1
|
Hosseinzadeh P, Lu Y. Design and fine-tuning redox potentials of metalloproteins involved in electron transfer in bioenergetics. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:557-581. [PMID: 26301482 PMCID: PMC4761536 DOI: 10.1016/j.bbabio.2015.08.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/20/2015] [Indexed: 12/25/2022]
Abstract
Redox potentials are a major contributor in controlling the electron transfer (ET) rates and thus regulating the ET processes in the bioenergetics. To maximize the efficiency of the ET process, one needs to master the art of tuning the redox potential, especially in metalloproteins, as they represent major classes of ET proteins. In this review, we first describe the importance of tuning the redox potential of ET centers and its role in regulating the ET in bioenergetic processes including photosynthesis and respiration. The main focus of this review is to summarize recent work in designing the ET centers, namely cupredoxins, cytochromes, and iron-sulfur proteins, and examples in design of protein networks involved these ET centers. We then discuss the factors that affect redox potentials of these ET centers including metal ion, the ligands to metal center and interactions beyond the primary ligand, especially non-covalent secondary coordination sphere interactions. We provide examples of strategies to fine-tune the redox potential using both natural and unnatural amino acids and native and nonnative cofactors. Several case studies are used to illustrate recent successes in this area. Outlooks for future endeavors are also provided. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.
Collapse
Affiliation(s)
- Parisa Hosseinzadeh
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews St., Urbana, IL, 61801, USA
| | - Yi Lu
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews St., Urbana, IL, 61801, USA.
| |
Collapse
|
2
|
Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem Rev 2014; 114:4366-469. [PMID: 24758379 PMCID: PMC4002152 DOI: 10.1021/cr400479b] [Citation(s) in RCA: 574] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Jing Liu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Saumen Chakraborty
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Parisa Hosseinzadeh
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yang Yu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shiliang Tian
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Igor Petrik
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ambika Bhagi
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Structure and reactivity of hexacoordinate hemoglobins. Biophys Chem 2010; 152:1-14. [PMID: 20933319 DOI: 10.1016/j.bpc.2010.08.008] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 08/20/2010] [Accepted: 08/21/2010] [Indexed: 01/07/2023]
Abstract
The heme prosthetic group in hemoglobins is most often attached to the globin through coordination of either one or two histidine side chains. Those proteins with one histidine coordinating the heme iron are called "pentacoordinate" hemoglobins, a group represented by red blood cell hemoglobin and most other oxygen transporters. Those with two histidines are called "hexacoordinate hemoglobins", which have broad representation among eukaryotes. Coordination of the second histidine in hexacoordinate Hbs is reversible, allowing for binding of exogenous ligands like oxygen, carbon monoxide, and nitric oxide. Research over the past several years has produced a fairly detailed picture of the structure and biochemistry of hexacoordinate hemoglobins from several species including neuroglobin and cytoglobin in animals, and the nonsymbiotic hemoglobins in plants. However, a clear understanding of the physiological functions of these proteins remains an elusive goal.
Collapse
|
4
|
Negron C, Fufezan C, Koder RL. Geometric constraints for porphyrin binding in helical protein binding sites. Proteins 2009; 74:400-16. [PMID: 18636480 DOI: 10.1002/prot.22143] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Helical bundles which bind heme and porphyrin cofactors have been popular targets for cofactor-containing de novo protein design. By analyzing a highly nonredundant subset of the protein databank we have determined a rotamer distribution for helical histidines bound to heme cofactors. Analysis of the entire nonredundant database for helical sequence preferences near the ligand histidine demonstrated little preference for amino acid side chain identity, size, or charge. Analysis of the database subdivided by ligand histidine rotamer, however, reveals strong preferences in each case, and computational modeling illuminates the structural basis for some of these findings. The majority of the rotamer distribution matches that predicted by molecular simulation of a single porphyrin-bound histidine residue placed in the center of an all-alanine helix, and the deviations explain two prominent features of natural heme protein binding sites: heme distortion in the case of the cytochromes C in the m166 histidine rotamer, and a highly prevalent glycine residue in the t73 histidine rotamer. These preferences permit derivation of helical consensus sequence templates which predict optimal side chain-cofactor packing interactions for each rotamer. These findings thus promise to guide future design endeavors not only in the creation of higher affinity heme and porphyrin binding sites, but also in the direction of bound cofactor geometry.
