1
|
Alexandrescu AT, Dregni AJ. The Temperature Dependence of Hydrogen Bonds Is More Uniform in Stable Proteins: An Analysis of NMR h3J NC' Couplings in Four Different Protein Structures. Molecules 2024; 29:2950. [PMID: 38998901 PMCID: PMC11243222 DOI: 10.3390/molecules29132950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Long-range HNCO NMR spectra for proteins show crosspeaks due to 1JNC', 2JNC', 3JNCγ, and h3JNC' couplings. The h3JNC' couplings are transmitted through hydrogen bonds and their sizes are correlated to hydrogen bond lengths. We collected long-range HNCO data at a series of temperatures for four protein structures. P22i and CUS-3i are six-stranded beta-barrel I-domains from phages P22 and CUS-3 that share less than 40% sequence identity. The cis and trans states of the C-terminal domain from pore-forming toxin hemolysin ΙΙ (HlyIIC) arise from the isomerization of a single G404-P405 peptide bond. For P22i and CUS-3i, hydrogen bonds detected by NMR agree with those observed in the corresponding domains from cryoEM structures of the two phages. Hydrogen bond lengths derived from the h3JNC' couplings, however, are poorly conserved between the distantly related CUS-3i and P22i domains and show differences even between the closely related cis and trans state structures of HlyIIC. This is consistent with hydrogen bond lengths being determined by local differences in structure rather than the overall folding topology. With increasing temperature, hydrogen bonds typically show an apparent increase in length that has been attributed to protein thermal expansion. Some hydrogen bonds are invariant with temperature, however, while others show apparent decreases in length, suggesting they become stabilized with increasing temperature. Considering the data for the three proteins in this study and previously published data for ubiquitin and GB3, lowered protein folding stability and cooperativity corresponds with a larger range of temperature responses for hydrogen bonds. This suggests a partial uncoupling of hydrogen bond energetics from global unfolding cooperativity as protein stability decreases.
Collapse
Affiliation(s)
- Andrei T. Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Aurelio J. Dregni
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
Webb KR, Hess KA, Shmidt A, Segner KD, Buchanan LE. Probing local changes to α-helical structures with 2D IR spectroscopy and isotope labeling. Biophys J 2023; 122:1491-1502. [PMID: 36906800 PMCID: PMC10147839 DOI: 10.1016/j.bpj.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/13/2022] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
α-Helical secondary structures impart specific mechanical and physiochemical properties to peptides and proteins, enabling them to perform a vast array of molecular tasks ranging from membrane insertion to molecular allostery. Loss of α-helical content in specific regions can inhibit native protein function or induce new, potentially toxic, biological activities. Thus, identifying specific residues that exhibit loss or gain of helicity is critical for understanding the molecular basis of function. Two-dimensional infrared (2D IR) spectroscopy coupled with isotope labeling is capable of capturing detailed structural changes in polypeptides. Yet, questions remain regarding the inherent sensitivity of isotope-labeled modes to local changes in α-helicity, such as terminal fraying; the origin of spectral shifts (hydrogen-bonding versus vibrational coupling); and the ability to definitively detect coupled isotopic signals in the presence of overlapping side chains. Here, we address each of these points individually by characterizing a short, model α-helix (DPAEAAKAAAGR-NH2) with 2D IR and isotope labeling. These results demonstrate that pairs of 13C18O probes placed three residues apart can detect subtle structural changes and variations along the length of the model peptide as the α-helicity is systematically tuned. Comparison of singly and doubly labeled peptides affirm that frequency shifts arise primarily from hydrogen-bonding, while vibrational coupling between paired isotopes leads to increased peak areas that can be clearly differentiated from underlying side-chain modes or uncoupled isotope labels not participating in helical structures. These results demonstrate that 2D IR in tandem with i,i+3 isotope-labeling schemes can capture residue-specific molecular interactions within a single turn of an α-helix.
Collapse
Affiliation(s)
| | - Kayla Anne Hess
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee
| | - Alisa Shmidt
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee
| | | | | |
Collapse
|
3
|
Yu B, Pletka CC, Iwahara J. NMR Observation of Intermolecular Hydrogen Bonds between Protein Tyrosine Side-Chain OH and DNA Phosphate Groups. J Phys Chem B 2020; 124:1065-1070. [PMID: 31958014 PMCID: PMC7021563 DOI: 10.1021/acs.jpcb.9b10987] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hydrogen bonds between protein side-chain hydroxyl (OH) and phosphate groups are one of the most common types of intermolecular hydrogen bonds in protein-DNA/RNA complexes. Using NMR spectroscopy, we identified and characterized the hydrogen bonds between tyrosine side-chain OH and DNA phosphate groups in a protein-DNA complex. These OH groups exhibited relatively slow hydrogen-exchange rates and sizable scalar couplings between hydroxyl 1H and DNA phosphate 31P nuclei across the hydrogen bonds. Information about intermolecular hydrogen bonds facilitates investigations of the DNA/RNA recognition by the protein.
Collapse
Affiliation(s)
- Binhan Yu
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| | - Channing C. Pletka
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| | - Junji Iwahara
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| |
Collapse
|
4
|
Colleti C, Melo-Hanchuk TD, da Silva FRM, Saito Â, Kobarg J. Complex interactomes and post-translational modifications of the regulatory proteins HABP4 and SERBP1 suggest pleiotropic cellular functions. World J Biol Chem 2019; 10:44-64. [PMID: 31768228 PMCID: PMC6872977 DOI: 10.4331/wjbc.v10.i3.44] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/30/2019] [Accepted: 10/15/2019] [Indexed: 02/05/2023] Open
Abstract
The 57 kDa antigen recognized by the Ki-1 antibody, is also known as intracellular hyaluronic acid binding protein 4 and shares 40.7% identity and 67.4% similarity with serpin mRNA binding protein 1, which is also named CGI-55, or plasminogen activator inhibitor type-1-RNA binding protein-1, indicating that they might be paralog proteins, possibly with similar or redundant functions in human cells. Through the identification of their protein interactomes, both regulatory proteins have been functionally implicated in transcriptional regulation, mRNA metabolism, specifically RNA splicing, the regulation of mRNA stability, especially, in the context of the progesterone hormone response, and the DNA damage response. Both proteins also show a complex pattern of post-translational modifications, involving Ser/Thr phosphorylation, mainly through protein kinase C, arginine methylation and SUMOylation, suggesting that their functions and locations are highly regulated. Furthermore, they show a highly dynamic cellular localization pattern with localizations in both the cytoplasm and nucleus as well as punctuated localizations in both granular cytoplasmic protein bodies, upon stress, and nuclear splicing speckles. Several reports in the literature show altered expressions of both regulatory proteins in a series of cancers as well as mutations in their genes that may contribute to tumorigenesis. This review highlights important aspects of the structure, interactome, post-translational modifications, sub-cellular localization and function of both regulatory proteins and further discusses their possible functions and their potential as tumor markers in different cancer settings.
Collapse
Affiliation(s)
- Carolina Colleti
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Talita Diniz Melo-Hanchuk
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Flávia Regina Moraes da Silva
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Ângela Saito
- Laboratório Nacional de Biociências, CNPEM, Campinas 13083-970, Brazil
| | - Jörg Kobarg
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| |
Collapse
|
5
|
Nguyen D, Chen C, Pettitt BM, Iwahara J. NMR Methods for Characterizing the Basic Side Chains of Proteins: Electrostatic Interactions, Hydrogen Bonds, and Conformational Dynamics. Methods Enzymol 2018; 615:285-332. [PMID: 30638532 DOI: 10.1016/bs.mie.2018.08.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
NMR spectroscopy is a powerful tool for studying protein dynamics. Conventionally, NMR studies on protein dynamics have probed motions of protein backbone NH, side-chain aromatic, and CH3 groups. Recently, there has been remarkable progress in NMR methodologies that can characterize motions of cationic groups in protein side chains. These NMR methods allow investigations of the dynamics of positively charged lysine (Lys) and arginine (Arg) side chains and their hydrogen bonds as well as their electrostatic interactions important for protein function. Here, describing various practical aspects, we provide an overview of the NMR methods for dynamics studies of Lys and Arg side chains. Some example data on protein-DNA complexes are shown. We will also explain how molecular dynamics (MD) simulations can facilitate the interpretation of the NMR data on these basic side chains. Studies combining NMR and MD have revealed the highly dynamic nature of short-range electrostatic interactions via ion pairs, especially those involving Lys side chains.
