1
|
Thermodynamics and solvent linkage of macromolecule-ligand interactions. Methods 2014; 76:51-60. [PMID: 25462561 DOI: 10.1016/j.ymeth.2014.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 02/06/2023] Open
Abstract
Binding involves two steps, desolvation and association. While water is ubiquitous and occurs at high concentration, it is typically ignored. In vitro experiments typically use infinite dilution conditions, while in vivo, the concentration of water is decreased due to the presence of high concentrations of molecules in the cellular milieu. This review discusses isothermal titration calorimetry approaches that address the role of water in binding. For example, use of D2O allows the contribution of solvent reorganization to the enthalpy component to be assessed. Further, the addition of osmolytes will decrease the water activity of a solution and allow effects on Ka to be determined. In most cases, binding becomes tighter in the presence of osmolytes as the desolvation penalty associated with binding is minimized. In other cases, the osmolytes prefer to interact with the ligand or protein, and if their removal is more difficult than shedding water, then binding can be weakened. These complicating layers can be discerned by different slopes in ln(Ka) vs osmolality plots and by differential scanning calorimetry in the presence of the osmolyte.
Collapse
|
2
|
Kuo TC, Lee PC, Tsai CW, Chen WY. Salt bridge exchange binding mechanism between streptavidin and its DNA aptamer--thermodynamics and spectroscopic evidences. J Mol Recognit 2013; 26:149-59. [PMID: 23345105 DOI: 10.1002/jmr.2260] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/05/2012] [Accepted: 12/04/2012] [Indexed: 12/19/2022]
Abstract
Protein-nucleic acids binding driven by electrostatic interactions typically are characterized by the release of counter ions, and the salt-inhibited binding association constant (K(a)) and the magnitude of exothermic binding enthalpy (ΔH). Here, we report a non-classical thermodynamics of streptavidin (SA)-aptamer binding in NaCl (140-350 mM) solutions near room temperatures (23-27 °C). By using isothermal titration calorimetry (ITC) and circular dichroism (CD)/fluorescence spectroscopy, we found that the binding was enthalpy driven with a large entropy cost (ΔH -20.58 kcal mol(-1), TΔS -10.99 kcal mol(-1), and K(a) 1.08 × 10(7) M(-1) at 140 mM NaCl 25 °C). With the raise of salt concentrations, the ΔH became more exothermic, yet the K(a) was almost unchanged (ΔH -26.29 kcal mol(-1) and K(a) 1.50 × 10(7) M(-1) at 350 mM NaCl 25 °C). The data suggest that no counter Na(+) was released in the binding. Spectroscopy data suggest that the binding, with a stoichiometry of 2, was accompanied with substantial conformational changes on SA, and the changes were insensitive to the variation of salt concentrations. To account for the non-classical results, we propose a salt bridge exchange model. The intramolecular binding-site salt bridge(s) of the free SA and the charged phosphate group of aptamers re-organize to form the binding complex by forming a new intermolecular salt bridge(s). The salt bridge exchange binding process requires minimum amount of counter ions releasing but dehydration of the contacting surface of SA and the aptamer. The energy required for dehydration is reduced in the case of binding solution with higher salt concentration and account for the higher binding exothermic mainly.
Collapse
Affiliation(s)
- Tai-Chih Kuo
- Department of Biochemistry, Taipei Medical University, Taipei, 11031, Taiwan
| | | | | | | |
Collapse
|
3
|
Yu H, Rick SW. Free Energy, Entropy, and Enthalpy of a Water Molecule in Various Protein Environments. J Phys Chem B 2010; 114:11552-60. [DOI: 10.1021/jp104209w] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hongtao Yu
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148
| | - Steven W. Rick
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148
| |
Collapse
|
4
|
Yu H, Rick SW. Free Energies and Entropies of Water Molecules at the Inhibitor−Protein Interface of DNA Gyrase. J Am Chem Soc 2009; 131:6608-13. [DOI: 10.1021/ja809696s] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongtao Yu
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148
| | - Steven W. Rick
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148
| |
Collapse
|
5
|
Garcia-Viloca M, Poulsen TD, Truhlar DG, Gao J. Sensitivity of molecular dynamics simulations to the choice of the X-ray structure used to model an enzymatic reaction. Protein Sci 2005; 13:2341-54. [PMID: 15322278 PMCID: PMC2280009 DOI: 10.1110/ps.03504104] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A subject of great practical importance that has not received much attention is the question of the sensitivity of molecular dynamics simulations to the initial X-ray structure used to set up the calculation. We have found two cases in which seemingly similar structures lead to quite different results, and in this article we present a detailed analysis of these cases. The first case is acyl-CoA dehydrogenase, and the chief difference of the two structures is attributed to a slight shift in a backbone carbonyl that causes a key residue (the proton-abstracting base) to be in a bad conformation for reaction. The second case is xylose isomerase, and the chief difference of the two structures appears to be the ligand sphere of a Mg2+ metal cofactor that plays an active role in catalysis.
