Domeij H, Hagemeyer CE, Parker MW, Chaikof EL, Peter K. An activation-specific platelet inhibitor that can be turned on/off by medically used hypothermia. Arterioscler Thromb Vasc Biol 2011; 31:2015-23. [PMID: 21659646 DOI: 10.1161/atvbaha.111.226241] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Therapeutic hypothermia is successfully used, for example, in cardiac surgery to protect organs from ischemia. Cardiosurgical procedures, especially in combination with extracorporeal circulation, and hypothermia itself are potentially prothrombotic. Despite the obvious need, the long half-life of antiplatelet drugs and thus the risk of postoperative bleedings have restricted their use in cardiac surgery. We describe here the design and testing of a unique recombinant hypothermia-controlled antiplatelet fusion protein with the aim of providing increased safety of hypothermia, as well as cardiac surgery. METHODS AND RESULTS An elastin-mimetic polypeptide was fused to an activation-specific glycoprotein (GP) IIb/IIIa-blocking single-chain antibody. In silico modeling illustrated the sterical hindrance of a β-spiral conformation of elastin-mimetic polypeptide preventing the single-chain antibody from inhibiting GPIIb/IIIa at 37°C. Circular dichroism spectra demonstrated reverse temperature transition, and flow cytometry showed binding to and blocking of GPIIb/IIIa at hypothermic body temperature (≤32°C) but not at normal body temperature. In vivo thrombosis in mice was selectively inhibited at hypothermia but not at 37°C. CONCLUSIONS This is the first description of a broadly applicable pharmacological strategy by which the activity of a potential drug can be controlled by temperature. In particular, this drug steerability may provide substantial benefits for antiplatelet therapy.
Collapse
Affiliation(s)
- Denijal Topcic
- Atherothrombosis and Vascular Biology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Shur O, Wu J, Cropek DM, Banta S. Monitoring the conformational changes of an intrinsically disordered peptide using a quartz crystal microbalance. Protein Sci 2011; 20:925-30. [PMID: 21416544 DOI: 10.1002/pro.625] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/04/2011] [Accepted: 03/07/2011] [Indexed: 11/05/2022]
Abstract
Intrinsically disordered peptides (IDPs) have recently garnered much interest because of their role in biological processes such as molecular recognition and their ability to undergo stimulus-responsive conformational changes. The block V repeat-in-toxin motif of the Bordetella pertussis adenylate cyclase is an example of an IDP that undergoes a transition from a disordered state to an ordered beta roll conformation in the presence of calcium ions. In solution, a C-terminal capping domain is necessary for this transition to occur. To further explore the conformational behavior and folding requirements of this IDP, we have cysteine modified three previously characterized constructs, allowing for attachment to the gold surface of a quartz crystal microbalance (QCM). We demonstrate that, while immobilized, the C-terminally capped peptide exhibits similar calcium-binding properties to what have been observed in solution. In addition, immobilization on the solid surface appears to enable calcium-responsiveness in the uncapped peptides, in contrast to the behavior observed in solution. This work demonstrates the power of QCM as a tool to study the conformational changes of IDPs immobilized on surfaces and has implications for a range of potential applications where IDPs may be engineered and used including protein purification, biosensors, and other bionanotechnology applications.