Collapse
Affiliation(s)
- Dan Nguyen
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, United States
| | - Chuanying Chen
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, United States
| | - B Montgomery Pettitt
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, United States
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
6
|
Chattopadhyay A, Esadze A, Roy S, Iwahara J. NMR Scalar Couplings across Intermolecular Hydrogen Bonds between Zinc-Finger Histidine Side Chains and DNA Phosphate Groups. J Phys Chem B 2016; 120:10679-10685. [PMID: 27685459 PMCID: PMC5386832 DOI: 10.1021/acs.jpcb.6b08137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
NMR scalar couplings across hydrogen bonds represent direct evidence for the partial covalent nature of hydrogen bonds and provide structural and dynamic information on hydrogen bonding. In this article, we report heteronuclear 15N-31P and 1H-31P scalar couplings across the intermolecular hydrogen bonds between protein histidine (His) imidazole and DNA phosphate groups. These hydrogen-bond scalar couplings were observed for the Egr-1 zinc-finger-DNA complex. Although His side-chain NH protons are typically undetectable in heteronuclear 1H-15N correlation spectra due to rapid hydrogen exchange, this complex exhibited two His side-chain NH signals around 1H 14.3 ppm and 15N 178 ppm at 35 °C. Through various heteronuclear multidimensional NMR experiments, these signals were assigned to two zinc-coordinating His side chains in contact with DNA phosphate groups. The data show that the Nδ1 atoms of these His side chains are protonated and exhibit the 1H-15N cross-peaks. Using heteronuclear 1H, 15N, and 31P NMR experiments, we observed the hydrogen-bond scalar couplings between the His 15Nδ1/1Hδ1 and DNA phosphate 31P nuclei. These results demonstrate the direct involvement of the zinc-coordinating His side chains in the recognition of DNA by the Cys2His2-class zinc fingers in solution.
Collapse
Affiliation(s)
- Abhijnan Chattopadhyay
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| | - Alexandre Esadze
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| | - Sourav Roy
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| |
Collapse
|
7
|
Debiec KT, Cerutti DS, Baker LR, Gronenborn AM, Case DA, Chong LT. Further along the Road Less Traveled: AMBER ff15ipq, an Original Protein Force Field Built on a Self-Consistent Physical Model. J Chem Theory Comput 2016; 12:3926-47. [PMID: 27399642 PMCID: PMC4980686 DOI: 10.1021/acs.jctc.6b00567] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
We present the AMBER
ff15ipq force field for proteins, the second-generation
force field developed using the Implicitly Polarized Q (IPolQ) scheme
for deriving implicitly polarized atomic charges in the presence of
explicit solvent. The ff15ipq force field is a complete rederivation
including more than 300 unique atomic charges, 900 unique torsion
terms, 60 new angle parameters, and new atomic radii for polar hydrogens.
The atomic charges were derived in the context of the SPC/Eb water model, which yields more-accurate rotational diffusion of
proteins and enables direct calculation of nuclear magnetic resonance
(NMR) relaxation parameters from molecular dynamics simulations. The
atomic radii improve the accuracy of modeling salt bridge interactions
relative to contemporary fixed-charge force fields, rectifying a limitation
of ff14ipq that resulted from its use of pair-specific Lennard-Jones
radii. In addition, ff15ipq reproduces penta-alanine J-coupling constants
exceptionally well, gives reasonable agreement with NMR relaxation
rates, and maintains the expected conformational propensities of structured
proteins/peptides, as well as disordered peptides—all on the
microsecond (μs) time scale, which is a critical regime for
drug design applications. These encouraging results demonstrate the
power and robustness of our automated methods for deriving new force
fields. All parameters described here and the mdgx program used to
fit them are included in the AmberTools16 distribution.
Collapse
Affiliation(s)
- Karl T Debiec
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburgh and Carnegie Mellon University , Pittsburgh, Pennsylvania, United States.,Department of Structural Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - David S Cerutti
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Lewis R Baker
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States
| | - David A Case
- Department of Chemistry and Chemical Biology, Rutgers University , New Brunswick, New Jersey 08854, United States
| | - Lillian T Chong
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
8
|
Dannenberg JJ. The importance of cooperative interactions and a solid-state paradigm to proteins: what Peptide chemists can learn from molecular crystals. ACTA ACUST UNITED AC 2016; 72:227-73. [PMID: 16581379 DOI: 10.1016/s0065-3233(05)72009-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Proteins and peptides in solution or in vivo share properties with both liquids and solids. More often than not, they are studied using the liquid paradigm rather than that of a solid. Studies of molecular crystals illustrate how the use of a solid paradigm may change the way that we consider these important molecules. Cooperative interactions, particularly those involving H-bonding, play much more important roles in the solid than in the liquid paradigms, as molecular crystals clearly illustrate. Using the solid rather than the liquid paradigm for proteins and peptides includes these cooperative interactions while application of the liquid paradigm tends to ignore or minimize them. Use of the solid paradigm has important implications for basic principles that are often implied about peptide and protein chemistry, such as the importance of entropy in protein folding and the nature of the hydrophobic effect. Understanding the folded states of peptides and proteins (especially alpha-helices) often requires the solid paradigm, whereas understanding unfolded states does not. Both theoretical and experimental studies of the energetics of protein and peptide folding require comparison to a suitable standard. Our perspective on these energetics depends on the reasonable choice of reference. The use of multiple reference states, particularly that of component amino acids in the gas phase, is proposed.
Collapse
Affiliation(s)
- J J Dannenberg
- Department of Chemistry, City University of New York, Hunter College and the Graduate School New York, New York 10021
| |
Collapse
|
9
|
Zandarashvili L, Esadze A, Kemme CA, Chattopadhyay A, Nguyen D, Iwahara J. Residence Times of Molecular Complexes in Solution from NMR Data of Intermolecular Hydrogen-Bond Scalar Coupling. J Phys Chem Lett 2016; 7:820-4. [PMID: 26881297 PMCID: PMC4850060 DOI: 10.1021/acs.jpclett.6b00019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The residence times of molecular complexes in solution are important for understanding biomolecular functions and drug actions. We show that NMR data of intermolecular hydrogen-bond scalar couplings can yield information on the residence times of molecular complexes in solution. The molecular exchange of binding partners via the breakage and reformation of a complex causes self-decoupling of intermolecular hydrogen-bond scalar couplings, and this self-decoupling effect depends on the residence time of the complex. For protein-DNA complexes, we investigated the salt concentration dependence of intermolecular hydrogen-bond scalar couplings between the protein side-chain (15)N and DNA phosphate (31)P nuclei, from which the residence times were analyzed. The results were consistent with those obtained by (15)Nz-exchange spectroscopy. This self-decoupling-based kinetic analysis is unique in that it does not require any different signatures for the states involved in the exchange, whereas such conditions are crucial for kinetic analyses by typical NMR and other methods.
Collapse
|
10
|
Newcomer RL, Fraser LCR, Teschke CM, Alexandrescu AT. Mechanism of Protein Denaturation: Partial Unfolding of the P22 Coat Protein I-Domain by Urea Binding. Biophys J 2015; 109:2666-2677. [PMID: 26682823 PMCID: PMC4699920 DOI: 10.1016/j.bpj.2015.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/13/2015] [Accepted: 11/06/2015] [Indexed: 01/30/2023] Open
Abstract
The I-domain is an insertion domain of the bacteriophage P22 coat protein that drives rapid folding and accounts for over half of the stability of the full-length protein. We sought to determine the role of hydrogen bonds (H-bonds) in the unfolding of the I-domain by examining (3)JNC' couplings transmitted through H-bonds, the temperature and urea-concentration dependence of (1)HN and (15)N chemical shifts, and native-state hydrogen exchange at urea concentrations where the domain is predominantly folded. The native-state hydrogen-exchange data suggest that the six-stranded β-barrel core of the I-domain is more stable against unfolding than a smaller subdomain comprised of a short α-helix and three-stranded β-sheet. H-bonds, separately determined from solvent protection and (3)JNC' H-bond couplings, are identified with an accuracy of 90% by (1)HN temperature coefficients. The accuracy is improved to 95% when (15)N temperature coefficients are also included. In contrast, the urea dependence of (1)HN and (15)N chemical shifts is unrelated to H-bonding. The protein segments with the largest chemical-shift changes in the presence of urea show curved or sigmoidal titration curves suggestive of direct urea binding. Nuclear Overhauser effects to urea for these segments are also consistent with specific urea-binding sites in the I-domain. Taken together, the results support a mechanism of urea unfolding in which denaturant binds to distinct sites in the I-domain. Disordered segments bind urea more readily than regions in stable secondary structure. The locations of the putative urea-binding sites correlate with the lower stability of the structure against solvent exchange, suggesting that partial unfolding of the structure is related to urea accessibility.
