1
|
Nixon C, Lim SA, Sternke M, Barrick D, Harms MJ, Marqusee S. The importance of input sequence set to consensus-derived proteins and their relationship to reconstructed ancestral proteins. Protein Sci 2024; 33:e5011. [PMID: 38747388 PMCID: PMC11094778 DOI: 10.1002/pro.5011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 05/19/2024]
Abstract
A protein sequence encodes its energy landscape-all the accessible conformations, energetics, and dynamics. The evolutionary relationship between sequence and landscape can be probed phylogenetically by compiling a multiple sequence alignment of homologous sequences and generating common ancestors via Ancestral Sequence Reconstruction or a consensus protein containing the most common amino acid at each position. Both ancestral and consensus proteins are often more stable than their extant homologs-questioning the differences between them and suggesting that both approaches serve as general methods to engineer thermostability. We used the Ribonuclease H family to compare these approaches and evaluate how the evolutionary relationship of the input sequences affects the properties of the resulting consensus protein. While the consensus protein derived from our full Ribonuclease H sequence alignment is structured and active, it neither shows properties of a well-folded protein nor has enhanced stability. In contrast, the consensus protein derived from a phylogenetically-restricted set of sequences is significantly more stable and cooperatively folded, suggesting that cooperativity may be encoded by different mechanisms in separate clades and lost when too many diverse clades are combined to generate a consensus protein. To explore this, we compared pairwise covariance scores using a Potts formalism as well as higher-order sequence correlations using singular value decomposition (SVD). We find the SVD coordinates of a stable consensus sequence are close to coordinates of the analogous ancestor sequence and its descendants, whereas the unstable consensus sequences are outliers in SVD space.
Collapse
Affiliation(s)
- Charlotte Nixon
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | - Shion A. Lim
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | - Matt Sternke
- The T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Doug Barrick
- The T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Michael J. Harms
- Department of Chemistry and BiochemistryUniversity of OregonEugeneOregonUSA
| | - Susan Marqusee
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyCaliforniaUSA
- Department of ChemistryUniversity of California, BerkeleyBerkeleyCaliforniaUSA
- California Institute for Quantitative Biosciences (QB3)BerkeleyCaliforniaUSA
| |
Collapse
|
2
|
Nixon C, Lim SA, Sternke M, Barrick D, Harms M, Marqusee S. The importance of input sequence set to consensus-derived proteins and their relationship to reconstructed ancestral proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547063. [PMID: 37425932 PMCID: PMC10327145 DOI: 10.1101/2023.06.29.547063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
A protein sequence encodes its energy landscape - all the accessible conformations, energetics, and dynamics. The evolutionary relationship between sequence and landscape can be probed phylogenetically by compiling a multiple sequence alignment of homologous sequences and generating common ancestors via Ancestral Sequence Reconstruction or a consensus protein containing the most common amino acid at each position. Both ancestral and consensus proteins are often more stable than their extant homologs - questioning the differences and suggesting that both approaches serve as general methods to engineer thermostability. We used the Ribonuclease H family to compare these approaches and evaluate how the evolutionary relationship of the input sequences affects the properties of the resulting consensus protein. While the overall consensus protein is structured and active, it neither shows properties of a well-folded protein nor has enhanced stability. In contrast, the consensus protein derived from a phylogenetically-restricted region is significantly more stable and cooperatively folded, suggesting that cooperativity may be encoded by different mechanisms in separate clades and lost when too many diverse clades are combined to generate a consensus protein. To explore this, we compared pairwise covariance scores using a Potts formalism as well as higher-order couplings using singular value decomposition (SVD). We find the SVD coordinates of a stable consensus sequence are close to coordinates of the analogous ancestor sequence and its descendants, whereas the unstable consensus sequences are outliers in SVD space.
Collapse
Affiliation(s)
- Charlotte Nixon
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Shion A Lim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Matt Sternke
- The T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Doug Barrick
- The T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Mike Harms
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
- California Institute for Quantitative Biosciences (QB3), Berkeley
| |
Collapse
|
3
|
Martin JA, Palmer AG. Comparisons of Ribonuclease HI Homologs and Mutants Uncover a Multistate Model for Substrate Recognition. J Am Chem Soc 2022; 144:5342-5349. [PMID: 35312304 PMCID: PMC9149773 DOI: 10.1021/jacs.1c11897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribonuclease HI (RNHI) nonspecifically cleaves the RNA strand of RNA:DNA hybrid duplexes in a myriad of biological processes. Several RNHI homologs contain an extended domain, termed the handle region, which is critical to substrate binding. Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations have suggested a kinetic model in which the handle region can exist in open (substrate-binding competent) or closed (substrate-binding incompetent) states in homologs containing arginine or lysine at position 88 (using sequence numbering of E. coli RNHI), while the handle region populates states intermediate between the open and closed conformers in homologs with asparagine at residue 88 [Stafford, K. A., et al., PLoS Comput. Biol. 2013, 9, 1-10]. NMR parameters characterizing handle region dynamics are highly correlated with enzymatic activity for RNHI homologs with two-state (open/closed) handle regions [Martin, J. A., et al., Biochemistry 2020, 59, 3201-3205]. The work presented herein shows that homologs containing asparagine 88 display distinct structural features compared with their counterparts containing arginine or lysine 88. Comparisons of RNHI homologs and site-directed mutants with asparagine 88 support a kinetic model for handle region dynamics that includes 12 unique transitions between eight conformations. Overall, these findings present an example of the structure-function relationships of enzymes and spotlight the use of NMR spectroscopy and MD simulations in uncovering fine details of conformational preferences.