Collapse
Affiliation(s)
- Mireia Garcia-Viloca
- Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
6
|
Bergqvist S, Williams MA, O'Brien R, Ladbury JE. Heat Capacity Effects of Water Molecules and Ions at a Protein–DNA Interface. J Mol Biol 2004; 336:829-42. [PMID: 15095863 DOI: 10.1016/j.jmb.2003.12.061] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Revised: 12/10/2003] [Accepted: 12/19/2003] [Indexed: 10/26/2022]
Abstract
The interaction of the TATA-box binding protein from the thermophilic and halophilic archaea Pyrococcus woesei (PwTBP) with an oligonucleotide containing a specific binding site is stable over a very broad range of temperatures and ionic strengths, and is consequently an outstanding system for characterising general features of protein-DNA thermodynamics. In common with other specific protein-DNA recognition events, the PwTBP-TATA box interaction is accompanied by a large negative change in heat capacity (deltaCp) arising from the total change in solvation that occurs upon binding, which in this case involves a net uptake of cations. Contrary to previous hypotheses, we find no overall effect of ionic strength on this heat capacity change. We investigate the local contributions of site-specific ion and water binding to the overall change in heat capacity by means of a series of site-directed mutations of PwTBP. We find that although changes in the local ion binding capacity affect the enthalpic and entropic contributions to the free energy of the interaction, they do not affect the change in heat capacity. In contrast, we find remarkably large heat capacity effects arising from two particular symmetry-related mutations. The great magnitude of these effects is not explicable in terms of current semi-empirical models of heat capacity change. Previously reported X-ray crystal structures show that these mutated residues are at the centre of an evolutionarily conserved network of water-mediated hydrogen bonds between the protein and the DNA backbone. Consequently, we conclude that, in addition to water molecules buried in the protein-DNA interface that have been previously shown to influence heat capacity, bridging water molecules in a highly polar surface environment can also contribute substantially to negative heat capacity change on formation of a protein-DNA complex.
Collapse
Affiliation(s)
- Simon Bergqvist
- Department of Biochemistry and Molecular Biology, Institute for Structural Molecular Biology, ISMB, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
7
|
He M, Burghardt TP, Vockley J. A novel approach to the characterization of substrate specificity in short/branched chain Acyl-CoA dehydrogenase. J Biol Chem 2003; 278:37974-86. [PMID: 12855692 DOI: 10.1074/jbc.m306882200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rat and human short/branched chain acyl-CoA dehydrogenases exhibit key differences in substrate specificity despite an overall amino acid identity of 85% between them. Rat short/branched chain acyl-CoA dehydrogenases (SBCAD) are more active toward substrates with longer carbon side chains than human SBCAD, whereas the human enzyme utilizes substrates with longer primary carbon chains. The mechanism underlying this difference in substrate specificity was investigated with a novel surface plasmon resonance assay combined with absorbance and circular dichroism spectroscopy, and kinetics analysis of wild type SBCADs and mutants with altered amino acid residues in the substrate binding pocket. Results show that a relatively few amino acid residues are critical for determining the difference in substrate specificity seen between the human and rat enzymes and that alteration of these residues influences different portions of the enzyme mechanism. Molecular modeling of the SBCAD structure suggests that position 104 at the bottom of the substrate binding pocket is important in determining the length of the primary carbon chain that can be accommodated. Conformational changes caused by alteration of residues at positions 105 and 177 directly affect the rate of electron transfer in the dehydrogenation reactions, and are likely transmitted from the bottom of the substrate binding pocket to beta-sheet 3. Differences between the rat and human enzyme at positions 383, 222, and 220 alter substrate specificity without affecting substrate binding. Modeling predicts that these residues combine to determine the distance between the flavin ring of FAD and the catalytic base, without changing the opening of the substrate binding pocket.