Collapse
Affiliation(s)
- Rebecca L Newcomer
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - LaTasha C R Fraser
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - Carolyn M Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut; Department of Chemistry, University of Connecticut, Storrs, Connecticut.
| | - Andrei T Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut.
| |
Collapse
|
11
|
Preimesberger M, Majumdar A, Rice SL, Que L, Lecomte JTJ. Helix-Capping Histidines: Diversity of N-H···N Hydrogen Bond Strength Revealed by (2h)JNN Scalar Couplings. Biochemistry 2015; 54:6896-908. [PMID: 26523621 PMCID: PMC4660981 DOI: 10.1021/acs.biochem.5b01002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/31/2015] [Indexed: 11/29/2022]
Abstract
In addition to its well-known roles as an electrophile and general acid, the side chain of histidine often serves as a hydrogen bond (H-bond) acceptor. These H-bonds provide a convenient pH-dependent switch for local structure and functional motifs. In hundreds of instances, a histidine caps the N-terminus of α- and 310-helices by forming a backbone NH···Nδ1 H-bond. To characterize the resilience and dynamics of the histidine cap, we measured the trans H-bond scalar coupling constant, (2h)JNN, in several forms of Group 1 truncated hemoglobins and cytochrome b5. The set of 19 measured (2h)JNN values were between 4.0 and 5.4 Hz, generally smaller than in nucleic acids (~6-10 Hz) and indicative of longer, weaker bonds in the studied proteins. A positive linear correlation between (2h)JNN and the difference in imidazole ring (15)N chemical shift (Δ(15)N = |δ(15)Nδ1 - δ(15)Nε2|) was found to be consistent with variable H-bond length and variable cap population related to the ionization of histidine in the capping and noncapping states. The relative ease of (2h)JNN detection suggests that this parameter can become part of the standard arsenal for describing histidines in helix caps and other key structural and catalytic elements involving NH···N H-bonds. The combined nucleic acid and protein data extend the utility of (2h)JNN as a sensitive marker of local structural, dynamic, and thermodynamic properties in biomolecules.
Collapse
Affiliation(s)
- Matthew
R. Preimesberger
- T.
C. Jenkins Department of Biophysics, Johns
Hopkins University, Baltimore, Maryland 21218, United States
| | - Ananya Majumdar
- Biomolecular
NMR Center, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Selena L. Rice
- T.
C. Jenkins Department of Biophysics, Johns
Hopkins University, Baltimore, Maryland 21218, United States
| | - Lauren Que
- T.
C. Jenkins Department of Biophysics, Johns
Hopkins University, Baltimore, Maryland 21218, United States
| | - Juliette T. J. Lecomte
- T.
C. Jenkins Department of Biophysics, Johns
Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
12
|
Kaczka P, Winiewska M, Zhukov I, Rempoła B, Bolewska K, Łoziński T, Ejchart A, Poznańska A, Wierzchowski KL, Poznański J. The TFE-induced transient native-like structure of the intrinsically disordered σ₄⁷⁰ domain of Escherichia coli RNA polymerase. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2014; 43:581-94. [PMID: 25261014 PMCID: PMC4236625 DOI: 10.1007/s00249-014-0987-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/31/2014] [Accepted: 09/08/2014] [Indexed: 11/16/2022]
Abstract
The transient folding of domain 4 of an E. coli RNA polymerase σ⁷⁰ subunit (rECσ₄⁷⁰) induced by an increasing concentration of 2,2,2-trifluoroethanol (TFE) in an aqueous solution was monitored by means of CD and heteronuclear NMR spectroscopy. NMR data, collected at a 30% TFE, allowed the estimation of the population of a locally folded rECσ₄⁷⁰ structure (CSI descriptors) and of local backbone dynamics ((15)N relaxation). The spontaneous organization of the helical regions of the initially unfolded protein into a TFE-induced 3D structure was revealed from structural constraints deduced from (15)N- to (13)C-edited NOESY spectra. In accordance with all the applied criteria, three highly populated α-helical regions, separated by much more flexible fragments, form a transient HLHTH motif resembling those found in PDB structures resolved for homologous proteins. All the data taken together demonstrate that TFE induces a transient native-like structure in the intrinsically disordered protein.
Collapse
Affiliation(s)
- Piotr Kaczka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Maria Winiewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Igor Zhukov
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Bożenna Rempoła
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Krystyna Bolewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Tomasz Łoziński
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Andrzej Ejchart
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Anna Poznańska
- Centre for Monitoring and Analyses of Population Health Status, National Institute of Public Health, National Institute of Hygiene, Warsaw, Poland
| | - Kazimierz L. Wierzchowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
13
|
Vymětal J, Bathula SR, Černý J, Chaloupková R, Žídek L, Sklenář V, Vondrášek J. Retro operation on the Trp-cage miniprotein sequence produces an unstructured molecule capable of folding similar to the original only upon 2,2,2-trifluoroethanol addition. Protein Eng Des Sel 2014; 27:463-72. [DOI: 10.1093/protein/gzu046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Sun CL, Ding F, Ding YL, Li Y. The effect of water molecules upon the hydrogen-bonding cooperativity of three-stranded antiparallel β-sheet models. RSC Adv 2014. [DOI: 10.1039/c3ra45892j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
15
|
Sheftic SR, Garcia PP, White E, Robinson VL, Gage DJ, Alexandrescu AT. Nuclear magnetic resonance structure and dynamics of the response regulator Sma0114 from Sinorhizobium meliloti. Biochemistry 2012; 51:6932-41. [PMID: 22880754 DOI: 10.1021/bi300922z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Receiver domains control intracellular responses triggered by signal transduction in bacterial two-component systems. Here, we report the solution nuclear magnetic resonance structure and dynamics of Sma0114 from the bacterium Sinorhizobium meliloti, the first such characterization of a receiver domain from the HWE-kinase family of two-component systems. The structure of Sma0114 adopts a prototypical α(5)/β(5) Rossman fold but has features that set it apart from other receiver domains. The fourth β-strand of Sma0114 houses a PFxFATGY sequence motif, common to many HWE-kinase-associated receiver domains. This sequence motif in Sma0114 may substitute for the conserved Y-T coupling mechanism, which propagates conformational transitions in the 455 (α4-β5-α5) faces of receiver domains, to prime them for binding downstream effectors once they become activated by phosphorylation. In addition, the fourth α-helix of the consensus 455 face in Sma0114 is replaced with a segment that shows high flexibility on the pico- to nanosecond time scale by (15)N relaxation data. Secondary structure prediction analysis suggests that the absence of helix α4 may be a conserved property of the HWE-kinase-associated family of receiver domains to which Sma0114 belongs. In spite of these differences, Sma0114 has a conserved active site, binds divalent metal ions such as Mg(2+) and Ca(2+) that are required for phosphorylation, and exhibits micro- to millisecond active-site dynamics similar to those of other receiver domains. Taken together, our results suggest that Sma0114 has a conserved active site but differs from typical receiver domains in the structure of the 455 face that is used to effect signal transduction following activation.
Collapse
Affiliation(s)
- Sarah R Sheftic
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | | | |
Collapse
|
16
|
Nisius L, Grzesiek S. Key stabilizing elements of protein structure identified through pressure and temperature perturbation of its hydrogen bond network. Nat Chem 2012; 4:711-7. [PMID: 22914191 DOI: 10.1038/nchem.1396] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 05/29/2012] [Indexed: 11/09/2022]
Abstract
Hydrogen bonds are key constituents of biomolecular structures, and their response to external perturbations may reveal important insights about the most stable components of a structure. NMR spectroscopy can probe hydrogen bond deformations at very high resolution through hydrogen bond scalar couplings (HBCs). However, the small size of HBCs has so far prevented a comprehensive quantitative characterization of protein hydrogen bonds as a function of the basic thermodynamic parameters of pressure and temperature. Using a newly developed pressure cell, we have now mapped pressure- and temperature-dependent changes of 31 hydrogen bonds in ubiquitin by measuring HBCs with very high precision. Short-range hydrogen bonds are only moderately perturbed, but many hydrogen bonds with large sequence separations (high contact order) show greater changes. In contrast, other high-contact-order hydrogen bonds remain virtually unaffected. The specific stabilization of such topologically important connections may present a general principle with which to achieve protein stability and to preserve structural integrity during protein function.