Collapse
Affiliation(s)
- James A Martin
- Department of Biological Sciences, Columbia University, New York, New York 10027, United States
| | - Arthur G Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| |
Collapse
|
4
|
Faber MS, Wrenbeck EE, Azouz LR, Steiner PJ, Whitehead TA. Impact of In Vivo Protein Folding Probability on Local Fitness Landscapes. Mol Biol Evol 2020; 36:2764-2777. [PMID: 31400199 DOI: 10.1093/molbev/msz184] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is incompletely understood how biophysical properties like protein stability impact molecular evolution and epistasis. Epistasis is defined as specific when a mutation exclusively influences the phenotypic effect of another mutation, often at physically interacting residues. In contrast, nonspecific epistasis results when a mutation is influenced by a large number of nonlocal mutations. As most mutations are pleiotropic, the in vivo folding probability-governed by basal protein stability-is thought to determine activity-enhancing mutational tolerance, implying that nonspecific epistasis is dominant. However, evidence exists for both specific and nonspecific epistasis as the prevalent factor, with limited comprehensive data sets to support either claim. Here, we use deep mutational scanning to probe how in vivo enzyme folding probability impacts local fitness landscapes. We computationally designed two different variants of the amidase AmiE with statistically indistinguishable catalytic efficiencies but lower probabilities of folding in vivo compared with wild-type. Local fitness landscapes show slight alterations among variants, with essentially the same global distribution of fitness effects. However, specific epistasis was predominant for the subset of mutations exhibiting positive sign epistasis. These mutations mapped to spatially distinct locations on AmiE near the initial mutation or proximal to the active site. Intriguingly, the majority of specific epistatic mutations were codon dependent, with different synonymous codons resulting in fitness sign reversals. Together, these results offer a nuanced view of how protein folding probability impacts local fitness landscapes and suggest that transcriptional-translational effects are as important as stability in determining evolutionary outcomes.
Collapse
Affiliation(s)
- Matthew S Faber
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI
| | - Emily E Wrenbeck
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI
| | - Laura R Azouz
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI
| | - Paul J Steiner
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO
| | - Timothy A Whitehead
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI.,Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO.,E.E.W. Ginkgo Bioworks, L.R.A. McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX
| |
Collapse
|
5
|
Lim SA, Bolin ER, Marqusee S. Tracing a protein's folding pathway over evolutionary time using ancestral sequence reconstruction and hydrogen exchange. eLife 2018; 7:38369. [PMID: 30204082 PMCID: PMC6158009 DOI: 10.7554/elife.38369] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/09/2018] [Indexed: 12/15/2022] Open
Abstract
The conformations populated during protein folding have been studied for decades; yet, their evolutionary importance remains largely unexplored. Ancestral sequence reconstruction allows access to proteins across evolutionary time, and new methods such as pulsed-labeling hydrogen exchange coupled with mass spectrometry allow determination of folding intermediate structures at near amino-acid resolution. Here, we combine these techniques to monitor the folding of the ribonuclease H family along the evolutionary lineages of T. thermophilus and E. coli RNase H. All homologs and ancestral proteins studied populate a similar folding intermediate despite being separated by billions of years of evolution. Even though this conformation is conserved, the pathway leading to it has diverged over evolutionary time, and rational mutations can alter this trajectory. Our results demonstrate that evolutionary processes can affect the energy landscape to preserve or alter specific features of a protein’s folding pathway.
