1
|
Jaeger-Honz S, Hackett R, Fotler R, Dietrich DR, Schreiber F. Conformation and binding of 12 Microcystin (MC) congeners to PPP1 using molecular dynamics simulations: A potential approach in support of an improved MC risk assessment. Chem Biol Interact 2025; 407:111372. [PMID: 39788475 DOI: 10.1016/j.cbi.2025.111372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025]
Abstract
Microcystins (MCs) occur frequently during cyanobacterial blooms worldwide, representing a group of currently about 300 known MC congeners, which are structurally highly similar. Human exposure to MCs via contaminated water, food or dietary supplements can lead to severe intoxications with ensuing high morbidity and in some cases mortality. Currently, one MC congener (MC-LR) is almost exclusively considered for risk assessment (RA) by the WHO. Many MC congeners co-occur during bloom events, of which MC-LR is not the most toxic. Indeed, MC congeners differ dramatically in their inherent toxicity, consequently raising question about the reliability of the WHO RA and the derived guidance values. Molecular dynamics (MD) simulation can aid in understanding differences in toxicity, as experimental validation for all known MC congeners is not feasible. Therefore, we present MD simulations of a total of twelve MC congeners, of which eight MC congeners were simulated for the first time. We show that depending on their structure and toxicity class, MCs adapt to different backbone conformations. These backbone conformations are specific to certain MC congeners and can change or shift to other conformations upon binding to PPP1, affecting the stability of the binding. Analysis of the interactions with PPP1 demonstrated that there are frequently occurring patterns for individual MC congeners, and that published PPP interactions could be reproduced. In addition, common but also unique patterns were found for individual MC congeners, suggesting differences in binding behaviour. The MD simulations presented here therefore enhance our understanding of MC congener-specific differences and demonstrated that congener-specific investigations are prerequisite for allowing characterisation of yet untested or even unknown MC congeners, thereby allowing for a novel potential approach in support of an improved RA of microcystins in humans.
Collapse
Affiliation(s)
- Sabrina Jaeger-Honz
- Department of Informatics and Information Science, University of Konstanz, Germany
| | - Raymund Hackett
- Department of Informatics and Information Science, University of Konstanz, Germany
| | - Regina Fotler
- Department of Biology, University of Konstanz, Germany
| | | | - Falk Schreiber
- Department of Informatics and Information Science, University of Konstanz, Germany; Faculty of Information Technology, Monash University, Australia.
| |
Collapse
|
2
|
Teruel N, Borges VM, Najmanovich R. Surfaces: a software to quantify and visualize interactions within and between proteins and ligands. Bioinformatics 2023; 39:btad608. [PMID: 37788107 PMCID: PMC10568369 DOI: 10.1093/bioinformatics/btad608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/23/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023] Open
Abstract
SUMMARY Computational methods for the quantification and visualization of the relative contribution of molecular interactions to the stability of biomolecular structures and complexes are fundamental to understand, modulate and engineer biological processes. Here, we present Surfaces, an easy to use, fast and customizable software for quantification and visualization of molecular interactions based on the calculation of surface areas in contact. Surfaces calculations shows equivalent or better correlations with experimental data as computationally expensive methods based on molecular dynamics. AVAILABILITY AND IMPLEMENTATION All scripts are available at https://github.com/NRGLab/Surfaces. Surface's documentation is available at https://surfaces-tutorial.readthedocs.io/en/latest/index.html.
Collapse
Affiliation(s)
- Natália Teruel
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal H3T 1J4, Canada
| | - Vinicius Magalhães Borges
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Rafael Najmanovich
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal H3T 1J4, Canada
| |
Collapse
|
3
|
Molecular Insights into Substrate Binding of the Outer Membrane Enzyme OmpT. Catalysts 2023. [DOI: 10.3390/catal13020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The enzyme OmpT of the outer membrane of Escherichia coli shows proteolytic activity and cleaves peptides and proteins. Using molecular dynamics simulations in a fully hydrated lipid bilayer on a time scale of hundreds of nanoseconds, we draw a detailed atomic picture of substrate recognition in the OmpT-holo enzyme complex. Hydrogen bonds and salt bridges are essential for maintaining the integrity of the active site and play a central role for OmpT in recognizing its substrate. Electrostatic interactions are critical at all stages from approaching the substrate to docking at the active site. Computational alanine scanning based on the Molecular Mechanics Generalized Born Surface Area (MM-GBSA) approach confirms the importance of multiple residues in the active site that form salt bridges. The substrate fluctuates along the axis of the β-barrel, which is associated with oscillations of the binding cleft formed by the residue pairs D210-H212 and D83-D85. Principal component analysis suggests that substrate and protein movements are correlated. We observe the transient presence of putative catalytic water molecules near the active site, which may be involved in the nucleophilic attack on the cleavable peptide bond of the substrate.
Collapse
|
4
|
Unraveling the meaning of chemical shifts in protein NMR. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1564-1576. [PMID: 28716441 DOI: 10.1016/j.bbapap.2017.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/29/2017] [Accepted: 07/07/2017] [Indexed: 12/14/2022]
Abstract
Chemical shifts are among the most informative parameters in protein NMR. They provide wealth of information about protein secondary and tertiary structure, protein flexibility, and protein-ligand binding. In this report, we review the progress in interpreting and utilizing protein chemical shifts that has occurred over the past 25years, with a particular focus on the large body of work arising from our group and other Canadian NMR laboratories. More specifically, this review focuses on describing, assessing, and providing some historical context for various chemical shift-based methods to: (1) determine protein secondary and super-secondary structure; (2) derive protein torsion angles; (3) assess protein flexibility; (4) predict residue accessible surface area; (5) refine 3D protein structures; (6) determine 3D protein structures and (7) characterize intrinsically disordered proteins. This review also briefly covers some of the methods that we previously developed to predict chemical shifts from 3D protein structures and/or protein sequence data. It is hoped that this review will help to increase awareness of the considerable utility of NMR chemical shifts in structural biology and facilitate more widespread adoption of chemical-shift based methods by the NMR spectroscopists, structural biologists, protein biophysicists, and biochemists worldwide. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
|
5
|
Hafsa NE, Arndt D, Wishart DS. Accessible surface area from NMR chemical shifts. JOURNAL OF BIOMOLECULAR NMR 2015; 62:387-401. [PMID: 26078090 DOI: 10.1007/s10858-015-9957-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/09/2015] [Indexed: 06/04/2023]
Abstract
Accessible surface area (ASA) is the surface area of an atom, amino acid or biomolecule that is exposed to solvent. The calculation of a molecule's ASA requires three-dimensional coordinate data and the use of a "rolling ball" algorithm to both define and calculate the ASA. For polymers such as proteins, the ASA for individual amino acids is closely related to the hydrophobicity of the amino acid as well as its local secondary and tertiary structure. For proteins, ASA is a structural descriptor that can often be as informative as secondary structure. Consequently there has been considerable effort over the past two decades to try to predict ASA from protein sequence data and to use ASA information (derived from chemical modification studies) as a structure constraint. Recently it has become evident that protein chemical shifts are also sensitive to ASA. Given the potential utility of ASA estimates as structural constraints for NMR we decided to explore this relationship further. Using machine learning techniques (specifically a boosted tree regression model) we developed an algorithm called "ShiftASA" that combines chemical-shift and sequence derived features to accurately estimate per-residue fractional ASA values of water-soluble proteins. This method showed a correlation coefficient between predicted and experimental values of 0.79 when evaluated on a set of 65 independent test proteins, which was an 8.2 % improvement over the next best performing (sequence-only) method. On a separate test set of 92 proteins, ShiftASA reported a mean correlation coefficient of 0.82, which was 12.3 % better than the next best performing method. ShiftASA is available as a web server ( http://shiftasa.wishartlab.com ) for submitting input queries for fractional ASA calculation.
Collapse
Affiliation(s)
- Noor E Hafsa
- Department of Computing Science, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
6
|
Bastan R, Eskandari N, Sabzghabaee AM, Manian M. Serine/Threonine phosphatases: classification, roles and pharmacological regulation. Int J Immunopathol Pharmacol 2015; 27:473-84. [PMID: 25572726 DOI: 10.1177/039463201402700402] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Phosphatases are important enzymes in a variety of biochemical pathways in different cells which they catalyze opposing reactions of phosphorylation and dephosphorylation, which may modulate the function of crucial signaling proteins in different cells. This is an important mechanism in the regulation of intracellular signal transduction pathways in many cells. Phosphatases play a key role in regulating signal transduction. It is known that phosphatases are specific for cleavage of either serine-threonine or tyrosine phosphate groups. To date, numerous compounds have been identified. This paper reviews the classification, roles and pharmacological of protein serine/threonine phosphates.