Collapse
Affiliation(s)
- Lydia Nisius
- Division of Structural Biology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | |
Collapse
|
17
|
De Santis E, Hjelmgaard T, Caumes C, Faure S, Alexander BD, Holder SJ, Siligardi G, Taillefumier C, Edwards AA. Effect of capping groups at the N- and C-termini on the conformational preference of α,β-peptoids. Org Biomol Chem 2012; 10:1108-22. [DOI: 10.1039/c1ob06386c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Reiner A. Triplet-triplet energy transfer studies on conformational dynamics in peptides and a protein. J Pept Sci 2011; 17:413-9. [PMID: 21360629 DOI: 10.1002/psc.1353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 12/14/2010] [Accepted: 12/15/2010] [Indexed: 11/10/2022]
Abstract
Peptides and proteins are highly dynamic systems, which can adopt more or less stable conformations. The dynamics of these molecules, particularly those on the nanosecond to tens of microsecond time scale, are difficult to assess with conventional techniques. This review summarizes experiments using TTET, a technique that reports on van der Waals contact formation between a triplet donor and acceptor group, and which is sensitive in this time range. TTET allows to directly measure the chain dynamics of unstructured model peptides, i.e. large-amplitude fluctuations on the nanosecond time scale. Furthermore, contact formation can be used as irreversible probing reaction to study the kinetics of conformational equilibria. This approach enabled us to measure local α-helix folding and unfolding in helical peptides, which gave new insight into the equilibrium dynamics of this fundamental secondary structure element. TTET has also been applied to study the dynamics both in the native and unfolded state of a protein, the villin headpiece subdomain. The contact formation kinetics between different positions revealed an unlocking and local unfolding reaction in the native state of this model protein, and gave information about the chain dynamics in the unfolded state ensemble.
Collapse
Affiliation(s)
- Andreas Reiner
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
19
|
Jiang XN, Sun CL, Wang CS. A scheme for rapid prediction of cooperativity in hydrogen bond chains of formamides, acetamides, and N-methylformamides. J Comput Chem 2010; 31:1410-20. [PMID: 19885870 DOI: 10.1002/jcc.21426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A scheme is proposed in this article to predict the cooperativity in hydrogen bond chains of formamides, acetamides, and N-methylformamides. The parameters needed in the scheme are derived from fitting to the hydrogen bonding energies of MP2/6-31+G** with basis set superposition error (BSSE) correction of the hydrogen bond chains of formamides containing from two to eight monomeric units. The scheme is then used to calculate the individual hydrogen bonding energies in the chains of formamides containing 9 and 12 monomeric units, in the chains of acetamides containing from two to seven monomeric units, in the chains of N-methylformamides containing from two to seven monomeric units. The calculation results show that the cooperativity predicted by the scheme proposed in this paper is in good agreement with those obtained from MP2/6-31+G** calculations by including the BSSE correction, demonstrating that the scheme proposed in this article is reasonable. Based on our scheme, a cooperativity effect of almost 240% of the dimer hydrogen bonding energy in long hydrogen bond formamide chains, a cooperativity effect of almost 190% of the dimer hydrogen bonding energy in long hydrogen bond acetamide chains, and a cooperativity effect of almost 210% of the dimer hydrogen bonding energy in long hydrogen bond N-methylformamide chains are predicted. The scheme is further applied to some heterogeneous chains containing formamide, acetamide, and N-methylformamide. The individual hydrogen bonding energies in these heterogeneous chains predicted by our scheme are also in good agreement with those obtained from Møller-Plesset calculations including BSSE correction.
Collapse
Affiliation(s)
- Xiao-Nan Jiang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | | | | |
Collapse
|
20
|
Afonin AV, Vashchenko AV. Theoretical study of bifurcated hydrogen bonding effects on the 1J(N,H), 1hJ(N,H), 2hJ(N,N) couplings and 1H, 15N shieldings in model pyrroles. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2010; 48:309-317. [PMID: 20198609 DOI: 10.1002/mrc.2579] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
According to the density functional theory calculations, the X...H...N (X=N, O) intramolecular bifurcated (three-centered) hydrogen bond with one hydrogen donor and two hydrogen acceptors causes a significant decrease of the (1h)J(N,H) and (2h)J(N,N) coupling constants across the N-H...N hydrogen bond and an increase of the (1)J(N,H) coupling constant across the N-H covalent bond in the 2,5-disubstituted pyrroles. This occurs due to a weakening of the N-H...N hydrogen bridge resulting in a lengthening of the N...H distance and a decrease of the hydrogen bond angle at the bifurcated hydrogen bond formation. The gauge-independent atomic orbital calculations of the shielding constants suggest that a weakening of the N-H...N hydrogen bridge in case of the three-centered hydrogen bond yields a shielding of the bridge proton and deshielding of the acceptor nitrogen atom. The atoms-in-molecules analysis shows that an attenuation of the (1h)J(N,H) and (2h)J(N,N) couplings in the compounds with bifurcated hydrogen bond is connected with a decrease of the electron density rho(H...N) at the hydrogen bond critical point and Laplacian of this electron density nabla(2)rho(H...N). The natural bond orbital analysis suggests that the additional N-H...X interaction partly inhibits the charge transfer from the nitrogen lone pair to the sigma*(N-H) antibonding orbital across hydrogen bond weakening of the (1h)J(N,H) and (2h)J(N,N) trans-hydrogen bond couplings through Fermi-contact mechanism. An increase of the nitrogen s-character percentage of the N-H bond in consequence of the bifurcated hydrogen bonding leads to an increase of the (1)J(N,H) coupling constant across the N-H covalent bond and deshielding of the hydrogen donor nitrogen atom.
Collapse
Affiliation(s)
- Andrei V Afonin
- Institute of Chemistry, Siberian Branch of the Russian Academy of Science, Favorski St. 1, 664033 Irkutsk, Russia.
| | | |
Collapse
|
21
|
Kaczka P, Polkowska-Nowakowska A, Bolewska K, Zhukov I, Poznański J, Wierzchowski KL. Backbone dynamics of TFE-induced native-like fold of region 4 of Escherichia coli RNA polymerase sigma70 subunit. Proteins 2010; 78:754-68. [PMID: 19847776 DOI: 10.1002/prot.22607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Folding of a recombinant protein rECsigma(70) (4) comprising domain 4 of E. coli RNA polymerase sigma(70) subunit, upon addition of 2,2,2-trifluoroethanol (TFE) to its aqueous solution, was monitored by heteronuclear NMR spectroscopy. The TFE-induced migration of resonance signals in a series of (15)N-HSQC spectra displayed sequence-dependent heterogeneity. A common trend of uniform upfield shift in both (1)H and (15)N dimensions, indicative of generation of helical structures, breaks down for some residues almost cooperatively at 10-15% TFE (v/v), pointing to the buildup of non-helical regions separating the initially induced helices. The preferences of residues to assume either helical or non-helical conformation are correlated with the location in the sequence rather than with their type. CSI descriptors and (15)N relaxation data obtained for the protein at 10% TFE allowed characterization of the stability of the pre-folded state of rECsigma(70) (4). By all the criteria applied, three highly populated alpha-helical regions separated by much more flexible residues forming a loop and a turn in the DNA-binding HLHTH motif were identified. The location of the secondary structure elements along the protein sequence coincides with those found in homologous proteins, and with the helix nucleation regions determined in unfolded rECsigma(70) (4) at low pH. The bimodal distribution of the (15)N relaxation parameters enabled identification of residues forming a framework of the folded protein strictly corresponding to the HLHTH motif, bracketed by unfolded terminal regions. Thus, in respect to rECsigma(70) (4) in aqueous solution TFE acts not only as a strong helix inducer, but also as a folding agent.
Collapse
Affiliation(s)
- Piotr Kaczka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | | | | | | | | | | |
Collapse
|
22
|
Jiang XN, Wang CS. Rapid Prediction of the Hydrogen Bond Cooperativity in N-methylacetamide Chains. Chemphyschem 2009; 10:3330-6. [DOI: 10.1002/cphc.200900591] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Local conformational dynamics in alpha-helices measured by fast triplet transfer. Proc Natl Acad Sci U S A 2009; 106:1057-62. [PMID: 19131517 DOI: 10.1073/pnas.0808581106] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coupling fast triplet-triplet energy transfer (TTET) between xanthone and naphthylalanine to the helix-coil equilibrium in alanine-based peptides allowed the observation of local equilibrium fluctuations in alpha-helices on the nanoseconds to microseconds time scale. The experiments revealed faster helix unfolding in the terminal regions compared with the central parts of the helix with time constants varying from 250 ns to 1.4 micros at 5 degrees C. Local helix formation occurs with a time constant of approximately 400 ns, independent of the position in the helix. Comparing the experimental data with simulations using a kinetic Ising model showed that the experimentally observed dynamics can be explained by a 1-dimensional boundary diffusion with position-independent elementary time constants of approximately 50 ns for the addition and of approximately 65 ns for the removal of an alpha-helical segment. The elementary time constant for helix growth agrees well with previously measured time constants for formation of short loops in unfolded polypeptide chains, suggesting that helix elongation is mainly limited by a conformational search.