Collapse
Affiliation(s)
- Shion An Lim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Eric Richard Bolin
- Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Biophysics Graduate Program, University of California, Berkeley, Berkeley, United States
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Department of Chemistry, University of California, Berkeley, Berkeley, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| |
Collapse
|
6
|
Lisi GP, Currier AA, Loria JP. Glutamine Hydrolysis by Imidazole Glycerol Phosphate Synthase Displays Temperature Dependent Allosteric Activation. Front Mol Biosci 2018; 5:4. [PMID: 29468164 PMCID: PMC5808140 DOI: 10.3389/fmolb.2018.00004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/09/2018] [Indexed: 11/13/2022] Open
Abstract
The enzyme imidazole glycerol phosphate synthase (IGPS) is a model for studies of long-range allosteric regulation in enzymes. Binding of the allosteric effector ligand N'-[5'-phosphoribulosyl)formimino]-5-aminoimidazole-4-carboxamide-ribonucleotide (PRFAR) stimulates millisecond (ms) timescale motions in IGPS that enhance its catalytic function. We studied the effect of temperature on these critical conformational motions and the catalytic mechanism of IGPS from the hyperthermophile Thermatoga maritima in an effort to understand temperature-dependent allostery. Enzyme kinetic and NMR dynamics measurements show that apo and PRFAR-activated IGPS respond differently to changes in temperature. Multiple-quantum Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments performed at 303, 323, and 343 K (30, 50, and 70°C) reveal that millisecond flexibility is enhanced to a higher degree in apo IGPS than in the PRFAR-bound enzyme as the sample temperature is raised. We find that the flexibility of the apo enzyme is nearly identical to that of its PRFAR activated state at 343 K, whereas conformational motions are considerably different between these two forms of the enzyme at room temperature. Arrhenius analyses of these flexible sites show a varied range of activation energies that loosely correlate to allosteric communities identified by computational methods and reflect local changes in dynamics that may facilitate conformational sampling of the active conformation. In addition, kinetic assays indicate that allosteric activation by PRFAR decreases to 65-fold at 343 K, compared to 4,200-fold at 303 K, which mirrors the decreased effect of PRFAR on ms motions relative to the unactivated enzyme. These studies indicate that at the growth temperature of T. maritima, PFRAR is a weaker allosteric activator than it is at room temperature and illustrate that the allosteric mechanism of IGPS is temperature dependent.
Collapse
Affiliation(s)
- George P Lisi
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Allen A Currier
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - J Patrick Loria
- Department of Chemistry, Yale University, New Haven, CT, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
7
|
Moschetti T, Sharpe T, Fischer G, Marsh ME, Ng HK, Morgan M, Scott DE, Blundell TL, R. Venkitaraman A, Skidmore J, Abell C, Hyvönen M. Engineering Archeal Surrogate Systems for the Development of Protein-Protein Interaction Inhibitors against Human RAD51. J Mol Biol 2016; 428:4589-4607. [PMID: 27725183 PMCID: PMC5117717 DOI: 10.1016/j.jmb.2016.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 10/02/2016] [Accepted: 10/04/2016] [Indexed: 02/02/2023]
Abstract
Protein-protein interactions (PPIs) are increasingly important targets for drug discovery. Efficient fragment-based drug discovery approaches to tackle PPIs are often stymied by difficulties in the production of stable, unliganded target proteins. Here, we report an approach that exploits protein engineering to "humanise" thermophilic archeal surrogate proteins as targets for small-molecule inhibitor discovery and to exemplify this approach in the development of inhibitors against the PPI between the recombinase RAD51 and tumour suppressor BRCA2. As human RAD51 has proved impossible to produce in a form that is compatible with the requirements of fragment-based drug discovery, we have developed a surrogate protein system using RadA from Pyrococcus furiosus. Using a monomerised RadA as our starting point, we have adopted two parallel and mutually instructive approaches to mimic the human enzyme: firstly by mutating RadA to increase sequence identity with RAD51 in the BRC repeat binding sites, and secondly by generating a chimeric archaeal human protein. Both approaches generate proteins that interact with a fourth BRC repeat with affinity and stoichiometry comparable to human RAD51. Stepwise humanisation has also allowed us to elucidate the determinants of RAD51 binding to BRC repeats and the contributions of key interacting residues to this interaction. These surrogate proteins have enabled the development of biochemical and biophysical assays in our ongoing fragment-based small-molecule inhibitor programme and they have allowed us to determine hundreds of liganded structures in support of our structure-guided design process, demonstrating the feasibility and advantages of using archeal surrogates to overcome difficulties in handling human proteins.
Collapse
Affiliation(s)
- Tommaso Moschetti
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Timothy Sharpe
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Gerhard Fischer
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - May E. Marsh
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Hong Kin Ng
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Matthew Morgan
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Duncan E. Scott
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Ashok R. Venkitaraman
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - John Skidmore
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Chris Abell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK,Corresponding author.