Collapse
Affiliation(s)
- R Bastan
- Department of Human Vaccine, Razi-Karaj Institute, Karaj, Iran
| | - N Eskandari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - A M Sabzghabaee
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - M Manian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Fine-tuned broad binding capability of human lipocalin-type prostaglandin D synthase for various small lipophilic ligands. FEBS Lett 2014; 588:962-9. [DOI: 10.1016/j.febslet.2014.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/30/2014] [Accepted: 02/03/2014] [Indexed: 11/22/2022]
|
8
|
González-Naranjo P, Pérez-Macias N, Campillo NE, Pérez C, Arán VJ, Girón R, Sánchez-Robles E, Martín MI, Gómez-Cañas M, García-Arencibia M, Fernández-Ruiz J, Páez JA. Cannabinoid agonists showing BuChE inhibition as potential therapeutic agents for Alzheimer's disease. Eur J Med Chem 2014; 73:56-72. [DOI: 10.1016/j.ejmech.2013.11.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/08/2013] [Accepted: 11/23/2013] [Indexed: 11/26/2022]
|
9
|
Ghosh S, Bagchi A. Mutation study of DsrM from Allochromatium vinosum using the amino acid sequences. Meta Gene 2013; 1:33-42. [PMID: 25606372 PMCID: PMC4205035 DOI: 10.1016/j.mgene.2013.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/03/2013] [Accepted: 10/09/2013] [Indexed: 11/15/2022] Open
Abstract
Sulfur metabolism is one of the oldest known environmental processes. The operon involved in this process is called the dsr operon. The vital role of the operon is to maintain the environmental sulfur balance. The dsr operon of proteobacteria consists of 15 genes, viz. dsrABEFHCMKLJOPNRS. The proteins encoded by the dsr operon are essential for the transfer of sulfur globules from periplasm to cytosol and oxidation of the stored sulfur. In the present study we tried to analyze the probable molecular details of the DsrM proteins from a diverse set of microbial species using their sequence information. There are certain mutations in the sequences of the DsrM proteins from the different proteobacterial species. The effects of mutations in the sequences of DsrM proteins were predicted from the evolutionary point of view. This is so far the first report of its kind. Our study would therefore enable the researches to predict the hitherto unknown biochemistry of sulfur oxidation using the amino acid sequences of the DsrM proteins.
Collapse
Affiliation(s)
| | - Angshuman Bagchi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia741235, India
| |
Collapse
|
10
|
Structural analyses of the permease like protein SoxT: A member of the sulfur compound metabolizing sox operon. Gene 2013; 521:207-10. [DOI: 10.1016/j.gene.2013.02.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/13/2013] [Accepted: 02/15/2013] [Indexed: 11/30/2022]
|
11
|
Kastritis PL, Bonvin AMJJ. On the binding affinity of macromolecular interactions: daring to ask why proteins interact. J R Soc Interface 2012; 10:20120835. [PMID: 23235262 PMCID: PMC3565702 DOI: 10.1098/rsif.2012.0835] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Interactions between proteins are orchestrated in a precise and time-dependent manner, underlying cellular function. The binding affinity, defined as the strength of these interactions, is translated into physico-chemical terms in the dissociation constant (Kd), the latter being an experimental measure that determines whether an interaction will be formed in solution or not. Predicting binding affinity from structural models has been a matter of active research for more than 40 years because of its fundamental role in drug development. However, all available approaches are incapable of predicting the binding affinity of protein–protein complexes from coordinates alone. Here, we examine both theoretical and experimental limitations that complicate the derivation of structure–affinity relationships. Most work so far has concentrated on binary interactions. Systems of increased complexity are far from being understood. The main physico-chemical measure that relates to binding affinity is the buried surface area, but it does not hold for flexible complexes. For the latter, there must be a significant entropic contribution that will have to be approximated in the future. We foresee that any theoretical modelling of these interactions will have to follow an integrative approach considering the biology, chemistry and physics that underlie protein–protein recognition.
Collapse
Affiliation(s)
- Panagiotis L Kastritis
- Bijvoet Center for Biomolecular Research, Faculty of Science, Chemistry, Utrecht University, , Padualaan 8, Utrecht, The Netherlands
| | | |
Collapse
|
12
|
Abstract
Abstract
VEGFs activate 3 receptor tyrosine kinases, VEGFR-1, VEGFR-2, and VEGFR-3, promoting angiogenic and lymphangiogenic signaling. The extracellular receptor domain (ECD) consists of 7 Ig-homology domains; domains 2 and 3 (D23) represent the ligand-binding domain, whereas the function of D4-7 is unclear. Ligand binding promotes receptor dimerization and instigates transmembrane signaling and receptor kinase activation. In the present study, isothermal titration calorimetry showed that the Gibbs free energy of VEGF-A, VEGF-C, or VEGF-E binding to D23 or the full-length ECD of VEGFR-2 is dominated by favorable entropic contribution with enthalpic penalty. The free energy of VEGF binding to the ECD is 1.0-1.7 kcal/mol less favorable than for binding to D23. A model of the VEGF-E/VEGFR-2 ECD complex derived from small-angle scattering data provided evidence for homotypic interactions in D4-7. We also solved the crystal structures of complexes between VEGF-A or VEGF-E with D23, which revealed comparable binding surfaces and similar interactions between the ligands and the receptor, but showed variation in D23 twist angles. The energetically unfavorable homotypic interactions in D4-7 may be required for re-orientation of receptor monomers, and this mechanism might prevent ligand-independent activation of VEGFR-2 to evade the deleterious consequences for blood and lymph vessel homeostasis arising from inappropriate receptor activation.
Collapse
|
13
|
Thermodynamic and structural analysis of homodimeric proteins: Model of β-lactoglobulin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:383-91. [DOI: 10.1016/j.bbapap.2011.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 11/23/2011] [Accepted: 11/29/2011] [Indexed: 11/19/2022]
|
14
|
Xu Y, Oruganti SV, Gopalan V, Foster MP. Thermodynamics of coupled folding in the interaction of archaeal RNase P proteins RPP21 and RPP29. Biochemistry 2012; 51:926-35. [PMID: 22243443 DOI: 10.1021/bi201674d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We have used isothermal titration calorimetry (ITC) to identify and describe binding-coupled equilibria in the interaction between two protein subunits of archaeal ribonuclease P (RNase P). In all three domains of life, RNase P is a ribonucleoprotein complex that is primarily responsible for catalyzing the Mg²⁺-dependent cleavage of the 5' leader sequence of precursor tRNAs during tRNA maturation. In archaea, RNase P has been shown to be composed of one catalytic RNA and up to five proteins, four of which associate in the absence of RNA as two functional heterodimers, POP5-RPP30 and RPP21-RPP29. Nuclear magnetic resonance studies of the Pyrococcus furiosus RPP21 and RPP29 proteins in their free and complexed states provided evidence of significant protein folding upon binding. ITC experiments were performed over a range of temperatures, ionic strengths, and pH values, in buffers with varying ionization potentials, and with a folding-deficient RPP21 point mutant. These experiments revealed a negative heat capacity change (ΔC(p)), nearly twice that predicted from surface accessibility calculations, a strong salt dependence for the interaction, and proton release at neutral pH, but a small net contribution from these to the excess ΔC(p). We considered potential contributions from protein folding and burial of interfacial water molecules based on structural and spectroscopic data. We conclude that binding-coupled protein folding is likely responsible for a significant portion of the excess ΔC(p). These findings provide novel structural and thermodynamic insights into coupled equilibria that allow specificity in macromolecular assemblies.
Collapse
Affiliation(s)
- Yiren Xu
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | | | | | | |
Collapse
|
15
|
Moal IH, Bates PA. Kinetic rate constant prediction supports the conformational selection mechanism of protein binding. PLoS Comput Biol 2012; 8:e1002351. [PMID: 22253587 PMCID: PMC3257286 DOI: 10.1371/journal.pcbi.1002351] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 11/29/2011] [Indexed: 12/24/2022] Open
Abstract
The prediction of protein-protein kinetic rate constants provides a fundamental test of our understanding of molecular recognition, and will play an important role in the modeling of complex biological systems. In this paper, a feature selection and regression algorithm is applied to mine a large set of molecular descriptors and construct simple models for association and dissociation rate constants using empirical data. Using separate test data for validation, the predicted rate constants can be combined to calculate binding affinity with accuracy matching that of state of the art empirical free energy functions. The models show that the rate of association is linearly related to the proportion of unbound proteins in the bound conformational ensemble relative to the unbound conformational ensemble, indicating that the binding partners must adopt a geometry near to that of the bound prior to binding. Mirroring the conformational selection and population shift mechanism of protein binding, the models provide a strong separate line of evidence for the preponderance of this mechanism in protein-protein binding, complementing structural and theoretical studies.