Collapse
Affiliation(s)
- Christopher Negron
- Department of Physics, the City College of New York, New York, New York 10031, USA
| | | | | |
Collapse
|
5
|
Engineering heme binding sites in monomeric rop. J Biol Inorg Chem 2009; 14:497-505. [PMID: 19152012 DOI: 10.1007/s00775-009-0465-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 12/26/2008] [Indexed: 10/21/2022]
Abstract
Heme ligands were introduced in the hydrophobic core of an engineered monomeric ColE1 repressor of primer (rop-S55) in two different layers of the heptad repeat. Mutants rop-L63M/F121H (layer 1) and rop-L56H/L113H (layer 3) were found to bind heme with a K (D) of 1.1 +/- 0.2 and 0.47 +/- 0.07 microM, respectively. The unfolding of heme-bound and heme-free mutants, in the presence of guanidinium hydrochloride, was monitored by both circular dichroism and fluorescence spectroscopy. For the heme-bound rop mutants, the total free energy change was 0.5 kcal/mol higher in the layer 3 mutant compared with that in the layer1 mutant. Heme binding also stabilized these mutants by increasing the [DGobsH2O] by 1.4 and 1.8 kcal/mol in rop-L63M/F121H and rop-L56H/L113H, respectively. The reduction potentials measured by spectroelectrochemical titrations were calculated to be -154 +/- 2 mV for rop-56H/113H and -87.5 +/- 1.2 mV for rop-L63M/F121H. The mutant designed to bind heme in a more buried environment (layer 3) showed tighter heme binding, a higher stability, and a different reduction potential compared with the mutant designed to bind heme in layer 1.
Collapse
|
6
|
Schneider S, Marles-Wright J, Sharp KH, Paoli M. Diversity and conservation of interactions for binding heme in b-type heme proteins. Nat Prod Rep 2007; 24:621-30. [PMID: 17534534 DOI: 10.1039/b604186h] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Sabine Schneider
- School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, England, UK
| | | | | | | |
Collapse
|
7
|
Koder RL, Dutton PL. Intelligent design: the de novo engineering of proteins with specified functions. Dalton Trans 2006:3045-51. [PMID: 16786062 DOI: 10.1039/b514972j] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One of the principal successes of de novo protein design has been the creation of small, robust protein-cofactor complexes which can serve as simplified models, or maquettes, of more complicated multicofactor protein complexes commonly found in nature. Different maquettes, generated by us and others, recreate a variety of aspects, or functional elements, recognized as parts of natural enzyme function. The current challenge is to both expand the palette of functional elements and combine and/or integrate them in recreating familiar enzyme activities or generating novel catalysis in the simplest protein scaffolds.
Collapse
Affiliation(s)
- Ronald L Koder
- Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
8
|
Affiliation(s)
- Charles J Reedy
- Department of Chemistry, Columbia University, 3000 Broadway, MC 3121, New York, New York 10027, USA
| | | |
Collapse
|
9
|
Ishida M, Dohmae N, Shiro Y, Oku T, Iizuka T, Isogai Y. Design and Synthesis of de Novo Cytochromes c. Biochemistry 2004; 43:9823-33. [PMID: 15274636 DOI: 10.1021/bi049546e] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Natural c-type cytochromes are characterized by the consensus Cys-X-X-Cys-His heme-binding motif (where X is any amino acid) by which the heme is covalently attached to protein by the addition of the sulfhydryl groups of two cysteine residues to the vinyl groups of the heme. In this work, the consensus sequence was used for the heme-binding site of a designed four-helix bundle, and the apoproteins with either a histidine residue or a methionine residue positioned at the sixth coordination site were synthesized and reacted with iron protoporphyrin IX (protoheme) under mild reducing conditions in vitro. These polypeptides bound one heme per helix-loop-helix monomer via a single thioether bond and formed four-helix bundle dimers in the holo forms as designed. They exhibited visible absorption spectra characteristic of c-type cytochromes, in which the absorption bands shifted to lower wavelengths in comparison with the b-type heme binding intermediates of the same proteins. Unexpectedly, the designed cytochromes c with bis-His-coordinated heme iron exhibited oxidation-reduction potentials similar to those of their b-type intermediates, which have no thioether bond. Furthermore, the cytochrome c with His and Met residues as the axial ligands exhibited redox potentials increased by only 15-30 mV in comparison with the cytochrome with the bis-His coordination. These results indicate that highly positive redox potentials of natural cytochromes c are not only due to the heme covalent structure, including the Met ligation, but also due to noncovalent and hydrophobic environments surrounding the heme. The covalent attachment of heme to the polypeptide in natural cytochromes c may contribute to their higher redox potentials by reducing the thermodynamic stability of the oxidized forms relatively against that of the reduced forms without the loss of heme.
Collapse
Affiliation(s)
- Manabu Ishida
- RIKEN Harima Institute/SPring-8, Mikazuki-cho, Sayo, Hyogo 679-5143, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Moore GL, Maranas CD. Computational challenges in combinatorial library design for protein engineering. AIChE J 2004. [DOI: 10.1002/aic.10025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Abstract
The field of computational protein design is reaching its adolescence. Protein design algorithms have been applied to design or engineer proteins that fold, fold faster, catalyze, catalyze faster, signal, and adopt preferred conformational states. Further developments of scoring functions, sampling strategies, and optimization methods will expand the range of applicability of computational protein design to larger and more varied systems, with greater incidence of success. Developments in this field are beginning to have significant impact on biotechnology and chemical biology.
Collapse
Affiliation(s)
- C M Kraemer-Pecore
- The Pennsylvania State University, Department of Chemistry, Chandlee Laboratory, University Park, PA 16802, USA
| | | | | |
Collapse
|