| |
Collapse
|
8
|
Rosen LE, Marqusee S. Autonomously folding protein fragments reveal differences in the energy landscapes of homologous RNases H. PLoS One 2015; 10:e0119640. [PMID: 25803034 PMCID: PMC4372590 DOI: 10.1371/journal.pone.0119640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/02/2015] [Indexed: 11/19/2022] Open
Abstract
An important approach to understanding how a protein sequence encodes its energy landscape is to compare proteins with different sequences that fold to the same general native structure. In this work, we compare E. coli and T. thermophilus homologs of the protein RNase H. Using protein fragments, we create equilibrium mimics of two different potential partially-folded intermediates (I(core) and I(core+1)) hypothesized to be present on the energy landscapes of these two proteins. We observe that both T. thermophilus RNase H (ttRNH) fragments are folded and have distinct stabilities, indicating that both regions are capable of autonomous folding and that both intermediates are present as local minima on the ttRNH energy landscape. In contrast, the two E. coli RNase H (ecRNH) fragments have very similar stabilities, suggesting that the presence of additional residues in the I(core+1) fragment does not affect the folding or structure as compared to I(core). NMR experiments provide additional evidence that only the I(core) intermediate is populated by ecRNH. This is one of the biggest differences that has been observed between the energy landscapes of these two proteins. Additionally, we used a FRET experiment in the background of full-length ttRNH to specifically monitor the formation of the I(core+1) intermediate. We determine that the ttRNH I(core+1) intermediate is likely the intermediate populated prior to the rate-limiting barrier to global folding, in contrast to E. coli RNase H for which I(core) is the folding intermediate. This result provides new insight into the nature of the rate-limiting barrier for the folding of RNase H.
Collapse
Affiliation(s)
- Laura E. Rosen
- Biophysics Graduate Group, University of California, Berkeley, CA, United States of America
- California Institute for Quantitative Biosciences – Berkeley, Berkeley, CA, United States of America
| | - Susan Marqusee
- Biophysics Graduate Group, University of California, Berkeley, CA, United States of America
- California Institute for Quantitative Biosciences – Berkeley, Berkeley, CA, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States of America
- * E-mail:
| |
Collapse
|
9
|
Abstract
Tracking the evolution of thermostability in resurrected ancestors of a heat-tolerant extremophile protein and its less heat tolerant Escherichia coli homologue shows how thermostability has probably explored different mechanisms of protein stabilization over evolutionary time. Proteins from thermophiles are generally more thermostable than their mesophilic homologs, but little is known about the evolutionary process driving these differences. Here we attempt to understand how the diverse thermostabilities of bacterial ribonuclease H1 (RNH) proteins evolved. RNH proteins from Thermus thermophilus (ttRNH) and Escherichia coli (ecRNH) share similar structures but differ in melting temperature (Tm) by 20°C. ttRNH's greater stability is caused in part by the presence of residual structure in the unfolded state, which results in a low heat capacity of unfolding (ΔCp) relative to ecRNH. We first characterized RNH proteins from a variety of extant bacteria and found that Tm correlates with the species' growth temperatures, consistent with environmental selection for stability. We then used ancestral sequence reconstruction to statistically infer evolutionary intermediates along lineages leading to ecRNH and ttRNH from their common ancestor, which existed approximately 3 billion years ago. Finally, we synthesized and experimentally characterized these intermediates. The shared ancestor has a melting temperature between those of ttRNH and ecRNH; the Tms of intermediate ancestors along the ttRNH lineage increased gradually over time, while the ecRNH lineage exhibited an abrupt drop in Tm followed by relatively little change. To determine whether the underlying mechanisms for thermostability correlate with the changes in Tm, we measured the thermodynamic basis for stabilization—ΔCp and other thermodynamic parameters—for each of the ancestors. We observed that, while the Tm changes smoothly, the mechanistic basis for stability fluctuates over evolutionary time. Thus, even while overall stability appears to be strongly driven by selection, the proteins explored a wide variety of mechanisms of stabilization, a phenomenon we call “thermodynamic system drift.” This suggests that even on lineages with strong selection to increase stability, proteins have wide latitude to explore sequence space, generating biophysical diversity and potentially opening new evolutionary pathways. The biophysical properties of proteins must adjust to accommodate environmental temperatures because of the narrow range over which any given protein sequence can remain folded and functional. We compared the evolution of homologous bacterial enzymes (ribonucleases H1) from two lineages: one from Escherichia coli, which live at moderate temperatures, the other from Thermus thermophilus, which live at extremely high temperatures. Our aim was to investigate how these structurally homologous proteins can have such different thermostabilities, unfolding at temperatures that are 20°C apart. We used bioinformatics to reconstruct the sequences of ancestral proteins along each lineage, synthesized the proteins in the lab, and experimentally traced the evolution of ribonuclease H1 stability. While thermostability appears to have been strongly shaped by selection, the biophysical mechanisms used to tune protein stability appear to have varied throughout evolutionary history; this suggests that proteins have wide latitude to explore different mechanisms of stabilization, generating biophysical diversity and opening up new evolutionary pathways.