Collapse
Affiliation(s)
- Iain H. Moal
- Protein Interactions and Docking Laboratory, Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain
| | - Paul A. Bates
- Biomolecular Modelling Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| |
Collapse
|
16
|
Merlino A, Benitez D, Campillo NE, Páez JA, Tinoco LW, González M, Cerecetto H. Amidines bearing benzofuroxan or benzimidazole 1,3-dioxide core scaffolds as Trypanosoma cruzi-inhibitors: structural basis for their interactions with cruzipain. MEDCHEMCOMM 2012. [DOI: 10.1039/c1md00223f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Quintero CA, Giraudo CG, Villarreal M, Montich G, Maccioni HJF. Identification of a site in Sar1 involved in the interaction with the cytoplasmic tail of glycolipid glycosyltransferases. J Biol Chem 2010; 285:30340-6. [PMID: 20650895 DOI: 10.1074/jbc.m110.128868] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Glycolipid glycosyltransferases (GGT) are transported from the endoplasmic reticulum (ER) to the Golgi, their site of residence, via COPII vesicles. An interaction of a (R/K)X(R/K) motif at their cytoplasmic tail (CT) with Sar1 is critical for the selective concentration in the transport vesicles. In this work using computational docking, we identify three putative binding pockets in Sar1 (sites A, B, and C) involved in the interaction with the (R/K)X(R/K) motif. Sar1 mutants with alanine replacement of amino acids in site A were tested in vitro and in cells. In vitro, mutant versions showed a reduced ability to bind immobilized peptides with the CT sequence of GalT2. In cells, Sar1 mutants (Sar1(D198A)) specifically affect the exiting of GGT from the ER, resulting in an ER/Golgi concentration ratio favoring the ER. Neither the typical Golgi localization of GM130 nor the exiting and transport of the G protein of the vesicular stomatitis virus were affected. The protein kinase inhibitor H89 produced accumulation of Sec23, Sar1, and GalT2 at the ER exit sites; Sar1(D189A) also accumulated at these sites, but in this case GalT2 remained disperse along ER membranes. The results indicate that amino acids in site A of Sar1 are involved in the interaction with the CT of GGT for concentration at ER exiting sites.
Collapse
Affiliation(s)
- Cristián A Quintero
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Centro de Investigaciones en Química Biológica de Córdoba, X5000HUA Córdoba, Argentina
| | | | | | | | | |
Collapse
|
18
|
Rodríguez H, Angulo I, de Las Rivas B, Campillo N, Páez JA, Muñoz R, Mancheño JM. p-Coumaric acid decarboxylase from Lactobacillus plantarum: structural insights into the active site and decarboxylation catalytic mechanism. Proteins 2010; 78:1662-76. [PMID: 20112419 DOI: 10.1002/prot.22684] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
p-Coumaric acid decarboxylases (PDCs) catalyze the nonoxidative decarboxylation of hydroxycinnamic acids to generate the corresponding vinyl derivatives. Despite the biotechnological relevance of PDCs in food industry, their catalytic mechanism remains largely unknown. Here, we report insights into the structural basis of catalysis for the homodimeric PDC from Lactobacillus plantarum (LpPDC). The global fold of LpPDC is based on a flattened beta-barrel surrounding an internal cavity. Crystallographic and functional analyses of single-point mutants of residues located within this cavity have permitted identifying a potential substrate-binding pocket and also to provide structural evidences for rearrangements of surface loops so that they can modulate the accessibility to the active site. Finally, combination of the structural and functional data with in silico results enables us to propose a two-step catalytic mechanism for decarboxylation of p-coumaric acid by PDCs where Glu71 is involved in proton transfer, and Tyr18 and Tyr20 are involved in the proper substrate orientation and in the release of the CO(2) product.
Collapse
Affiliation(s)
- Héctor Rodríguez
- Departamento de Microbiología, Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Sainis I, Fokas D, Vareli K, Tzakos AG, Kounnis V, Briasoulis E. Cyanobacterial cyclopeptides as lead compounds to novel targeted cancer drugs. Mar Drugs 2010; 8:629-57. [PMID: 20411119 PMCID: PMC2857373 DOI: 10.3390/md8030629] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/10/2010] [Accepted: 02/26/2010] [Indexed: 12/22/2022] Open
Abstract
Cyanobacterial cyclopeptides, including microcystins and nodularins, are considered a health hazard to humans due to the possible toxic effects of high consumption. From a pharmacological standpoint, microcystins are stable hydrophilic cyclic heptapeptides with a potential to cause cellular damage following uptake via organic anion-transporting polypeptides (OATP). Their intracellular biological effects involve inhibition of catalytic subunits of protein phosphatase 1 (PP1) and PP2, glutathione depletion and generation of reactive oxygen species (ROS). Interestingly, certain OATPs are prominently expressed in cancers as compared to normal tissues, qualifying MC as potential candidates for cancer drug development. In the era of targeted cancer therapy, cyanotoxins comprise a rich source of natural cytotoxic compounds with a potential to target cancers expressing specific uptake transporters. Moreover, their structure offers opportunities for combinatorial engineering to enhance the therapeutic index and resolve organ-specific toxicity issues. In this article, we revisit cyanobacterial cyclopeptides as potential novel targets for anticancer drugs by summarizing existing biomedical evidence, presenting structure-activity data and discussing developmental perspectives.
Collapse
Affiliation(s)
- Ioannis Sainis
- Human Cancer Biobank Center, University of Ioannina, Greece; E-Mails:
(I.S.);
(K.V.);
(A.T.)
| | - Demosthenes Fokas
- Department of Materials Science and Engineering, University of Ioannina, Greece; E-Mail:
(D.F.)
| | - Katerina Vareli
- Human Cancer Biobank Center, University of Ioannina, Greece; E-Mails:
(I.S.);
(K.V.);
(A.T.)
- Department of Biological Applications and Technologies, University of Ioannina, Greece
| | - Andreas G. Tzakos
- Human Cancer Biobank Center, University of Ioannina, Greece; E-Mails:
(I.S.);
(K.V.);
(A.T.)
- Department of Chemistry, University of Ioannina, Greece
| | | | - Evangelos Briasoulis
- Human Cancer Biobank Center, University of Ioannina, Greece; E-Mails:
(I.S.);
(K.V.);
(A.T.)
- School of Medicine, University of Ioannina, Greece; E-Mail:
(V.K.)
- * Author to whom correspondence should be addressed; E-Mail:
or
; Tel.: +30-265-100-7713; Fax: +30-265-100-8087
| |
Collapse
|
20
|
Ghosh R, Bhowmik S, Bagchi A, Das D, Ghosh S. Chemotherapeutic potential of 9-phenyl acridine: biophysical studies on its binding to DNA. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 39:1243-9. [DOI: 10.1007/s00249-010-0577-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 12/14/2009] [Accepted: 01/13/2010] [Indexed: 10/19/2022]
|
21
|
Merlino A, Benitez D, Chavez S, Da Cunha J, Hernández P, Tinoco LW, Campillo NE, Páez JA, Cerecetto H, González M. Development of second generation amidinohydrazones, thio- and semicarbazones as Trypanosoma cruzi-inhibitors bearing benzofuroxan and benzimidazole 1,3-dioxide core scaffolds. MEDCHEMCOMM 2010. [DOI: 10.1039/c0md00085j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Weininger U, Zeeb M, Neumann P, Löw C, Stubbs MT, Lipps G, Balbach J. Structure-based stability analysis of an extremely stable dimeric DNA binding protein from Sulfolobus islandicus. Biochemistry 2009; 48:10030-7. [PMID: 19788170 DOI: 10.1021/bi900760n] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ORF56 is a small and thermodynamically extremely stable dimeric protein from the archaeon Sulfolobus islandicus. This DNA binding protein is encoded on plasmid pRN1 and possibly controls the copy number of the plasmid. We report the solution NMR structure as well as the crystal structure of ORF56 comprising a ribbon-helix-helix fold. The homodimer consists of an antiparallel intersubunit beta-sheet and two alpha-helices per monomer, which is a common DNA binding fold of plasmid- and phage-encoded gene regulation proteins. NMR titration experiments with ORF56 and double-stranded DNA derived from its promoter binding site revealed that it is largely the beta-sheets that interact with the DNA. The beta-sheet experiences high local fluctuations, which are conserved among DNA binding ribbon-helix-helix dimers from mesophilic and hyperthermophilic organisms. In contrast, residues strongly protected against H-D exchange are localized in helix 2, forming the hydrophobic intermolecular core of the dimer. A structure-based comparison of the intermolecular binding surface and the change in accessible surface area upon unfolding of various ribbon-helix-helix dimers with the Gibbs free energy changes and m values show a correlation between hydrophobicity of these surface areas and stability. These findings provide possible explanations for the very high thermodynamic stability of ORF56 with retained DNA binding capacity.