Collapse
|
24
|
Abstract
A nuclear magnetic resonance (NMR) experiment is described for the direct detection of N-H[...]O=C hydrogen bonds (H-bonds) in 15N and 13C isotope-labeled biomolecules. This quantitative 'long-range' HNCO-COSY (correlation spectroscopy) experiment detects and quantifies electron-mediated scalar couplings across the H-bond (H-bond scalar couplings), which connect the magnetically active (15)N and (13)C nuclei on both sides of the H-bond. Detectable H-bonds comprise the canonical backbone H-bonds in proteins as well as other H-bonds in proteins and nucleic acids with N-H donors and O=C (carbonylic or carboxylic) acceptors. Unlike other NMR observables, which provide only indirect evidence of the presence of H-bonds, the H-bond scalar couplings identify all partners of the H-bond, the donor, the donor proton and the acceptor, in a single experiment. The size of the scalar couplings can be related to H-bond geometries. The time required to detect the N-H[...]O=C H-bonds in small proteins (< or = approximately 10 kDa) is typically on the order of 1 d at millimolar concentrations, whereas H-bond detection for larger proteins (< or = approximately 30 kDa) may be possible within several days depending on concentration, isotope composition, magnetic field strength and molecular weight. The proteins ubiquitin (8.6 kDa), dimeric RANTES (2 x 8.5 kDa) and MAP30 (30 kDa) are used as examples to illustrate this procedure.
Collapse
|
25
|
Alkorta I, Elguero J, Denisov GS. A review with comprehensive data on experimental indirect scalar NMR spin-spin coupling constants across hydrogen bonds. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2008; 46:599-624. [PMID: 18357569 DOI: 10.1002/mrc.2209] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Scalar NMR spin-spin coupling constants across hydrogen bonds are fundamental in structural studies and as test grounds for theoretical calculations. Since they are scattered among many articles of different kinds, it seems useful to collect them in the most comprehensive way.
Collapse
Affiliation(s)
- Ibon Alkorta
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, E-28006 Madrid, Spain.
| | | | | |
Collapse
|
26
|
Croke RL, Sallum CO, Watson E, Watt ED, Alexandrescu AT. Hydrogen exchange of monomeric alpha-synuclein shows unfolded structure persists at physiological temperature and is independent of molecular crowding in Escherichia coli. Protein Sci 2008; 17:1434-45. [PMID: 18493022 DOI: 10.1110/ps.033803.107] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Amide proton NMR signals from the N-terminal domain of monomeric alpha-synuclein (alphaS) are lost when the sample temperature is raised from 10 degrees C to 35 degrees C at pH 7.4. Although the temperature-induced effects have been attributed to conformational exchange caused by an increase in alpha-helix structure, we show that the loss of signals is due to fast amide proton exchange. At low ionic strength, hydrogen exchange rates are faster for the N-terminal segment of alphaS than for the acidic C-terminal domain. When the salt concentration is raised to 300 mM, exchange rates increase throughout the protein and become similar for the N- and C-terminal domains. This indicates that the enhanced protection of amide protons from the C-terminal domain at low salt is electrostatic in nature. Calpha chemical shift data point to <10% residual alpha-helix structure at 10 degrees C and 35 degrees C. Conformational exchange contributions to R2 are negligible at both temperatures. In contrast to the situation in vitro, the majority of amide protons are observed at 37 degrees C in 1H-15N HSQC spectra of alphaS encapsulated within living Escherichia coli cells. Our finding that temperature effects on alphaS NMR spectra can be explained by hydrogen exchange obviates the need to invoke special cellular factors. The retention of signals is likely due to slowed hydrogen exchange caused by the lowered intracellular pH of high-density E. coli cultures. Taken together, our results emphasize that alphaS remains predominantly unfolded at physiological temperature and pH-an important conclusion for mechanistic models of the association of alphaS with membranes and fibrils.
Collapse
Affiliation(s)
- Robyn L Croke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3125, USA
| | | | | | | | | |
Collapse
|
27
|
De Gortari I, Galván M, Ireta J, Segall M, Pickard CJ, Payne M. Theoretical Investigations of Oxygen-17 NMR Chemical Shifts to Discriminate among Helical Forms. J Phys Chem A 2007; 111:13099-105. [DOI: 10.1021/jp0751817] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Itzam De Gortari
- TCM Group, Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom, Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana, A.P. 55-534, México 09340, and Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweb 4-6, D-14195 Berlin-Dahlem, Germany
| | - Marcelo Galván
- TCM Group, Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom, Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana, A.P. 55-534, México 09340, and Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweb 4-6, D-14195 Berlin-Dahlem, Germany
| | - Joel Ireta
- TCM Group, Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom, Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana, A.P. 55-534, México 09340, and Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweb 4-6, D-14195 Berlin-Dahlem, Germany
| | - Matthew Segall
- TCM Group, Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom, Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana, A.P. 55-534, México 09340, and Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweb 4-6, D-14195 Berlin-Dahlem, Germany
| | - Chris J. Pickard
- TCM Group, Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom, Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana, A.P. 55-534, México 09340, and Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweb 4-6, D-14195 Berlin-Dahlem, Germany
| | - Mike Payne
- TCM Group, Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom, Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana, A.P. 55-534, México 09340, and Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweb 4-6, D-14195 Berlin-Dahlem, Germany
| |
Collapse
|
28
|
Bellanda M, Mammi S, Geremia S, Demitri N, Randaccio L, Broxterman QB, Kaptein B, Pengo P, Pasquato L, Scrimin P. Solvent polarity controls the helical conformation of short peptides rich in Calpha-tetrasubstituted amino acids. Chemistry 2007; 13:407-16. [PMID: 17154197 DOI: 10.1002/chem.200600719] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The two peptides, rich in C(alpha)-tetrasubstituted amino acids, Ac-[Aib-L-(alphaMe)Val-Aib](2)-L-His-NH(2) (1) and Ac-[Aib-L-(alphaMe)Val-Aib](2)-O-tBu (2 a) are prevalently helical. They present the unique property of changing their conformation from the alpha- to the 3(10)-helix as a function of the polarity of the solvent: alpha in more polar solvents, 3(10) in less polar ones. Conclusive evidence of this reversible change of conformation is reported on the basis of the circular dichroism (CD) spectra and a detailed two-dimensional NMR analysis in two solvents (trifluoroethanol and methanol) refined with molecular dynamics calculations. The X-ray diffractometric analysis of the crystals of both peptides reveals that they assume a prevalent 3(10)-helix conformation in the solid state. This conformation is practically superimposable on that obtained from the NMR analysis of 1 in methanol. The NMR results further validate the reported CD signature of the 3(10)-helix and the use of the CD technique for its assessment.
Collapse
Affiliation(s)
- Massimo Bellanda
- University of Padova, Department of Chemical Sciences, 35131 Padova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Salvador P, Wieczorek R, Dannenberg JJ. Direct Calculation of trans-Hydrogen-Bond 13C-15N 3-Bond J-Couplings in Entire Polyalanine α-Helices. A Density Functional Theory Study. J Phys Chem B 2007; 111:2398-403. [PMID: 17295533 DOI: 10.1021/jp064706c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present the first trans-H-bond 13C-15N 3-bond J couplings calculated from entire neutral and protonated alpha-helical polyalanines. The neutral helices considered are those of the capped peptides, acetyl(Ala)NNH2, where N = 8, 16, 17, and 18, while the protonated peptides are the uncapped (Ala)17 protonated at three different positions. The calculated J values correlate well with O...H distances and somewhat less well with N...O distances, particularly if the terminal H-bonds are eliminated from the correlation. The J values calculated using the entire helix are about 6% lower in magnitude than those recently reported for H-bonding chains whose geometries were extracted from the same helices. Aqueous solvation favors protonation of the alpha-helix on the terminal COOH. Experimental measurements of the trans-H-bond 13C-15N 3-bond J couplings in acidic solution should be interpreted with this context.