Collapse
|
10
|
Chan CH, Yu TH, Wong KB. Stabilizing salt-bridge enhances protein thermostability by reducing the heat capacity change of unfolding. PLoS One 2011; 6:e21624. [PMID: 21720566 PMCID: PMC3123365 DOI: 10.1371/journal.pone.0021624] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Accepted: 06/03/2011] [Indexed: 11/19/2022] Open
Abstract
Most thermophilic proteins tend to have more salt bridges, and achieve higher thermostability by up-shifting and broadening their protein stability curves. While the stabilizing effect of salt-bridge has been extensively studied, experimental data on how salt-bridge influences protein stability curves are scarce. Here, we used double mutant cycles to determine the temperature-dependency of the pair-wise interaction energy and the contribution of salt-bridges to ΔCp in a thermophilic ribosomal protein L30e. Our results showed that the pair-wise interaction energies for the salt-bridges E6/R92 and E62/K46 were stabilizing and insensitive to temperature changes from 298 to 348 K. On the other hand, the pair-wise interaction energies between the control long-range ion-pair of E90/R92 were negligible. The ΔCp of all single and double mutants were determined by Gibbs-Helmholtz and Kirchhoff analyses. We showed that the two stabilizing salt-bridges contributed to a reduction of ΔCp by 0.8–1.0 kJ mol−1 K−1. Taken together, our results suggest that the extra salt-bridges found in thermophilic proteins enhance the thermostability of proteins by reducing ΔCp, leading to the up-shifting and broadening of the protein stability curves.
Collapse
Affiliation(s)
- Chi-Ho Chan
- School of Life Sciences, Centre for Protein Science and Crystallography, The Chinese University of Hong Kong, Hong Kong, Shatin, Hong Kong SAR, China
| | - Tsz-Ha Yu
- School of Life Sciences, Centre for Protein Science and Crystallography, The Chinese University of Hong Kong, Hong Kong, Shatin, Hong Kong SAR, China
| | - Kam-Bo Wong
- School of Life Sciences, Centre for Protein Science and Crystallography, The Chinese University of Hong Kong, Hong Kong, Shatin, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
11
|
Sosnick TR, Barrick D. The folding of single domain proteins--have we reached a consensus? Curr Opin Struct Biol 2010; 21:12-24. [PMID: 21144739 DOI: 10.1016/j.sbi.2010.11.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 11/03/2010] [Accepted: 11/04/2010] [Indexed: 10/18/2022]
Abstract
Rather than stressing the most recent advances in the field, this review highlights the fundamental topics where disagreement remains and where adequate experimental data are lacking. These topics include properties of the denatured state and the role of residual structure, the nature of the fundamental steps and barriers, the extent of pathway heterogeneity and non-native interactions, recent comparisons between theory and experiment, and finally, dynamical properties of the folding reaction.
Collapse
Affiliation(s)
- Tobin R Sosnick
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
12
|
Ratcliff K, Marqusee S. Identification of residual structure in the unfolded state of ribonuclease H1 from the moderately thermophilic Chlorobium tepidum: comparison with thermophilic and mesophilic homologues. Biochemistry 2010; 49:5167-75. [PMID: 20491485 DOI: 10.1021/bi1001097] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribonucleases H from organisms that grow at different temperatures demonstrate a variable change in heat capacity upon unfolding (DeltaC degrees (P)) [Ratcliff, K., et al. (2009) Biochemistry 48, 5890-5898]. This DeltaC degrees (P) has been shown to correlate with a tolerance to higher temperatures and residual structure in the unfolded state of the thermophilic proteins. In the RNase H from Thermus thermophilus, the low DeltaC degrees (P) has been shown to arise from the same region as the folding core of the protein, and mutagenic studies have shown that loss of a hydrophobic residue in this region can disrupt this residual unfolded state structure and result in a return to a more mesophile-like DeltaC degrees (P) [Robic, S., et al. (2002) Protein Sci. 11, 381-389; Robic, S., et al. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 11345-11349]. To understand further how residual structure in the unfolded state is encoded in the sequences of these thermophilic proteins, we subjected the RNase H from Chlorobium tepidum to similar studies. Analysis of new chimeric proteins reveals that like T. thermophilus RNase H, the folding core of C. tepidum RNase H plays an important role in the unfolded state of this protein. Mutagenesis studies, based on both a computational investigation of the hydrophobic networks in the core region and comparisons with similar studies on T. thermophilus RNase H, identify new residues involved in this residual structure and suggest that the residual structure in the unfolded state of C. tepidum RNase H is more restricted than that of T. thermophilus. We conclude that while the folding core region determines the thermophilic-like behavior of this family of proteins, the residue-specific details vary.