Collapse
Affiliation(s)
- Ulrich Weininger
- Institut fur Physik, Biophysik, Martin-Luther-Universitat Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Amero CD, Byerly DW, McElroy CA, Simmons A, Foster MP. Ligand-induced changes in the structure and dynamics of Escherichia coli peptide deformylase. Biochemistry 2009; 48:7595-607. [PMID: 19627112 DOI: 10.1021/bi900600b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptide deformylase (PDF) is an enzyme that is responsible for removing the formyl group from nascently synthesized polypeptides in bacteria, attracting much attention as a potential target for novel antibacterial agents. Efforts to develop potent inhibitors of the enzyme have progressed on the basis of classical medicinal chemistry, combinatorial chemistry, and structural approaches, yet the validity of PDF as an antibacterial target hangs, in part, on the ability of inhibitors to selectively target this enzyme in favor of structurally related metallohydrolases. We have used (15)N NMR spectroscopy and isothermal titration calorimetry to investigate the high-affinity interaction of EcPDF with actinonin, a naturally occurring potent EcPDF inhibitor. Backbone amide chemical shifts, residual dipolar couplings, hydrogen-deuterium exchange, and (15)N relaxation reveal structural and dynamic effects of ligand binding in the immediate vicinity of the ligand-binding site as well as at remote sites. A comparison of the crystal structures of free and actinonin-bound EcPDF with the solution data suggests that most of the consequences of the ligand binding to the protein are lost or obscured during crystallization. The results of these studies improve our understanding of the thermodynamic global minimum and have important implications for structure-based drug design.
Collapse
Affiliation(s)
- Carlos D Amero
- Biophysics Program, The Ohio StateUniversity, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
24
|
Xu Y, Amero CD, Pulukkunat DK, Gopalan V, Foster MP. Solution structure of an archaeal RNase P binary protein complex: formation of the 30-kDa complex between Pyrococcus furiosus RPP21 and RPP29 is accompanied by coupled protein folding and highlights critical features for protein-protein and protein-RNA interactions. J Mol Biol 2009; 393:1043-55. [PMID: 19733182 DOI: 10.1016/j.jmb.2009.08.068] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 08/28/2009] [Accepted: 08/30/2009] [Indexed: 01/05/2023]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein (RNP) enzyme that catalyzes the Mg(2+)-dependent 5' maturation of precursor tRNAs. In all domains of life, it is a ribozyme: the RNase P RNA (RPR) component has been demonstrated to be responsible for catalysis. However, the number of RNase P protein subunits (RPPs) varies from 1 in bacteria to 9 or 10 in eukarya. The archaeal RPR is associated with at least 4 RPPs, which function in pairs (RPP21-RPP29 and RPP30-POP5). We used solution NMR spectroscopy to determine the three-dimensional structure of the protein-protein complex comprising Pyrococcus furiosus RPP21 and RPP29. We found that the protein-protein interaction is characterized by coupled folding of secondary structural elements that participate in interface formation. In addition to detailing the intermolecular contacts that stabilize this 30-kDa binary complex, the structure identifies surfaces rich in conserved basic residues likely vital for recognition of the RPR and/or precursor tRNA. Furthermore, enzymatic footprinting experiments allowed us to localize the RPP21-RPP29 complex to the specificity domain of the RPR. These findings provide valuable new insights into mechanisms of RNP assembly and serve as important steps towards a three-dimensional model of this ancient RNP enzyme.
Collapse
Affiliation(s)
- Yiren Xu
- Ohio State Biochemistry Program, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
25
|
Padrón-García JA, Alonso-Tarajano M, Alonso-Becerra E, Winterburn TJ, Ruiz Y, Kay J, Berry C. Quantitative structure activity relationship of IA3-like peptides as aspartic proteinase inhibitors. Proteins 2009; 75:859-69. [DOI: 10.1002/prot.22295] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
26
|
Fernández-Bachiller MI, Pérez C, Campillo NE, Páez JA, González-Muñoz GC, Usán P, García-Palomero E, López M, Villarroya M, García A, Martínez A, Rodríguez-Franco MI. Tacrine-Melatonin Hybrids as Multifunctional Agents for Alzheimer's Disease, with Cholinergic, Antioxidant, and Neuroprotective Properties. ChemMedChem 2009; 4:828-41. [DOI: 10.1002/cmdc.200800414] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Hoffman RMB, Sykes BD. Isoform-specific variation in the intrinsic disorder of troponin I. Proteins 2009; 73:338-50. [PMID: 18433059 DOI: 10.1002/prot.22063] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Various intrinsic disorder (ID) prediction algorithms were applied to the three tissue isoforms of troponin I (TnI). The results were interpreted in terms of the known structure and dynamics of troponin. In line with previous results, all isoforms of TnI were predicted to have large stretches of ID. The predictions show that the C-termini of all isoforms are extensively disordered as is the N-terminal extension of the cardiac isoform. Cardiac TnI likely belongs to the group of intrinsically disordered signalling hub proteins. For a given portion of the protein sequence, most ID prediction approaches indicate isoform-dependent variations in the probability of disorder. Comparison of machine learning and physically based approaches suggests the ID variations are only partially attributable to local variations in the ratio of charged to hydrophobic residues. The VSL2B algorithm predicts the largest variations in ID across the isoforms, with the cardiac isoform having the highest probability of structured regions, and the fast-skeletal isoform having no intrinsic structure. The region corresponding to residues 57-95 of the fast-skeletal isoform, known to form a coiled coil substructure with troponin T, was highly variable between isoforms. The isoform-specific ID variations may have mechanistic significance, modulating the extent to which conformational fluctuations in tropomyosin are communicated to the troponin complex. We discuss structural mechanisms for this communication. Overall, the results motivate the development of predictors designed to address relative levels of disorder between highly similar proteins.
Collapse
Affiliation(s)
- Ryan M B Hoffman
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
28
|
Dell'Orco D. Fast predictions of thermodynamics and kinetics of protein-protein recognition from structures: from molecular design to systems biology. MOLECULAR BIOSYSTEMS 2009; 5:323-34. [PMID: 19396368 DOI: 10.1039/b821580d] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The increasing call for an overall picture of the interactions between the components of a biological system that give rise to the observed function is often summarized by the expression systems biology. Both the interpretative and predictive capabilities of holistic models of biochemical systems, however, depend to a large extent on the level of physico-chemical knowledge of the individual molecular interactions making up the network. This review is focused on the structure-based quantitative characterization of protein-protein interactions, ubiquitous in any biochemical pathway. Recently developed, fast and effective computational methods are reviewed, which allow the assessment of kinetic and thermodynamic features of the association-dissociation processes of protein complexes, both in water soluble and membrane environments. The performance and the accuracy of fast and semi-empirical structure-based methods have reached comparable levels with respect to the classical and more elegant molecular simulations. Nevertheless, the broad accessibility and lower computational cost provide the former methods with the advantageous possibility to perform systems-level analyses including extensive in silico mutagenesis screenings and large-scale structural predictions of multiprotein complexes.
Collapse
Affiliation(s)
- Daniele Dell'Orco
- Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183, 41100, Modena, Italy.
| |
Collapse
|
29
|
Kita A, Tasaki S, Yohda M, Miki K. Crystal structure of PH1733, an aspartate racemase homologue, from Pyrococcus horikoshii OT3. Proteins 2009; 74:240-4. [PMID: 18831039 DOI: 10.1002/prot.22244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Akiko Kita
- Research Reactor Institute, Kyoto University, Kumatori-cho, Sannan-gun, Osaka 590-0494, Japan
| | | | | | | |
Collapse
|
30
|
Klages J, Kotzsch A, Coles M, Sebald W, Nickel J, Müller T, Kessler H. The solution structure of BMPR-IA reveals a local disorder-to-order transition upon BMP-2 binding. Biochemistry 2008; 47:11930-9. [PMID: 18937504 DOI: 10.1021/bi801059j] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structure of the extracellular domain of BMP receptor IA was determined in solution by NMR spectroscopy and compared to its structure when bound to its ligand BMP-2. While most parts of the secondary structure are highly conserved between the bound and unbound forms, large conformational rearrangements can be observed in the beta4beta5 loop of BMPR-IA, which is in contact with BMP-2 and harbors the main binding determinants for the BMPR-IA-BMP-2 interaction. In its unbound form, helix alpha1 in BMPR-IA, which is in the center of the binding epitope for BMP-2, is missing. Since BMP-2 also shows conformational changes in the type I receptor epitope upon binding to BMPR-IA, both binding partners pass through an induced fit mechanism to adapt their binding interfaces to a given interaction surface. The inherent flexibility of both partners possibly explains the promiscuous ligand-receptor interaction observed in the BMP protein superfamily.