Collapse
Affiliation(s)
- Pedro Salvador
- Department of Chemistry, City University of New York--Hunter College and the Graduate School, 695 Park Avenue, New York, New York 10021, USA
| | | | | |
Collapse
|
30
|
Cai X, Dass C. Conformational analysis of dynorphin A (1-13) using hydrogen-deuterium exchange and tandem mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2007; 13:409-417. [PMID: 18417761 DOI: 10.1255/ejms.898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Trifluoroethanol (TFE)-induced conformational changes in dynorphin A (1-13) were investigated using charge-state distribution (CSD) and hydrogen-deuterium exchange (HDX), combined with electrospray ionization (ESI) mass spectrometry (MS). Individual amino acids involved in secondary structural elements were identified by collision-induced dissociation-tandem mass spectrometry (MS/MS). It was observed that dynorphin A (1-13) largely exists in an unfolded conformation and a folded structure in increasing concentrations of TFE. In 50% TFE, it forms an alpha-helix that encompasses residues 1-9 and remains flexible from residues 10 to 13.
Collapse
Affiliation(s)
- Xianmei Cai
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA
| | | |
Collapse
|
31
|
van Mourik T, Dingley AJ. Characterization of the monovalent ion position and hydrogen-bond network in guanine quartets by DFT calculations of NMR parameters. Chemistry 2006; 11:6064-79. [PMID: 16052652 DOI: 10.1002/chem.200500198] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Conformational stability of G-quartets found in telomeric DNA quadruplex structures requires the coordination of monovalent ions. Here, an extensive Hartree-Fock and density functional theory analysis of the energetically favored position of Li+, Na+, and K+ ions is presented. The calculations show that at quartet-quartet distances observed in DNA quadruplex structures (3.3 A), the Li+ and Na+ ions favor positions of 0.55 and 0.95 A outside the plane of the G-quartet, respectively. The larger K+ ion prefers a central position between successive G-quartets. The energy barrier separating the minima in the quartet-ion-quartet model are much smaller for the Li+ and Na+ ions compared with the K+ ion; this suggests that K+ ions will not move as freely through the central channel of the DNA quadruplex. Spin-spin coupling constants and isotropic chemical shifts in G-quartets extracted from crystal structures of K+- and Na+-coordinated DNA quadruplexes were calculated with B3LYP/6-311G(d). The results show that the sizes of the trans-hydrogen-bond couplings are influenced primarily by the hydrogen bond geometry and only slightly by the presence of the ion. The calculations show that the R(N2N7) distance of the N2-H2...N7 hydrogen bond is characterized by strong correlations to both the chemical shifts of the donor group atoms and the (h2)J(N2N7) couplings. In contrast, weaker correlations between the (h3)J(N1C6') couplings and single geometric factors related to the N1-H1...O6=C6 hydrogen bond are observed. As such, deriving geometric information on the hydrogen bond through the use of trans-hydrogen-bond couplings and chemical shifts is more complex for the N1-H1...O6=C6 hydrogen bond than for the N2-H2...N7 moiety. The computed trans-hydrogen-bond couplings are shown to correlate with the experimentally determined couplings. However, the experimental values do not show such strong geometric dependencies.
Collapse
Affiliation(s)
- Tanja van Mourik
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| | | |
Collapse
|
32
|
Parker LL, Houk AR, Jensen JH. Cooperative Hydrogen Bonding Effects Are Key Determinants of Backbone Amide Proton Chemical Shifts in Proteins. J Am Chem Soc 2006; 128:9863-72. [PMID: 16866544 DOI: 10.1021/ja0617901] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A computational methodology for backbone amide proton chemical shift (delta(H)) predictions based on ab initio quantum mechanical treatment of part of the protein is presented. The method is used to predict and interpret 13 delta(H) values in protein G and ubiquitin. The predicted amide-amide delta(H) values are within 0.6 ppm of experiment, with a root-mean-square deviation (RMSD) of 0.3 ppm. We show that while the hydrogen bond geometry is the most important delta(H)-determinant, longer-range cooperative effects of extended hydrogen networks make significant contributions to delta(H). We present a simple model that accurately relates the protein structure to delta(H).
Collapse
Affiliation(s)
- Laura L Parker
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
33
|
Salinas RK, Diercks T, Kaptein R, Boelens R. Cooperative α-helix unfolding in a protein-DNA complex from hydrogen-deuterium exchange. Protein Sci 2006; 15:1752-9. [PMID: 16751603 PMCID: PMC2265102 DOI: 10.1110/ps.051938006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We present experimental evidence for a cooperative unfolding transition of an alpha-helix in the lac repressor headpiece bound to a symmetric variant of the lac operator, as inferred from hydrogen-deuterium (H-D) exchange experiments monitored by NMR spectroscopy. In the EX1 limit, observed exchange rates become pH-independent and exclusively sensitive to local structure fluctuations that expose the amide proton HN to exchange. Close to this regime, we measured decay rates of individual backbone HN signals in D2O, and of their mutual HN-HN NOE by time-resolved two-dimensional (2D) NMR experiments. The data revealed correlated exchange at the center of the lac headpiece recognition helix, Val20-Val23, and suggested that the correlation breaks down at Val24, at the C terminus of the helix. A lower degree of correlation was observed for the exchange of Val9 and Ala10 at the center of helix 1, while no correlation was observed for Val38 and Glu39 at the center of helix 3. We conclude that HN exchange in the recognition helix and, to some extent, in helix 1 is a cooperative event involving the unfolding of these helices, whereas the HN exchange in helix 3 is dominated by random local structure fluctuations.
Collapse
Affiliation(s)
- Roberto K Salinas
- Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | | | | | | |
Collapse
|
34
|
Dingley AJ, Peterson RD, Grzesiek S, Feigon J. Characterization of the Cation and Temperature Dependence of DNA Quadruplex Hydrogen Bond Properties Using High-Resolution NMR. J Am Chem Soc 2005; 127:14466-72. [PMID: 16218642 DOI: 10.1021/ja0540369] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Variations in the hydrogen bond network of the Oxy-1.5 DNA guanine quadruplex have been monitored by trans-H-bond scalar couplings, (h2)J(N2N7), for Na(+)-, K(+)-, and NH(4)(+)-bound forms over a temperature range from 5 to 55 degrees C. The variations in (h2)J(N2N7) couplings exhibit an overall trend of Na(+) > K(+) > NH(4)(+) and correlate with the different cation positions and N2-H2...N7 H-bond lengths in the respective structures. A global weakening of the (h2)J(N2N7) couplings with increasing temperature for the three DNA quadruplex species is accompanied by a global increase of the acceptor (15)N7 chemical shifts. Above 35 degrees C, spectral heterogeneity indicates thermal denaturation for the Na(+)-bound form, whereas spectral homogeneity persists up to 55 degrees C for the K(+)- and NH(4)(+)-coordinated forms. The average relative change of the (h2)J(N2N7) couplings amounts to approximately 0.8 x 10(-3)/K and is thus considerably smaller than respective values reported for nucleic acid duplexes. The significantly higher thermal stability of H-bond geometries in the DNA quadruplexes can be rationalized by their cation coordination of the G-quartets and the extensive H-bond network between the four strands. A detailed analysis of individual (h2)J(N2N7) couplings reveals that the 5' strand end, comprising base pairs G1-G9* and G4*-G1, is the most thermolabile region of the DNA quadruplex in all three cation-bound forms.
Collapse
Affiliation(s)
- Andrew J Dingley
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, U.K.
| | | | | | | |
Collapse
|
35
|
Wieczorek R, Dannenberg JJ. Enthalpies of Hydrogen-Bonds in α-Helical Peptides. An ONIOM DFT/AM1 Study. J Am Chem Soc 2005; 127:14534-5. [PMID: 16231881 DOI: 10.1021/ja053839t] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the enthalpy differences between alpha-helical and extended beta-strand conformations of acetyl(Ala)nNH2, for n = 8, 10, 12-17, calculated using molecular (MO) orbital theory from complete vibrational analyses of the optimized species. The calculations used the ONIOM method with B3LYP/D95(d.p) as the high and AM1 as the low levels. The incremental change in enthalpy upon addition of one Ala to a growing beta-strand defined using the hypothetical polycondensation reaction, n Ala + CH3COOH + NH3 --> acetyl(Ala)nNH2 + n H2O, reaches its asymptotic limit of -1.4 kcal/mol at n = 10, while that for the alpha-helix continues to increase in magnitude at n = 17. The asymptotic limit of the enthalpic preference of the alpha-helix over beta-strand is estimated to be about 3 kcal/mol, while that for n = 17 is 11.99 kcal/mol or about 0.8 kcal/mol/H-bond, which is similar to measured values for polyalanines of this size in aqueous solution.