Collapse
Affiliation(s)
- Kathleen Ratcliff
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
13
|
Ratcliff K, Corn J, Marqusee S. Structure, stability, and folding of ribonuclease H1 from the moderately thermophilic Chlorobium tepidum: comparison with thermophilic and mesophilic homologues. Biochemistry 2009; 48:5890-8. [PMID: 19408959 DOI: 10.1021/bi900305p] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteins from thermophilic organisms are able to function under conditions that render a typical mesophilic protein inactive. Pairwise comparisons of homologous mesophilic and thermophilic proteins can help to identify the energetic features of a protein's energy landscape that lead to such thermostability. Previous studies of bacterial ribonucleases H (RNases H) from the thermophile Thermus thermophilus and the mesophile Escherichia coli revealed that the thermostability arises in part from an unusually low change in heat capacity upon unfolding (DeltaC(p)) for the thermophilic protein [Hollien, J., and Marqusee, S. (1999) Biochemistry 38, 3831-3836]. Here, we have further examined how nearly identical proteins can adapt to different thermal constraints by adding a moderately thermophilic homologue to the previously characterized mesophilic and thermophilic pair. We identified a putative RNase H from Chlorobium. tepidum and demonstrated that it is an active RNase H and adopts the RNase H fold. The moderately thermophilic protein has a melting temperature (T(m)) similar to that of the mesophilic homologue yet also has a surprisingly low DeltaC(p), like the thermophilic homologue. This new RNase H folds through a pathway similar to that of the previously studied RNases H. These results suggest that lowering the DeltaC(p) may be a general strategy for achieving thermophilicity for some protein families and implicate the folding core as the major contributor to this effect. It should now be possible to design RNases H that display the desired thermophilic or mesophilic properties, as defined by their DeltaC(p) values, and therefore fine-tune the energy landscape in a predictable fashion.
Collapse
Affiliation(s)
- Kathleen Ratcliff
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3220, USA
| | | | | |
Collapse
|
14
|
Protein-DNA chimeras for single molecule mechanical folding studies with the optical tweezers. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 37:729-38. [PMID: 18183383 DOI: 10.1007/s00249-007-0247-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 11/08/2007] [Accepted: 11/20/2007] [Indexed: 10/22/2022]
Abstract
Here we report on a method that extends the study of the mechanical behavior of single proteins to the low force regime of optical tweezers. This experimental approach relies on the use of DNA handles to specifically attach the protein to polystyrene beads and minimize the non-specific interactions between the tethering surfaces. The handles can be attached to any exposed pair of cysteine residues. Handles of different lengths were employed to mechanically manipulate both monomeric and polymeric proteins. The low spring constant of the optical tweezers enabled us to monitor directly refolding events and fluctuations between different molecular structures in quasi-equilibrium conditions. This approach, which has already yielded important results on the refolding process of the protein RNase H (Cecconi et al. in Science 309: 2057-2060, 2005), appears robust and widely applicable to any protein engineered to contain a pair of reactive cysteine residues. It represents a new strategy to study protein folding at the single molecule level, and should be applicable to a range of problems requiring tethering of protein molecules.
Collapse
|
15
|
Abstract
Recent work on the thermodynamics of protein denatured states is providing insight into the stability of residual structure and the conformational constraints that affect the disordered states of proteins. Current data from native state hydrogen exchange and the pH dependence of protein stability indicate that residual structure can modulate the stability of the denatured state by up to 4 kcal mol(-1). NMR structural data have emphasized the role of hydrophobic clusters in stabilizing denatured state residual structures, however recent results indicate that electrostatic interactions, both favorable and unfavorable, are also important modulators of the stability of the denatured state. Thermodynamics methods that take advantage of histidine-heme ligation chemistry have also been developed to probe the conformational constraints that act on denatured states. These methods have provided insights into the role of excluded volume, chain stiffness, and loop persistence in modulating the conformational preferences of highly disordered proteins. New insights into protein folding and novel methods to manipulate protein stability are emerging from this work.
Collapse
Affiliation(s)
- Bruce E Bowler
- Department of Chemistry, University of Montana, Missoula, MT 59812, USA.
| |
Collapse
|
16
|
LeMaster DM, Hernández G. Additivity of Differential Conformational Dynamics in Hyperthermophile/Mesophile Rubredoxin Chimeras as Monitored by Hydrogen Exchange. Chembiochem 2006; 7:1886-9. [PMID: 17068837 DOI: 10.1002/cbic.200600276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David M LeMaster
- Wadsworth Center, New York State Department of Health, University at Albany-SUNY, Empire State Plaza, Albany, NY 12201-0509, USA
| | | |
Collapse
|
17
|
LeMaster DM, Hernández G. Additivity in Both Thermodynamic Stability and Thermal Transition Temperature for Rubredoxin Chimeras via Hybrid Native Partitioning. Structure 2005; 13:1153-63. [PMID: 16084387 DOI: 10.1016/j.str.2005.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 04/17/2005] [Accepted: 05/06/2005] [Indexed: 11/23/2022]
Abstract
Given any operational definition of pairwise interaction, the set of residues that differ between two structurally homologous proteins can be uniquely partitioned into subsets of clusters for which no such interactions occur between clusters. Although hybrid protein sequences that preserve such clustering are consistent with tertiary structures composed of only parental native-like interactions, the stability of such predicted structures will depend upon the physical robustness of the assumed interaction potential. A simple distance cutoff criterion was applied to the most thermostable protein known to predict such a seven-residue cluster in the metal binding site region of Pyrococcus furiosus rubredoxin and a mesophile homolog. Both conformational stability and thermal transition temperature measurements demonstrate that 39% of the differential stability arises from these seven residues.