Collapse
Affiliation(s)
- Miao He
- Department of Medical Genetics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
8
|
Poulsen TD, Garcia-Viloca M, Gao J, Truhlar DG. Free Energy Surface, Reaction Paths, and Kinetic Isotope Effect of Short-Chain Acyl-CoA Dehydrogenase. J Phys Chem B 2003. [DOI: 10.1021/jp030107j] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tina D. Poulsen
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455
| | - Mireia Garcia-Viloca
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455
| | - Jiali Gao
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455
| | - Donald G. Truhlar
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
9
|
Hanley PJ, Gopalan KV, Lareau RA, Srivastava DK, von Martin Meltzer, Daut J. Beta-oxidation of 5-hydroxydecanoate, a putative blocker of mitochondrial ATP-sensitive potassium channels. J Physiol 2003; 547:387-93. [PMID: 12562916 PMCID: PMC2342646 DOI: 10.1113/jphysiol.2002.037044] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
5-Hydroxydecanoate (5-HD) inhibits ischaemic and pharmacological preconditioning of the heart. Since 5-HD is thought to inhibit specifically the putative mitochondrial ATP-sensitive K+ (KATP) channel, this channel has been inferred to be a mediator of preconditioning. However, it has recently been shown that 5-HD is a substrate for acyl-CoA synthetase, the mitochondrial enzyme which 'activates' fatty acids. Here, we tested whether activated 5-HD, 5-hydroxydecanoyl-CoA (5-HD-CoA), is a substrate for medium-chain acyl-CoA dehydrogenase (MCAD), the committed step of the mitochondrial beta-oxidation pathway. Using a molecular model, we predicted that the hydroxyl group on the acyl tail of 5-HD-CoA would not sterically hinder the active site of MCAD. Indeed, we found that 5-HD-CoA was a substrate for purified human liver MCAD with a Km of 12.8 +/- 0.6 microM and a kcat of 14.1 s-1. For comparison, with decanoyl-CoA (Km approximately 3 microM) as substrate, kcat was 6.4 s-1. 5-HD-CoA was also a substrate for purified pig kidney MCAD. We next tested whether the reaction product, 5-hydroxydecenoyl-CoA (5-HD-enoyl-CoA), was a substrate for enoyl-CoA hydratase, the second enzyme of the beta-oxidation pathway. Similar to decenoyl-CoA, purified 5-HD-enoyl-CoA was also a substrate for the hydratase reaction. In conclusion, we have shown that 5-HD is metabolised at least as far as the third enzyme of the beta-oxidation pathway. Our results open the possibility that beta-oxidation of 5-HD or metabolic intermediates of 5-HD may be responsible for the inhibitory effects of 5-HD on preconditioning of the heart.
Collapse
Affiliation(s)
| | - K V Gopalan
- Department of Biochemistry and Molecular Biology, North Dakota State UniversityFargo, ND 58105, USA
| | - Rachel A Lareau
- Department of Biochemistry and Molecular Biology, North Dakota State UniversityFargo, ND 58105, USA
| | - D K Srivastava
- Department of Biochemistry and Molecular Biology, North Dakota State UniversityFargo, ND 58105, USA
| | - von Martin Meltzer
- Fachbereich Chemie, Universität MarburgHans-Meerwein-Strasse, 35032 Marburg, Germany
| | | |
Collapse
|
10
|
Weber PC, Salemme FR. Applications of calorimetric methods to drug discovery and the study of protein interactions. Curr Opin Struct Biol 2003; 13:115-21. [PMID: 12581668 DOI: 10.1016/s0959-440x(03)00003-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent studies report the application of isothermal titration calorimetry and differential scanning calorimetry to the study of protein-ligand interactions, allosteric cooperativity and aspects of protein folding. New methods of data analysis compare alternative methods for determining ligand binding enthalpy and analyze potential sources of error in the experimental measurement of other thermodynamic parameters. Several reports examine issues concerning drug design and the correlation of thermodynamic and X-ray structural data. New instruments allow volumetric effects in biochemical systems to be evaluated calorimetrically and to substantially expand the throughput of differential scanning calorimetry measurements in drug discovery and other high-throughput applications.
Collapse
Affiliation(s)
- Patricia C Weber
- 3-Dimensional Pharmaceuticals Inc, 1020 Stony Hill Road, Yardley, PA 19067, USA
| | | |
Collapse
|