Collapse
Affiliation(s)
- Jochen Klages
- Center of Integrated Protein Science (CIPSM) at the Technische Universitat Munchen, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Reina JJ, Díaz I, Nieto PM, Campillo NE, Páez JA, Tabarani G, Fieschi F, Rojo J. Docking, synthesis, and NMR studies of mannosyl trisaccharide ligands for DC-SIGN lectin. Org Biomol Chem 2008; 6:2743-54. [PMID: 18633532 DOI: 10.1039/b802144a] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DC-SIGN, a lectin, which presents at the surface of immature dendritic cells, constitutes nowadays a promising target for the design of new antiviral drugs. This lectin recognizes highly glycosylated proteins present at the surface of several pathogens such as HIV, Ebola virus, Candida albicans, Mycobacterium tuberculosis, etc. Understanding the binding mode of this lectin is a topic of tremendous interest and will permit a rational design of new and more selective ligands. Here, we present computational and experimental tools to study the interaction of di- and trisaccharides with DC-SIGN. Docking analysis of complexes involving mannosyl di- and trisaccharides and the carbohydrate recognition domain (CRD) of DC-SIGN have been performed. Trisaccharides Manalpha1,2[Manalpha1,6]Man 1 and Manalpha1,3[Manalpha1,6]Man 2 were synthesized from an orthogonally protected mannose as a common intermediate. Using these ligands and the soluble extracellular domain (ECD) of DC-SIGN, NMR experiments based on STD and transfer-NOE were performed providing additional information. Conformational analysis of the mannosyl ligands in the free and bound states was done. These studies have demonstrated that terminal mannoses at positions 2 or 3 in the trisaccharides are the most important moiety and present the strongest contact with the binding site of the lectin. Multiple binding modes could be proposed and therefore should be considered in the design of new ligands.
Collapse
Affiliation(s)
- José J Reina
- Grupo de Carbohidratos, Instituto de Investigaciones Químicas, CSIC, Universidad de Sevilla, Américo Vespucio 49, Seville, Spain
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Mokarzel-Falcón L, Padrón-García JA, Carrasco-Velar R, Berry C, Montero-Cabrera LA. In silico study of the human rhodopsin and meta rhodopsin II/S-arrestin complexes: impact of single point mutations related to retina degenerative diseases. Proteins 2008; 70:1133-41. [PMID: 18175313 DOI: 10.1002/prot.21873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We propose two models of the human S-arrestin/rhodopsin complex in the inactive dark adapted rhodopsin and meta rhodopsin II form, obtained by homology modeling and knowledge based docking. First, a homology model for the human S-arrestin was built and validated by molecular dynamics, showing an average root mean square deviation difference from the pattern behavior of 0.76 A. Then, combining the human S-arrestin model and the modeled structure of the two human rhodopsin forms, we propose two models of interaction for the human S-arrestin/rhodopsin complex. The models involve two S-arrestin regions related to the N domain (residues 68-78; 170-182) and a third constituent of the C domain (248-253), with the rhodopsin C terminus (330-348). Of the 22 single point mutations related to retinitis pigmentosa and congenital night blindness located in the cytoplasmatic portion of rhodopsin or in S-arrestin, our models locate 16 in the interaction region and relate two others to possible dimer formation. Our calculations also predict that the light activated complex is more stable than the dark adapted rhodopsin and, therefore, of higher affinity to S-arrestin.
Collapse
|
33
|
Kottakis F, Papadopoulos G, Pappa EV, Cordopatis P, Pentas S, Choli-Papadopoulou T. Helicobacter pylori neutrophil-activating protein activates neutrophils by its C-terminal region even without dodecamer formation, which is a prerequisite for DNA protection--novel approaches against Helicobacter pylori inflammation. FEBS J 2007; 275:302-17. [PMID: 18076649 DOI: 10.1111/j.1742-4658.2007.06201.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Helicobacter pylori neutrophil-activating protein (HP-NAP) protects DNA from free radicals as a dodecamer through its ferroxidase activity without, however, directly binding to it. The retardation that was observed at pH 7.5 could be easily attributed to an iron effect, as it was revealed by experiments in the absence of HP-NAP. A total loss of ferroxidase activity, dodecamer formation and DNA protection in environments rich in free radicals was observed after replacement of His25, His37, Asp52 and Lys134, which are located within the ferroxidase site, with Ala. Molecular dynamics simulations revealed that dimer formation is highly unlikely following mutation of the above amino acids, as the Fe(2+) is no longer attracted with equal strength by both subunits. These findings probably indicate that iron plays an important role in the conformation of HP-NAP by initiating the formation of stable dimers that are indispensable for the ensuing dodecamer structure. Very surprisingly, neutrophil activation appeared to be stimulated by structural elements that are localized within the C-terminal region of both mutant HP-NAP and wild-type dodecamer HP-NAP. In particular, the dodecamer conformation does not seem to be necessary for activation, and helices H3 (Leu69-Leu75) and H4 (Lys89-Leu114) or the linking coils (His63-Thr68 and Thr76-Ser88) are probably critical in stimulating neutrophil activation.
Collapse
Affiliation(s)
- Filippos Kottakis
- Laboratory of Biochemistry, School of Chemistry, Aristotle University of Thessaloniki, TK 54124, Thessaloniki, Greece
| | | | | | | | | | | |
Collapse
|
34
|
Structural and functional definition of the specificity of a novel caspase-3 inhibitor, Ac-DNLD-CHO. BMC Pharmacol 2007; 7:8. [PMID: 17594508 PMCID: PMC1931592 DOI: 10.1186/1471-2210-7-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 06/27/2007] [Indexed: 11/10/2022] Open
Abstract
Background The rational design of peptide-based specific inhibitors of the caspase family members using their X-ray crystallographies is an important strategy for chemical knockdown to define the critical role of each enzyme in apoptosis and inflammation. Recently, we designed a novel potent peptide inhibitor, Ac-DNLD-CHO, for caspase-3 using a new computational screening system named the Amino acid Positional Fitness (APF) method (BMC Pharmacol. 2004, 4:7). Here, we report the specificity of the DNLD sequence against caspase-3 over other major caspase family members that participate in apoptosis by computational docking and site-directed mutagenesis studies. Results Ac-DNLD-CHO inhibits caspases-3, -7, -8, and -9 activities with Kiapp values of 0.68, 55.7, >200, and >200 nM, respectively. In contrast, a well-known caspase-3 inhibitor, Ac-DEVD-CHO, inhibits all these caspases with similar Kiapp values. The selective recognition of a DNLD sequence by caspase-3 was confirmed by substrate preference studies using fluorometric methylcoumarin-amide (MCA)-fused peptide substrates. The bases for its selectivity and potency were assessed on a notable interaction between the substrate Asn (N) and the caspase-3 residue Ser209 in the S3 subsite and the tight interaction between the substrate Leu (L) and the caspase-3 hydrophobic S2 subsite, respectively, in computational docking studies. Expectedly, the substitution of Ser209 with alanine resulted in loss of the cleavage activity on Ac-DNLD-MCA and had virtually no effect on cleaving Ac-DEVD-MCA. These findings suggest that N and L residues in Ac-DNLD-CHO are the determinants for the selective and potent inhibitory activity against caspase-3. Conclusion On the basis of our results, we conclude that Ac-DNLD-CHO is a reliable, potent and selective inhibitor of caspase-3. The specific inhibitory effect on caspase-3 suggests that this inhibitor could become an important tool for investigations of the biological function of caspase-3. Furthermore, Ac-DNLD-CHO may be an attractive lead compound to generate novel effective non-peptidic pharmaceuticals for caspase-mediated apoptosis diseases, such as neurodegenerative disorders and viral infection diseases.
Collapse
|
35
|
Pérez-Dorado I, Campillo NE, Monterroso B, Hesek D, Lee M, Páez JA, García P, Martínez-Ripoll M, García JL, Mobashery S, Menéndez M, Hermoso JA. Elucidation of the molecular recognition of bacterial cell wall by modular pneumococcal phage endolysin CPL-1. J Biol Chem 2007; 282:24990-9. [PMID: 17581815 DOI: 10.1074/jbc.m704317200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pneumococcal bacteriophage-encoded lysins are modular proteins that have been shown to act as enzymatic antimicrobial agents (enzybiotics) in treatment of streptococcal infections. The first x-ray crystal structures of the Cpl-1 lysin, encoded by the pneumococcal phage Cp-1, in complex with three bacterial cell wall peptidoglycan (PG) analogues are reported herein. The Cpl-1 structure is folded in two well defined modules, one responsible for anchoring to the pneumococcal cell wall and the other, a catalytic module, that hydrolyzes the PG. Conformational rearrangement of Tyr-127 is a critical event in molecular recognition of a stretch of five saccharide rings of the polymeric peptidoglycan (cell wall). The PG is bound at a stretch of the surface that is defined as the peptidoglycan-binding sites 1 and 2, the juncture of which catalysis takes place. The peptidoglycan-binding site 1 binds to a stretch of three saccharides of the peptidoglycan in a conformation essentially identical to that of the peptidoglycan in solution. In contrast, binding of two peptidoglycan saccharides at the peptidoglycan-binding site 2 introduces a kink into the solution structure of the peptidoglycan, en route to catalytic turnover. These findings provide the first structural evidence on recognition of the peptidoglycan and shed light on the discrete events of cell wall degradation by Cpl-1.