Collapse
Affiliation(s)
- David M LeMaster
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York 12201, USA
| | | |
Collapse
|
18
|
Lee CF, Allen MD, Bycroft M, Wong KB. Electrostatic interactions contribute to reduced heat capacity change of unfolding in a thermophilic ribosomal protein l30e. J Mol Biol 2005; 348:419-31. [PMID: 15811378 DOI: 10.1016/j.jmb.2005.02.052] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 02/23/2005] [Accepted: 02/23/2005] [Indexed: 10/25/2022]
Abstract
The origin of reduced heat capacity change of unfolding (DeltaC(p)) commonly observed in thermophilic proteins is controversial. The established theory that DeltaC(p) is correlated with change of solvent-accessible surface area cannot account for the large differences in DeltaC(p) observed for thermophilic and mesophilic homologous proteins, which are very similar in structures. We have determined the protein stability curves, which describe the temperature dependency of the free energy change of unfolding, for a thermophilic ribosomal protein L30e from Thermococcus celer, and its mesophilic homologue from yeast. Values of DeltaC(p), obtained by fitting the free energy change of unfolding to the Gibbs-Helmholtz equation, were 5.3 kJ mol(-1) K(-1) and 10.5 kJ mol(-1) K(-1) for T.celer and yeast L30e, respectively. We have created six charge-to-neutral mutants of T.celer L30e. Removal of charges at Glu6, Lys9, and Arg92 decreased the melting temperatures of T.celer L30e by approximately 3-9 degrees C, and the differences in melting temperatures were smaller with increasing concentration of salt. These results suggest that these mutations destabilize T.celer L30e by disrupting favorable electrostatic interactions. To determine whether electrostatic interactions contribute to the reduced DeltaC(p) of the thermophilic protein, we have determined DeltaC(p) for wild-type and mutant T.celer L30e by Gibbs-Helmholtz and by van't Hoff analyses. A concomitant increase in DeltaC(p) was observed for those charge-to-neutral mutants that destabilize T.celer L30e by removing favorable electrostatic interactions. The crystal structures of K9A, E90A, and R92A, were determined, and no structural change was observed. Taken together, our results support the conclusion that electrostatic interactions contribute to the reduced DeltaC(p) of T.celer L30e.
Collapse
Affiliation(s)
- Chi-Fung Lee
- Molecular Biotechnology Programme, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | | | | | | |
Collapse
|
19
|
Abstract
Heat capacity (Cp) is one of several major thermodynamic quantities commonly measured in proteins. With more than half a dozen definitions, it is the hardest of these quantities to understand in physical terms, but the richest in insight. There are many ramifications of observed Cp changes: The sign distinguishes apolar from polar solvation. It imparts a temperature (T) dependence to entropy and enthalpy that may change their signs and which of them dominate. Protein unfolding usually has a positive deltaCp, producing a maximum in stability and sometimes cold denaturation. There are two heat capacity contributions, from hydration and protein-protein interactions; which dominates in folding and binding is an open question. Theoretical work to date has dealt mostly with the hydration term and can account, at least semiquantitatively, for the major Cp-related features: the positive and negative Cp of hydration for apolar and polar groups, respectively; the convergence of apolar group hydration entropy at T approximately 112 degrees C; the decrease in apolar hydration Cp with increasing T; and the T-maximum in protein stability and cold denaturation.
Collapse
Affiliation(s)
- Ninad V Prabhu
- E.R. Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059, USA.
| | | |
Collapse
|
20
|
Robic S, Guzman-Casado M, Sanchez-Ruiz JM, Marqusee S. Role of residual structure in the unfolded state of a thermophilic protein. Proc Natl Acad Sci U S A 2003; 100:11345-9. [PMID: 14504401 PMCID: PMC208759 DOI: 10.1073/pnas.1635051100] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ribonucleases H from the thermophilic bacterium Thermus thermophilus and the mesophile Escherichia coli demonstrate a dramatic and surprising difference in their change in heat capacity upon unfolding (DeltaCp degrees ). The lower DeltaCp degrees of the thermophilic protein directly contributes to its higher thermal denaturation temperature (Tm). We propose that this DeltaCp degrees difference originates from residual structure in the unfolded state of the thermophilic protein; we verify this hypothesis by using a mutagenic approach. Residual structure in the unfolded state may provide a mechanism for balancing a high Tm with the optimal thermodynamic stability for a protein's function. Structure in the unfolded state is shown to differentially affect the thermodynamic profiles of thermophilic and mesophilic proteins.