Collapse
Affiliation(s)
- Robert Wieczorek
- Department of Chemistry, City University of New York-Hunter College, New York, New York 10021, USA
| | | |
Collapse
|
36
|
Koch O, Bocola M, Klebe G. Cooperative effects in hydrogen-bonding of protein secondary structure elements: A systematic analysis of crystal data using Secbase. Proteins 2005; 61:310-7. [PMID: 16121398 DOI: 10.1002/prot.20613] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A systematic analysis of the hydrogen-bonding geometry in helices and beta sheets has been performed. The distances and angles between the backbone carbonyl O and amide N atoms were correlated considering more than 1500 protein chains in crystal structures determined to a resolution better than 1.5 A. They reveal statistically significant trends in the H-bond geometry across the different secondary structural elements. The analysis has been performed using Secbase, a modular extension of Relibase (Receptor Ligand Database) which integrates information about secondary structural elements assigned to individual protein structures with the various search facilities implemented into Relibase. A comparison of the mean hydrogen-bond distances in alpha helices and 3(10) helices of increasing length shows opposing trends. Whereas in alpha helices the mean H-bond distance shrinks with increasing helix length and turn number, the corresponding mean dimension in 3(10) helices expands in a comparable series. Comparing similarly the hydrogen-bond lengths in beta sheets there is no difference to be found between the mean H-bond length in antiparallel and parallel beta sheets along the strand direction. In contrast, an interesting systematic trend appears to be given for the hydrogen bonds perpendicular to the strands bridging across an extended sheet. With increasing number of accumulated strands, which results in a growing number of back-to-back piling hydrogen bonds across the strands, a slight decrease of the mean H-bond distance is apparent in parallel beta sheets whereas such trends are obviously not given in antiparallel beta sheets. This observation suggests that cooperative effects mutually polarizing spatially well-aligned hydrogen bonds are present either in alpha helices and parallel beta sheets whereas such influences seem to be lacking in 3(10) helices and antiparallel beta sheets.
Collapse
Affiliation(s)
- O Koch
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, Marbacher Weg 6, D-35032 Marburg, Germany
| | | | | |
Collapse
|
37
|
Salvador P, Kobko N, Wieczorek R, Dannenberg JJ. Calculation of trans-hydrogen-bond 13C-15N three-bond and other scalar J-couplings in cooperative peptide models. A density functional theory study. J Am Chem Soc 2004; 126:14190-7. [PMID: 15506785 DOI: 10.1021/ja0492788] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report B3LYP DFT calculations on peptide models that consider the effects of cooperative interactions with proximate H-bonds and local geometry at the H-bonding site upon trans-H-bond (13)C-(15)N three-bond scalar J-couplings. The calculations predict that cooperative interactions with other H-bonds within a H-bonding chain can significantly increase the magnitude of these couplings. Such increases are due to a combination of the presence of the neighboring H-bonds and the slight increase in C=O distances expected for peptide H-bonds near the centers of H-bonding chains. The energies of H-bonds inferred from H-bonding distances, alone, could be significantly in error if the effects of neighboring H-bonds are ignored.
Collapse
Affiliation(s)
- Pedro Salvador
- Department of Chemistry, City University of New York - Hunter College and the Graduate School, 695 Park Avenue, New York, New York 10021, USA
| | | | | | | |
Collapse
|
38
|
Wieczorek R, Dannenberg JJ. Alpha-helical peptides are not protonated at the N-terminus in the gas phase. J Am Chem Soc 2004; 126:12278-9. [PMID: 15453756 DOI: 10.1021/ja048033s] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DFT/AM1 ONIOM calculations using B3LY/D95** indicate that protonations of alpha-helical alaN (N = 14, 17) occur preferentially at the COOH and C=O groups near the COOH terminus of the peptides. Protonations at the N-termini lead to local helical unraveling. The preference for protonation at or near the COOH terminus increases with N. Hydration should relatively favor the N-protonated structures, but at the expense of further unraveling. Since alpha-helices in proteins often form "bundles" that are not well-hydrated, the C=O groups at the ends of these helices might be readily protonated.
Collapse
Affiliation(s)
- Robert Wieczorek
- Department of Chemistry, City University of New York-Hunter College and the Graduate School, 695 Park Avenue, New York, New York 10021, USA
| | | |
Collapse
|
39
|
Wieczorek R, Dannenberg JJ. Comparison of Fully Optimized α- and 310-Helices with Extended β-Strands. An ONIOM Density Functional Theory Study. J Am Chem Soc 2004; 126:14198-205. [PMID: 15506786 DOI: 10.1021/ja048831i] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We compare the structures and energies of beta-strands, alpha-helices, and 3(10)-helices for capped polyalanines, acetyl(ala)(N)()NH(2), for values of N from 2 to 18, using completely optimized mixed DFT/AM1 calculations. Non-pairwise additive cooperativity is manifest from the variation of the relative energies, helical strain, dipole moments, and H-bond lengths of both types of helices, but especially for the alpha-helices. While the gas-phase 3(10)-helices are more stable for small polyalanines, largely due to the additional H-bond, the alpha-helices become relatively more stable as the polyalanines increase in size.
Collapse
Affiliation(s)
- Robert Wieczorek
- Department of Chemistry, City University of New York-Hunter College and the Graduate School, 695 Park Avenue, New York, New York 10021, USA
| | | |
Collapse
|
40
|
Viswanathan R, Asensio A, Dannenberg JJ. Cooperative Hydrogen-Bonding in Models of Antiparallel β-Sheets. J Phys Chem A 2004. [DOI: 10.1021/jp047404o] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Raji Viswanathan
- Department of Chemistry, City University of New York - Hunter College and The Graduate School, 695 Park Avenue, New York, New York 10021
| | - Amparo Asensio
- Department of Chemistry, City University of New York - Hunter College and The Graduate School, 695 Park Avenue, New York, New York 10021
| | - J. J. Dannenberg
- Department of Chemistry, City University of New York - Hunter College and The Graduate School, 695 Park Avenue, New York, New York 10021
| |
Collapse
|
41
|
Salvador P, Dannenberg JJ. Dependence upon Basis Sets of trans Hydrogen-Bond 13C−15N 3-Bond and Other Scalar J-Couplings in Amide Dimers Used as Peptide Models. A Density Functional Theory Study. J Phys Chem B 2004. [DOI: 10.1021/jp0480955] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pedro Salvador
- Department of Chemistry and Biochemistry, City University of New York - Hunter College and the Graduate School, 695 Park Avenue, New York, New York 10021
| | - J. J. Dannenberg
- Department of Chemistry and Biochemistry, City University of New York - Hunter College and the Graduate School, 695 Park Avenue, New York, New York 10021
| |
Collapse
|
42
|
Freedberg DI, Venable RM, Rossi A, Bull TE, Pastor RW. Discriminating the Helical Forms of Peptides by NMR and Molecular Dynamics Simulation. J Am Chem Soc 2004; 126:10478-84. [PMID: 15315464 DOI: 10.1021/ja0484146] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The HNCO NMR pulse sequence was applied to three selectively labeled (15)N and (13)C isotopic homologues of the peptide Ac-WAAAH(AAARA)(3)A-NH(2) to probe directly for hydrogen bonds between residues 8 and 11 (characteristic of a 3(10)-helix), 8 and 12 (alpha-helix), and 8 and 13 (pi-helix). The experiments demonstrate conclusively, and in agreement with circular dichroism studies, that the center of the peptide is alpha-helical; there is no discernible 3(10)- or pi-helix at these specific positions. Molecular dynamics simulations of the preceding peptide and Ac-(AAAAK)(3)A-NH(2) in water using the potential energy parameter set CHARMM22/CMAP correctly yield an alpha-helix, in contrast to simulations with the set CHARMM22, which result in a pi-helix.