Collapse
Affiliation(s)
- Inmaculada Pérez-Dorado
- Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto de Química-Física Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
McElroy CA, Manfredo A, Gollnick P, Foster MP. Thermodynamics of tryptophan-mediated activation of the trp RNA-binding attenuation protein. Biochemistry 2006; 45:7844-53. [PMID: 16784236 PMCID: PMC2517159 DOI: 10.1021/bi0526074] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The trp RNA-binding attenuation protein (TRAP) functions in many bacilli to control the expression of the tryptophan biosynthesis genes. Transcription of the trp operon is controlled by TRAP through an attenuation mechanism, in which competition between two alternative secondary-structural elements in the 5' leader sequence of the nascent mRNA is influenced by tryptophan-dependent binding of TRAP to the RNA. Previously, NMR studies of the undecamer (11-mer) suggested that tryptophan-dependent control of RNA binding by TRAP is accomplished through ligand-induced changes in protein dynamics. We now present further insights into this ligand-coupled event from hydrogen/deuterium (H/D) exchange analysis, differential scanning calorimetry (DSC), and isothermal titration calorimetry (ITC). Scanning calorimetry showed tryptophan dissociation to be independent of global protein unfolding, while analysis of the temperature dependence of the binding enthalpy by ITC revealed a negative heat capacity change larger than expected from surface burial, a hallmark of binding-coupled processes. Analysis of this excess heat capacity change using parameters derived from protein folding studies corresponds to the ordering of 17-24 residues per monomer of TRAP upon tryptophan binding. This result is in agreement with qualitative analysis of residue-specific broadening observed in TROSY NMR spectra of the 91 kDa oligomer. Implications for the mechanism of ligand-mediated TRAP activation through a shift in a preexisting conformational equilibrium and an induced-fit conformational change are discussed.
Collapse
Affiliation(s)
- Craig A McElroy
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
37
|
Dogan J, Lendel C, Härd T. Thermodynamics of Folding and Binding in an Affibody:Affibody Complex. J Mol Biol 2006; 359:1305-15. [PMID: 16701696 DOI: 10.1016/j.jmb.2006.04.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 04/13/2006] [Accepted: 04/20/2006] [Indexed: 11/24/2022]
Abstract
Affibody binding proteins are selected from phage-displayed libraries of variants of the 58 residue Z domain. Z(Taq) is an affibody originally selected as a binder to Taq DNA polymerase. The anti-Z(Taq) affibody was selected as a binder to Z(Taq) and the Z(Taq):anti-Z(Taq) complex is formed with a dissociation constant K(d)=0.1 microM. We have determined the structure of the Z(Taq):anti-Z(Taq) complex as well as the free state structures of Z(Taq) and anti-Z(Taq) using NMR. Here we complement the structural data with thermodynamic studies of Z(Taq) and anti-Z(Taq) folding and complex formation. Both affibody proteins show cooperative two-state thermal denaturation at melting temperatures T(M) approximately 56 degrees C. Z(Taq):anti-Z(Taq) complex formation at 25 degrees C in 50 mM NaCl and 20 mM phosphate buffer (pH 6.4) is enthalpy driven with DeltaH degrees (bind) = -9.0 (+/-0.1) kcal mol(-1)(.) The heat capacity change DeltaC(P) degrees (,bind)=-0.43 (+/-0.01) kcal mol(-1) K(-1) is in accordance with the predominantly non-polar character of the binding surface, as judged from calculations based on changes in accessible surface areas. A further dissection of the small binding entropy at 25 degrees C (-TDeltaS degrees (bind) = -0.6 (+/-0.1) kcal mol(-1)) suggests that a favourable desolvation of non-polar surface is almost completely balanced by unfavourable conformational entropy changes and loss of rotational and translational entropy. Such effects can therefore be limiting for strong binding also when interacting protein components are stable and homogeneously folded. The combined structure and thermodynamics data suggest that protein properties are not likely to be a serious limitation for the development of engineered binding proteins based on the Z domain.
Collapse
Affiliation(s)
- Jakob Dogan
- School of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden
| | | | | |
Collapse
|
38
|
Lendel C, Dogan J, Härd T. Structural basis for molecular recognition in an affibody:affibody complex. J Mol Biol 2006; 359:1293-304. [PMID: 16750222 DOI: 10.1016/j.jmb.2006.04.043] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 04/13/2006] [Accepted: 04/20/2006] [Indexed: 11/24/2022]
Abstract
Affibody molecules constitute a class of engineered binding proteins based on the 58-residue three-helix bundle Z domain derived from staphylococcal protein A (SPA). Affibody proteins are selected as binders to target proteins by phage display of combinatorial libraries in which typically 13 side-chains on the surface of helices 1 and 2 in the Z domain have been randomized. The Z(Taq):anti-Z(Taq) affibody-affibody complex, consisting of Z(Taq), originally selected as a binder to Taq DNA polymerase, and anti-Z(Taq), selected as binder to Z(Taq), is formed with a dissociation constant K(d) approximately 100 nM. We have determined high-precision solution structures of free Z(Taq) and anti-Z(Taq), and the Z(Taq):anti-Z(Taq) complex under identical experimental conditions (25 degrees C in 50 mM NaCl with 20 mM potassium phosphate buffer at pH 6.4). The complex is formed with helices 1 and 2 of anti-Z(Taq) in perpendicular contact with helices 1 and 2 of Z(Taq). The interaction surface is large ( approximately 1670 A(2)) and unusually non-polar (70 %) compared to other protein-protein complexes. It involves all varied residues on anti-Z(Taq), most corresponding (Taq DNA polymerase binding) side-chains on Z(Taq), and several additional side-chain and backbone contacts. Other notable features include a substantial rearrangement (induced fit) of aromatic side-chains in Z(Taq) upon binding, a close contact between glycine residues in the two subunits that might involve aliphatic glycine Halpha to backbone carbonyl hydrogen bonds, and four hydrogen bonds made by the two guanidinium N(eta)H(2) groups of an arginine side-chain. Comparisons of the present structure with other data for affibody proteins and the Z domain suggest that intrinsic binding properties of the originating SPA surface might be inherited by the affibody binders. A thermodynamic characterization of Z(Taq) and anti-Z(Taq) is presented in an accompanying paper.
Collapse
Affiliation(s)
- Christofer Lendel
- School of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden
| | | | | |
Collapse
|
39
|
Lewis MJ, Saltibus LF, Hau DD, Xiao W, Spyracopoulos L. Structural basis for non-covalent interaction between ubiquitin and the ubiquitin conjugating enzyme variant human MMS2. JOURNAL OF BIOMOLECULAR NMR 2006; 34:89-100. [PMID: 16518696 DOI: 10.1007/s10858-005-5583-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 11/09/2005] [Indexed: 05/07/2023]
Abstract
Modification of proteins by post-translational covalent attachment of a single, or chain, of ubiquitin molecules serves as a signaling mechanism for a number of regulatory functions in eukaryotic cells. For example, proteins tagged with lysine-63 linked polyubiquitin chains are involved in error-free DNA repair. The catalysis of lysine-63 linked polyubiquitin chains involves the sequential activity of three enzymes (E1, E2, and E3) that ultimately transfer a ubiquitin thiolester intermediate to a protein target. The E2 responsible for catalysis of lysine-63 linked polyubiquitination is a protein heterodimer consisting of a canonical E2 known as Ubc13, and an E2-like protein, or ubiquitin conjugating enzyme variant (UEV), known as Mms2. We have determined the solution structure of the complex formed by human Mms2 and ubiquitin using high resolution, solution state nuclear magnetic resonance (NMR) spectroscopy. The structure of the Mms2-Ub complex provides important insights into the molecular basis underlying the catalysis of lysine-63 linked polyubiquitin chains.