Collapse
Affiliation(s)
- Oren Shur
- Department of Chemical Engineering, Columbia University, New York, New York, USA
| | | | | | | |
Collapse
|
11
|
Banta S, Wheeldon IR, Blenner M. Protein Engineering in the Development of Functional Hydrogels. Annu Rev Biomed Eng 2010; 12:167-86. [PMID: 20420519 DOI: 10.1146/annurev-bioeng-070909-105334] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Scott Banta
- Department of Chemical Engineering, Columbia University, New York, New York 10027;
| | - Ian R. Wheeldon
- Department of Chemical Engineering, Columbia University, New York, New York 10027;
| | - Mark Blenner
- Current address: Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115;
| |
Collapse
|
12
|
Blenner MA, Shur O, Szilvay GR, Cropek DM, Banta S. Calcium-induced folding of a beta roll motif requires C-terminal entropic stabilization. J Mol Biol 2010; 400:244-56. [PMID: 20438736 DOI: 10.1016/j.jmb.2010.04.056] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 04/22/2010] [Accepted: 04/27/2010] [Indexed: 11/30/2022]
Abstract
Beta roll motifs are associated with several proteins secreted by the type 1 secretion system (T1SS). Located just upstream of the C-terminal T1SS secretion signal, they are believed to act as calcium-induced switches that prevent folding before secretion. Bordetella pertussis adenylate cyclase (CyaA) toxin has five blocks of beta roll motifs (or repeats-in-toxin motifs) separated by linkers. The block V motif on its own has been reported to be non-responsive to calcium. Only when the N- and C-terminal linkers, or flanking groups, were fused did the motif bind calcium and fold. In an effort to understand the requirements for beta roll folding, we have truncated the N- and C-terminal flanks at several locations to determine the minimal essential sequences. Calcium-responsive beta roll folding occurred even in the absence of the natural N-terminal flank. The natural C-terminal flank could not be truncated without decreased calcium affinity and only partially truncated before losing calcium-responsiveness. Globular protein fusion at the C-terminus likewise enabled calcium-induced folding but fusions solely at the N-terminus failed. This demonstrates that calcium-induced folding is an inherent property of the beta roll motif rather than the flanking groups. Given the disparate nature of the observed functional flanking groups, C-terminal fusions appear to confer calcium-responsiveness to the beta roll motif via a non-specific mechanism, suggesting that entropic stabilization of the unstructured C-terminus can enable beta roll folding. Increased calcium affinity was observed when the natural C-terminal flank was used to enable calcium-induced folding, pointing to its cooperative participation in beta roll formation. This work indicates that a general principle of C-terminal entropic stabilization can enable stimulus-responsive repeat protein folding, while the C-terminal flank has a specific role in tuning calcium-responsive beta roll formation. These observations are in stark contrast to what has been reported for other repeat proteins.
Collapse
Affiliation(s)
- Mark A Blenner
- Department of Chemical Engineering, Columbia University, 500 W 120th Street, New York, NY 10027, USA
| | | | | | | | | |
Collapse
|
13
|
Szilvay GR, Blenner MA, Shur O, Cropek DM, Banta S. A FRET-based method for probing the conformational behavior of an intrinsically disordered repeat domain from Bordetella pertussis adenylate cyclase. Biochemistry 2009; 48:11273-82. [PMID: 19860484 DOI: 10.1021/bi901447j] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A better understanding of the conformational changes exhibited by intrinsically disordered proteins is necessary as we continue to unravel their myriad biological functions. In repeats in toxin (RTX) domains, calcium binding triggers the natively unstructured domain to adopt a beta roll structure. Here we present an in vitro Forster resonance energy transfer (FRET)-based method for the investigation of the conformational behavior of an RTX domain from the Bordetella pertussis adenylate cyclase consisting of nine repeat units. Equilibrium and stopped-flow FRET between fluorescent proteins, attached to the termini of the domain, were measured in an analysis of the end-to-end distance changes in the RTX domain. The method was complemented with circular dichroism spectroscopy, tryptophan fluorescence, and bis-ANS dye binding. High ionic strength was observed to decrease the calcium affinity of the RTX domain. A truncation and single amino acid mutations yielded insights into the structural determinants of beta roll formation. Mutating the conserved Asp residue in one of the nine repeats significantly reduced the affinity of the domains for calcium ions. Removal of the sequences flanking the repeat domain prevented folding, but replacing them with fluorescent proteins restored the conformational behavior, suggesting an entropic stabilization. The FRET-based method is a useful technique that complements other low-resolution techniques for investigating the dynamic conformational behavior of the RTX domain and other intrinsically disordered protein domains.
Collapse
Affiliation(s)
- Géza R Szilvay
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, USA
| | | | | | | | | |
Collapse
|
14
|
A Chimeric Fusion Protein Engineered with Disparate Functionalities—Enzymatic Activity and Self–assembly. J Mol Biol 2009; 392:129-42. [DOI: 10.1016/j.jmb.2009.06.075] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 06/09/2009] [Accepted: 06/29/2009] [Indexed: 11/30/2022]
|
15
|
Development of a bacteriophage-based system for the selection of structured peptides. Anal Biochem 2009; 388:122-7. [DOI: 10.1016/j.ab.2009.01.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 01/28/2009] [Accepted: 01/29/2009] [Indexed: 02/05/2023]
|