Collapse
Affiliation(s)
- Darón I Freedberg
- Contribution from the Laboratory of Biophysics, Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike, Rockville, MD 20852, USA
| | | | | | | | | |
Collapse
|
43
|
Shenkarev ZO, Balashova TA, Yakimenko ZA, Ovchinnikova TV, Arseniev AS. Peptaibol zervamicin IIb structure and dynamics refinement from transhydrogen bond J couplings. Biophys J 2004; 86:3687-99. [PMID: 15189865 PMCID: PMC1304270 DOI: 10.1529/biophysj.103.036798] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2003] [Accepted: 03/05/2004] [Indexed: 11/18/2022] Open
Abstract
Zervamicin IIB (Zrv-IIB) is a channel-forming peptaibol antibiotic of fungal origin. The measured transhydrogen bond (3h)J(NC') couplings in methanol solution heaving average value of -0.41 Hz indicate that the stability of the Zrv-IIB helix in this milieu is comparable to the stability of helices in globular proteins. The N-terminus of the peptide forms an alpha-helix, whereas 3(10)-helical hydrogen bonds stabilize the C-terminus. However, two weak transhydrogen bond peaks are observed in a long-range HNCO spectrum for HN Aib(12). Energy calculations using the Empirical Conformation Energy Program for Peptides (ECEPP)/2 force field and the implicit solvent model show that the middle of the peptide helix accommodates a bifurcated hydrogen bond that is simultaneously formed between HN Aib(12) and CO Leu(8) and CO Aib(9). Several lowered (3h)J(NC') on a polar face of the helix correlate with the conformational exchange process observed earlier and imply dynamic distortions of a hydrogen bond pattern with the predominant population of a properly folded helical structure. The refined structure of Zrv-IIB on the basis of the observed hydrogen bond pattern has a small ( approximately 20 degrees ) angle of helix bending that is virtually identical to the angle of bending in dodecylphosphocholine (DPC) micelles, indicating the stability of a hinge region in different environments. NMR parameters ((1)HN chemical shifts and transpeptide bond (1)J(NC') couplings) sensitive to hydrogen bonding along with the solvent accessible surface area of carbonyl oxygens indicate a large polar patch on the convex side of the helix formed by three exposed backbone carbonyls of Aib(7), Aib(9), and Hyp(10) and polar side chains of Hyp(10), Gln(11), and Hyp(13). The unique structural features, high helix stability and the enhanced polar patch, set apart Zrv-IIB from other peptaibols (for example, alamethicin) and possibly underlie its biological and physiological properties.
Collapse
Affiliation(s)
- Z O Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | |
Collapse
|
44
|
Alexandrescu AT, Kammerer RA. Structure and disorder in the ribonuclease S-peptide probed by NMR residual dipolar couplings. Protein Sci 2004; 12:2132-40. [PMID: 14500871 PMCID: PMC2366913 DOI: 10.1110/ps.03164403] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
NMR residual dipolar couplings for the S-peptide of ribonuclease A aligned in C8E5/n-octanol liquid crystals are consistent with the presence of a native-like alpha-helix structure undergoing dynamic fraying. Residues 3-13, which correspond to the first alpha-helix of ribonuclease A, show couplings that become more negative at low temperature and in the presence of salt, conditions which stabilize alpha-helical structure in the S-peptide. By contrast, dipolar couplings from the N and C termini of the peptide are close to zero and remain nearly invariant with changes in solution conditions. Torsion angle dynamics simulations using a gradient of dihedral restraint bounds that increase from the center to the ends of the peptide reproduce the experimentally observed sequence dependence of dipolar couplings. The magnitudes of residual dipolar couplings depend on the anisotropy of the solute. Native proteins often achieve nearly spherical shapes due to the hydrophobic effect. Embryonic partially folded structures such as the S-peptide alpha-helix have an intrinsically greater potential for anisotropy that can result in sizable residual dipolar couplings in the absence of long-range structure.
Collapse
Affiliation(s)
- Andrei T Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA.
| | | |
Collapse
|
45
|
Kobko N, Dannenberg JJ. Cooperativity in Amide Hydrogen Bonding Chains. Relation between Energy, Position, and H-Bond Chain Length in Peptide and Protein Folding Models. J Phys Chem A 2003. [DOI: 10.1021/jp0365209] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Nadya Kobko
- Department of Chemistry, Hunter College and the Graduate School, City University of New York, 695 Park Avenue, New York, New York 10021
| | - J. J. Dannenberg
- Department of Chemistry, Hunter College and the Graduate School, City University of New York, 695 Park Avenue, New York, New York 10021
| |
Collapse
|
46
|
Moisan S, Dannenberg JJ. Molecular Orbital Calculations on the Protonation of Hydrogen-Bonded Formamide Chains. Implications for Peptides. J Phys Chem B 2003. [DOI: 10.1021/jp035791g] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sandy Moisan
- Department of Chemistry, City University of New YorkHunter College and The Graduate School, 695 Park Avenue, New York, New York 10021
| | - J. J. Dannenberg
- Department of Chemistry, City University of New YorkHunter College and The Graduate School, 695 Park Avenue, New York, New York 10021
| |
Collapse
|
47
|
Wieczorek R, Dannenberg JJ. H-bonding cooperativity and energetics of alpha-helix formation of five 17-amino acid peptides. J Am Chem Soc 2003; 125:8124-9. [PMID: 12837081 DOI: 10.1021/ja035302q] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Five peptides, each containing 17 amino acids, have been completely geometrically optimized in their alpha-helical and beta-strand forms using a mixed DFT/AM1 procedure. B3LYP/D95** was used for the entire helical structures, while AM1 was initially used to optimize the side chains, followed by reoptimization at the DFT level. The energetic and structural results show (1) that the helices are favored over the strands by 29.5 to 37.4 kcal/mol; (2) that alkyl groups on the amino acid side chains favor helix formation even in the absence of solvent; (3) that C-H...O hydrogen bonds contribute to the relative stability of the helices that contain amino acids (val, leu and ile) with beta-hydrogens in their alkyl side chains; (4) that formation of these helices entails approximately 6.6 kcal/mol of strain within the backbone per hydrogen bond; and (5) that H-bond cooperativity is essential for the alpha-helix to become more stable than a corresponding beta-strand. This last observation strongly suggests that pairwise potentials are inadequate for modeling of peptides and proteins.
Collapse
Affiliation(s)
- Robert Wieczorek
- Department of Chemistry, City University of New York, Hunter College and the Graduate School, 695 Park Avenue, New York, NY 10021, USA
| | | |
Collapse
|
48
|
|
49
|
Spyroulias GA, Papazacharias S, Pairas G, Cordopatis P. Monitoring the structural consequences of Phe12-->D-Phe and Leu15-->Aib substitution in human/rat corticotropin releasing hormone. Implications for design of CRH antagonists. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:6009-19. [PMID: 12473096 DOI: 10.1046/j.1432-1033.2002.03278.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A new human/rat CRH analogue has been synthesized using the Fmoc/tBu solid-phase synthetic protocol. The sequence of the new peptide differs from the original in two positions, 12 and 15, at which the native amino acids l-phenylalanine 12 and l-leucine 15 have been replaced by the nonprotein amino acids d-phenylalanine and alpha-aminoisobutyric acid (Aib), respectively. The high resolution three-dimensional solution structure of [d-Phe12, Aib15]CRH has been determined by 688 distance constraints (656 meaningful NOE and 32 H-bonds distance limits) and 21 angle constraints. A family of 40 energy-minimized conformers was obtained with average rmsd of 0.39 +/- 0.16 A and 0.99 +/- 0.13 A for backbone and heavy atoms, respectively, and distance penalty functions of 0.42 +/- 0.03 A2. The NMR data acquired in a solvent system of water/trifluoroethanol (34%/66%, v/v) revealed that this 41-polypeptide adopts an almost linear helical structure in solution with helical content which reaches an 84% of the residues. Structural analysis confirmed the existence of two helical peptide fragments. The first was comprised of residues Ile6-Arg16 and the second of residues Glu20-Ile40, forming an angle of 34.2 degrees. The structural differences with respect to the native peptide have been identified in the region d-Phe12-Glu20 where double substitution at positions 12 and 15 seems to perturb the elements of the native 35-residue helix. These structural rearrangements promote non-native intramolecular interactions in the region of the molecule between either the hydrophobic side-chains of d-Phe12, Aib15 and Leu18, or the charged groups of the residue pairs Arg16-Glu20 and His13-Glu17 being responsible for changes in hormonal functionality. This CRH analogue currently exhibits lack of any activity.
Collapse
|
50
|
Juranić N, Moncrieffe MC, Likić VA, Prendergast FG, Macura S. Structural dependencies of h3JNC' scalar coupling in protein H-bond chains. J Am Chem Soc 2002; 124:14221-6. [PMID: 12440921 DOI: 10.1021/ja0273288] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The H-bond ((h3)J(NC')) and peptide bond ((1)J(NC')) scalar couplings establish connectivity of the electronic structure in the H-bond chains of proteins. The correlated changes of (h3)J(NC') and (1)J(NC') couplings extend over several peptide groups in the chains. Consequently, the electronic structure of the H-bond chains can affect (h3)J(NC') in a manner that is independent of the local H-bond geometry. By taking this into account, and by using a more complete set of H-bond geometry parameters, we have predicted (h3)J(NC') couplings in the H-bond chains with deviations commensurate to the standard deviations of the experimentally determined values. We have created a comprehensive database of (h3)J(NC') and (1)J(NC') couplings by measuring the coupling constants in ubiquitin (alphabeta-fold) intestinal fatty acid binding protein (beta-barrel) and carp parvalbumin (alpha-helical).
Collapse
Affiliation(s)
- Nenad Juranić
- Department of Biochemistry and Molecular Biology, Mayo Graduate School, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|