Collapse
Affiliation(s)
- Michael J Lewis
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
40
|
Bagchi A, Ghosh TC. Structural insight into the interactions of SoxV, SoxW and SoxS in the process of transport of reductants during sulfur oxidation by the novel global sulfur oxidation reaction cycle. Biophys Chem 2005; 119:7-13. [PMID: 16183190 DOI: 10.1016/j.bpc.2005.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 08/29/2005] [Accepted: 08/29/2005] [Indexed: 10/25/2022]
Abstract
Microbial redox reactions involving inorganic sulfur compounds, mainly the sulfur anions, are one of the vital reactions responsible for the environmental sulfur balance. These reactions are mediated by phylogenetically diverse prokaryotes, some of which also take part in the extraction of metal ions from their sulfur containing ores. These sulfur oxidizers oxidize inorganic sulfur compounds like sulfide, thiosulfate etc. to produce reductants that are used for carbon dioxide fixation or in respiratory electron transfer chains. The sulfur oxidizing gene cluster (sox) of alpha-Proteobacteria comprises of at least 15 genes, forming two transcriptional units, viz., soxSR and soxVWXYZABCDEFGH. SoxV is known to be a CcdA homolog involved in the transport of reductants from cytoplasm to periplasm. SoxW and SoxS are periplasmic thioredoxins, which (SoxW) interact with SoxV and thereby help in the redox reactions. We have employed homology modeling to construct the three-dimensional structures of the SoxV, SoxW and SoxS proteins from Rhodovulum sulfidophilum. With the help of docking and molecular dynamics simulations we have identified the amino acid residues of these proteins involved in the interaction. The probable biochemical mechanism of the transport of reductants through the interactions of these proteins has also been investigated. Our study provides a rational basis to interpret the molecular mechanism of the biochemistry of sulfur anion oxidation reactions by these ecologically important organisms.
Collapse
Affiliation(s)
- Angshuman Bagchi
- Bioinformatics Center, Bose Institute, AJC Bose Centenary Building, P1/12 CIT Scheme VIIM, Kolkata 700 054, India.
| | | |
Collapse
|
41
|
Dell'Orco D, Seeber M, De Benedetti PG, Fanelli F. Probing Fragment Complementation by Rigid-Body Docking: in Silico Reconstitution of Calbindin D9k. J Chem Inf Model 2005; 45:1429-38. [PMID: 16180920 DOI: 10.1021/ci0501995] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fragment complementation is gaining an increasing impact as a nonperturbing method to probe noncovalent interactions within protein supersecondary structures. In this study, the fast Fourier transform rigid-body docking algorithm ZDOCK has been employed for in silico reconstitution of the calcium binding protein calbindin D9k, from its two EF-hands subdomains, namely, EF1 (residues 1-43) and EF2 (residues 44-75). The EF1 fragment has been used both in its wild type and in nine mutant forms, in line with in vitro experiments. Consistent with in vitro data, ZDOCK reconstituted the proper fold of wild-type and mutated calbindin, locating the nativelike structures (i.e., holding a root-mean-square deviation < 1 A with respect to the X-ray structure) among the first 10 top-scored solutions out of 4000. Moreover, the three independent in silico reconstitutions of wild-type calbindin ranked a nativelike structure at the top of the output list, that is, the best scored one. The algorithm has been also successfully challenged in reconstituting the EF2 homodimer from two identical copies of the monomer. Furthermore, quantitative models consisting of linear correlations between thermodynamic data and ZDOCK scores were built, providing a tested tool for very fast in silico predictions of the free energy of association of protein-protein complexes solved at the atomic level and known to not undergo significant conformational changes upon binding.
Collapse
Affiliation(s)
- Daniele Dell'Orco
- Department of Chemistry and Dulbecco Telethon Institute, University of Modena and Reggio Emilia, via Campi 183, 41100 Modena, Italy
| | | | | | | |
Collapse
|
42
|
Gehringer MM, Milne P, Lucietto F, Downing TG. Comparison of the structure of key variants of microcystin to vasopressin. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2005; 19:297-303. [PMID: 21783489 DOI: 10.1016/j.etap.2004.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2004] [Accepted: 08/03/2004] [Indexed: 05/31/2023]
Abstract
Microcystins (MCs) are cyclic heptapeptide compounds [where X(2) (position 2) and Z(4) (position 4) are variable l-aminoacids] produced by cyanobacteria and responsible for severe liver damage in animals ingesting acute doses of the toxic compounds. Certain variants of microcystins are more toxic than others, the differences being commonly ascribed to the hydrophobic nature of the variant. Microcystin-LR (MCLR) [X = l-leucine (L); Z = l-arginine (R); R1 = R2 = CH(3)] is the most toxic of all the microcystins investigated to date. This study investigates the similarity of the structures of MCLR and selected MC variants to the liver specific hormone vasopressin. Structures were compiled in HyperChem(®) (professional version 5.1). Initial comparisons of the MCLR and vasopressin indicated comparable volumes, surface areas and masses. Further studies using RMS overlays show that the microcystin derivative MCLR(Dha(7)) is comparably similar to vasopressin in terms of tertiary structure.
Collapse
Affiliation(s)
- Michelle M Gehringer
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia
| | | | | | | |
Collapse
|
43
|
Abstract
Five molecular dynamics simulations (total duration >25 ns) have been performed on the Escherichia coli outer membrane protease OmpT embedded in a dimyristoylphosphatidylcholine lipid bilayer. Globally the protein is conformationally stable. Some degree of tilt of the beta-barrel is observed relative to the bilayer plane. The greatest degree of conformational flexibility is seen in the extracellular loops. A complex network of fluctuating H-bonds is formed between the active site residues, such that the Asp210-His212 interaction is maintained throughout, whereas His212 and Asp83 are often bridged by a water molecule. This supports a catalytic mechanism whereby Asp83 and His212 bind a water molecule that attacks the peptide carbonyl. A configuration yielded by docking calculations of OmpT simulation snapshots and a model substrate peptide Ala-Arg-Arg-Ala was used as the starting point for an extended Huckel calculation on the docked peptide. These placed the lowest unoccupied molecular orbital mainly on the carbon atom of the central C=O in the scissile peptide bond, thus favoring attack on the central peptide by the water held by residues Asp83 and His212. The trajectories of water molecules reveal exchange of waters between the intracellular face of the membrane and the interior of the barrel but no exchange at the extracellular mouth. This suggests that the pore-like region in the center of OmpT may enable access of water to the active site from below. The simulations appear to reveal the presence of specific lipid interaction sites on the surface of the OmpT barrel. This reveals the ability of extended MD simulations to provide meaningful information on protein-lipid interactions.
Collapse
Affiliation(s)
- Marc Baaden
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
44
|
Robillot C, Hennion MC. Issues arising when interpreting the results of the protein phosphatase 2A inhibition assay for the monitoring of microcystins. Anal Chim Acta 2004. [DOI: 10.1016/j.aca.2004.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Yang J, Swaminathan CP, Huang Y, Guan R, Cho S, Kieke MC, Kranz DM, Mariuzza RA, Sundberg EJ. Dissecting Cooperative and Additive Binding Energetics in the Affinity Maturation Pathway of a Protein-Protein Interface. J Biol Chem 2003; 278:50412-21. [PMID: 14514664 DOI: 10.1074/jbc.m306848200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
When two proteins associate they form a molecular interface that is a structural and energetic mosaic. Within such interfaces, individual amino acid residues contribute distinct binding energies to the complex. In combination, these energies are not necessarily additive, and significant positive or negative cooperative effects often exist. The basis of reliable algorithms to predict the specificities and energies of protein-protein interactions depends critically on a quantitative understanding of this cooperativity. We have used a model protein-protein system defined by an affinity maturation pathway, comprising variants of a T cell receptor Vbeta domain that exhibit an overall affinity range of approximately 1500-fold for binding to the superantigen staphylococcal enterotoxin C3, in order to dissect the cooperative and additive energetic contributions of residues within an interface. This molecular interaction has been well characterized previously both structurally, by x-ray crystallographic analysis, and energetically, by scanning alanine mutagenesis. Through analysis of group and individual maturation and reversion mutations using surface plasmon resonance spectroscopy, we have identified energetically important interfacial residues, determined their cooperative and additive energetic properties, and elucidated the kinetic and thermodynamic bases for molecular evolution in this system. The summation of the binding free energy changes associated with the individual mutations that define this affinity maturation pathway is greater than that of the fully matured variant, even though the affinity gap between the end point variants is relatively large. Two mutations in particular, both located in the complementarity determining region 2 loop of the Vbeta domain, exhibit negative cooperativity.