Collapse
Affiliation(s)
- Srebrenka Robic
- Department of Molecular and Cell Biology, QB3 Institute, 215 Hildebrand Hall mc 3206, University of California, Berkeley, CA 94720-3206, USA
| | | | | | | |
Collapse
|
21
|
Mozo-Villarías A, Cedano J, Querol E. A simple electrostatic criterion for predicting the thermal stability of proteins. Protein Eng Des Sel 2003; 16:279-86. [PMID: 12736371 DOI: 10.1093/proeng/gzg033] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The enhancement of protein thermostability is an important issue for both basic science and biotechnology purposes. We have developed a thermostability criterion for a protein in terms of a quasi-electric dipole moment (contributed by its charged residues) defined for an electric charge distribution whose total charge is not zero. It was found that minimization of the modulus of this dipole moment increased its thermal stability, as demonstrated by surveying these values in pairs of mesostable-thermostable homologous proteins and in mutations described in the literature. The analysis of these observations provides criteria for thermostabilization of a protein, by computing its dipole profile. This profile is obtained by direct substitution of each amino acid of the sequence by either a positive, negative or neutral amino acid, followed by a recalculation of the dipole moment. As an experimental example, these criteria were applied to a beta-glucanase to enhance its thermal stability.
Collapse
Affiliation(s)
- Angel Mozo-Villarías
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Avda. Rovira Roure 44, 25198 Lleida, Spain.
| | | | | |
Collapse
|
22
|
Zhou HX. Toward the physical basis of thermophilic proteins: linking of enriched polar interactions and reduced heat capacity of unfolding. Biophys J 2002; 83:3126-33. [PMID: 12496083 PMCID: PMC1302391 DOI: 10.1016/s0006-3495(02)75316-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The enrichment of salt bridges and hydrogen bonding in thermophilic proteins has long been recognized. Another tendency, featuring lower heat capacity of unfolding (DeltaC(p)) than found in mesophilic proteins, is emerging from the recent literature. Here we present a simple electrostatic model to illustrate that formation of a salt-bridge or hydrogen-bonding network around an ionized group in the folded state leads to increased folding stability and decreased DeltaC(p). We thus suggest that the reduced DeltaC(p) of thermophilic proteins could partly be attributed to enriched polar interactions. A reduced DeltaC(p) might serve as an indicator for the contribution of polar interactions to folding stability.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Institute of Molecular Biophysics and Department of Physics, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
23
|
Goyal K, Jo Kim B, Kim JD, Kim YK, Kitaoka M, Hayashi K. Enhancement of transglycosylation activity by construction of chimeras between mesophilic and thermophilic beta-glucosidase. Arch Biochem Biophys 2002; 407:125-34. [PMID: 12392722 DOI: 10.1016/s0003-9861(02)00470-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The family 3 beta-glucosidase from Thermotoga maritima is a highly thermostable enzyme (85 degrees C) that displays transglycosylation activity. In contrast, the beta-glucosidase from Cellvibrio gilvus is mesophilic (35 degrees C) and displays no such transglycosylation activity. Both enzymes consist of two domains, an N-terminal and a C-terminal domain, and the amino acid identities between the two enzymes in these domains are 32.4 and 36.4%, respectively. In an attempt to identify the molecular basis underpinning the display of transglycosylation activity and the requirements for thermal stability, eight chimeric genes were constructed by shuffling the two parental beta-glucosidase genes at four selected borders, two in the N-terminal domain and two in the C-terminal domain. Of the eight chimeric genes constructed, only two chimeric enzymes (Tm578/606Cg and Tm638/666Cg) gave catalytically active forms and these were the ones shuffled in the C-terminal domain. For these active chimeric enzymes, 80% (Tm578/606Cg) and 88% (Tm638/666Cg) of their amino acid sequences originated from T. maritima. With regard to their thermal profiles, the two active chimeric enzymes, Tm578/606Cg and Tm638/666Cg, displayed profiles intermediate to those of the two parental enzymes as they were optimally active at 65 and 70 degrees C, respectively. These two chimeric enzymes were optimally active at pH 4.1 and 3.9, which is closer to that observed for the T. maritima enzyme (pH 3.2-3.5) than that for the C. gilvus enzyme (pH 6.2-6.5). Kinetic parameters for the chimeric enzymes were investigated with five different substrates including pNP-beta-D-glucopyranoside. The kinetic parameters obtained for the chimeric enzymes were closer to those of the T. maritima enzyme than to those of the C. gilvus enzyme. Transglycosylation activity was observed for both chimeric enzymes and the activity of the Tm578/606Cg chimera was at a level twice that observed with the T. maritima enzyme. This study is an effective demonstration of the usefulness of chimeric enzymes in altering the characteristics of an enzyme.
Collapse
Affiliation(s)
- Kshamata Goyal
- Enzyme Laboratory, National Food Research Institute, 2-1-12, Kannondai, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|