Collapse
Affiliation(s)
- Jianying Yang
- Center for Advanced Research in Biotechnology, W. M. Keck Laboratory for Structural Biology, University of Maryland Biotechnology Institute, Rockville, Maryland 20850, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sundberg EJ, Andersen PS, Schlievert PM, Karjalainen K, Mariuzza RA. Structural, energetic, and functional analysis of a protein-protein interface at distinct stages of affinity maturation. Structure 2003; 11:1151-61. [PMID: 12962633 DOI: 10.1016/s0969-2126(03)00187-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Due to a paucity of studies that synthesize structural, energetic, and functional analyses of a series of protein complexes representing distinct stages in an affinity maturation pathway, the biophysical basis for the molecular evolution of protein-protein interactions is poorly understood. Here, we combine crystal structures and binding-free energies of a series of variant superantigen (SAG)-major histocompatibility complex (MHC) class II complexes exhibiting increasingly higher affinity to reveal that this affinity maturation pathway is controlled largely by two biophysical factors: shape complementarity and buried hydrophobic surface. These factors, however, do not contribute equivalently to the affinity maturation of the interface, as the former dominates the early steps of the maturation process while the latter is responsible for improved binding in later steps. Functional assays reveal how affinity maturation of the SAG-MHC interface corresponds to T cell activation by SAGs.
Collapse
Affiliation(s)
- Eric J Sundberg
- Center for Advanced Research in Biotechnology, W.M. Keck Laboratory for Structural Biology, University of Maryland Biotechnology Institute, 9600 Gudelsky Drive, Rockville, MD 20850, USA.
| | | | | | | | | |
Collapse
|
47
|
Hilpert K, Wessner H, Schneider-Mergener J, Welfle K, Misselwitz R, Welfle H, Hocke AC, Hippenstiel S, Höhne W. Design and characterization of a hybrid miniprotein that specifically inhibits porcine pancreatic elastase. J Biol Chem 2003; 278:24986-93. [PMID: 12700244 DOI: 10.1074/jbc.m212152200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studying protease/peptide inhibitor interactions is a useful tool for understanding molecular recognition in general and is particularly relevant for the rational design of inhibitors with therapeutic potential. An inhibitory peptide (PMTLEYR) derived from the third domain of turkey ovomucoid inhibitor and optimized for specific porcine pancreatic elastase inhibition was introduced into an inhibitor scaffold to increase the proteolytic stability of the peptide. The trypsin-specific squash inhibitor EETI II from Ecballium elaterium was chosen as the scaffold. The resulting hybrid inhibitor HEI-TOE I (hybrid inhibitor from E. elaterium and the optimized binding loop of the third domain of turkey ovomucoid inhibitor) shows a specificity and affinity to porcine pancreatic elastase similar to the free inhibitory peptide but with significantly higher proteolytic stability. Isothermal titration calorimetry revealed that elastase binding of HEI-TOE I occurs with a small unfavorable positive enthalpy contribution, a large favorable positive entropy change, and a large negative heat capacity change. In addition, the inhibitory peptide and the hybrid inhibitor HEI-TOE I protected endothelial cells against degradation following treatment with porcine pancreatic elastase.
Collapse
Affiliation(s)
- Kai Hilpert
- Humboldt University of Berlin, Medical Faculty Charité, Department of Biochemistry, Monbijoustrasse 2, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lehoux JG, Mathieu A, Lavigne P, Fleury A. Adrenocorticotropin regulation of steroidogenic acute regulatory protein. Microsc Res Tech 2003; 61:288-99. [PMID: 12768544 DOI: 10.1002/jemt.10338] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We studied the effect of the adrenocorticotropin hormone (ACTH) on the expression of the steroidogenic acute regulatory protein (StAR) in vivo in rat and hamster adrenals and also in transfection experiments using COS-1 cells. In vivo, ACTH increased the level of StAR mRNA within 30-60 minutes and also increased the quantity of StAR, but with a 2-3-hour delay. ACTH induced the formation of many acidic StAR species as analyzed by two-dimensional gel electrophoresis and immunoblotting. In the transfection experiments, (Bu)(2)-cAMP also induced the formation of many acidic species for the hamster StAR; in COS-1 cells, StAR is phosphorylated mainly on serine (S) residue(s). When alanine (A) was substituted for serine, S13A, S185A, and S194A mutants had decreased StAR activity compared to wildtype, thus determining the importance of these amino acid residues in StAR action. The full-length WT, N46-truncated StAR lacking its mitochondrial import sequence, and N46-S194A had similar activities, whereas N46-S185A had completely lost its activity. Our results suggest that S194, but not S185, functions in association with the mitochondrial import sequence for the initiation of StAR activation. Further studies showed that S185 is implicated in salt bridge stability, not in StAR phosphorylation, suggesting its importance for StAR folding. Thermodynamic calculations of the hamster StAR homology model based on MLN64 show that StAR can partially unfold to bind cholesterol and serve as a rapid transfer mechanism for eventual translocation into mitochondria. This is supportive of a StAR functioning either outside the mitochondria or in the mitochondrial intermembrane space.
Collapse
Affiliation(s)
- Jean-Guy Lehoux
- Department of Biochemistry, Faculty of Medicine, University of Sherbrooke, 3001 12th Avenue North, Sherbrooke, Quebec, Canada J1H 5N4.
| | | | | | | |
Collapse
|
49
|
Graether SP, Gagné SM, Spyracopoulos L, Jia Z, Davies PL, Sykes BD. Spruce budworm antifreeze protein: changes in structure and dynamics at low temperature. J Mol Biol 2003; 327:1155-68. [PMID: 12662938 DOI: 10.1016/s0022-2836(03)00235-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Antifreeze proteins (AFPs) prevent the growth of ice, and are used by some organisms that live in sub-zero environments for protection against freezing. All AFPs are thought to function by an adsorption inhibition process. In order to elucidate the ice-binding mechanism, the structures of several AFPs have been determined, and have been shown to consist of different folds. Recently, the first structures of the highly active insect AFPs have been characterized. These proteins have a beta-helix structure, which adds yet another fold to the AFP family. The 90-residue spruce budworm (Choristoneura fumiferana) AFP consists of a beta-helix with 15 residues per coil. The structure contains two ranks of aligned threonine residues (known as the TXT motif), which were shown by mutagenesis experiments to be located in the ice-binding face. In our previous NMR study of this AFP at 30 degrees C, we found that the TXT face was not optimally defined because of the broadening of NMR resonances potentially due to weak oligomerization. We present here a structure of spruce budworm AFP determined at 5 degrees C, where this broadening is reduced. In addition, the 1H-15N NMR dynamics of the protein were examined at 30 degrees C and 5 degrees C. The results show that the spruce budworm AFP is more structured at 5 degrees C, and support the general observation that AFPs become more rigid as the temperature is lowered.
Collapse
Affiliation(s)
- Steffen P Graether
- Department of Biochemistry, CIHR Group in Structure and Function, University of Alberta, 713, Heritage Medical Research Building, T6G 2H7, Edmonton, Alta., Canada
| | | | | | | | | | | |
Collapse
|
50
|
Welfle K, Misselwitz R, Höhne W, Welfle H. Interaction of epitope-related and -unrelated peptides with anti-p24 (HIV-1) monoclonal antibody CB4-1 and its Fab fragment. J Mol Recognit 2003; 16:54-62. [PMID: 12557239 DOI: 10.1002/jmr.607] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The binding of four epitope-related peptides and three library-derived, epitope-unrelated peptides of different lengths (10-14 amino acids) and sequence by anti-p24 (HIV-1) monoclonal antibody CB4-1 and its Fab fragment was studied by isothermal titration calorimetry. The binding constants K(A) at 25 degrees C vary between 5.1 x 10(7) M (-1) for the strongest and 1.4 x 10(5) M (-1) for the weakest binder. For each of the peptides complex formation is enthalpically driven and connected with unfavorable entropic contributions; however, the ratio of enthalpy and entropy contributions to deltaG(0) differs markedly for the individual peptides. A plot of -deltaH(0) vs -TdeltaS(0) shows a linear correlation of the data for a wide variety of experimental conditions as expected for a process with deltaC(p) much larger than deltaS(0). The dissimilarity of deltaC(p) and deltaS(0) also explains why deltaH(0) and TdeltaS(0) show similar temperature dependences resulting in relatively small changes of deltaG(0) with temperature. The heat capacity changes deltaC(p) upon antibody-peptide complex formation determined for three selected peptides vary only in a small range, indicating basic thermodynamic similarity despite different key residues interacting in the complexes. Furthermore, the comparison of van't Hoff and calorimetric enthalpies point to a non-two-state binding mechanism. Protonation effects were excluded by measurements in buffers of different ionization enthalpies. Differences in the solution conformation of the peptides as demonstrated by circular dichroic measurements do not explain different binding affinities of the peptides; specifically a high helix content in solution is not essential for high binding affinity despite the helical epitope conformation in the crystal structure of p24.
Collapse
Affiliation(s)
- Karin Welfle
- Max-Delbrück-Centrum für Molekulare Medizin, D-13092 Berlin, Germany
| | | | | | | |
Collapse
|