1
|
Luo Y, Jin D, He W, Huang J, Chen A, Qi F. A SiO 2 Microcarrier with an Opal-like Structure for Cross-Linked Enzyme Immobilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14147-14156. [PMID: 34793174 DOI: 10.1021/acs.langmuir.1c02389] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The opal-like SiO2 microcarriers with different pore diameters named opal-SiO2I and opal-SiO2II were synthesized and utilized as microcarriers to immobilize Rhizopus oryzae lipase (ROL) and Aspergillus oryzae α-amylases (AOA). ROL and AOA can be more stably immobilized on the cross-linked SiO2 opals by neopentyl glycol diglycidyl ether (NGDE), which is the first attempt to use it as a cross-linking agent compared with glutaraldehyde. According to the morphology analysis, multiple layers of SiO2 monodisperse microspheres were regularly packed and formed an opal-like structure, and enzymes were well scattered and immobilized throughout the SiO2 opals. The results showed that the performance of enzymes immobilized on opal-SiO2II with a larger specific surface area was much better than that of opal-SiO2I. The enzyme activity of ROL@opal-SiO2II and AOA@opal-SiO2II cross-linked with 1% NGDE increased 5.32 and 9.32 times compared with their free counterpart, respectively. Furthermore, pH and thermal stability and reusability of ROL/AOA@opal-SiO2II were significantly improved and higher than those of ROL/AOA@opal-SiO2I and free enzymes. This study provides an easily obtained microcarrier opal-SiO2II, which shows potential for efficient different enzyme immobilizations and further industrial applications.
Collapse
Affiliation(s)
- Yixian Luo
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Dou Jin
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Wenjin He
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Jianzhong Huang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Aicheng Chen
- Fujian Province University Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Feng Qi
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| |
Collapse
|
2
|
Das S, Karmakar T, Balasubramanian S. Molecular Mechanism behind Solvent Concentration-Dependent Optimal Activity of Thermomyces lanuginosus Lipase in a Biocompatible Ionic Liquid: Interfacial Activation through Arginine Switch. J Phys Chem B 2016; 120:11720-11732. [DOI: 10.1021/acs.jpcb.6b08534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sudip Das
- Chemistry and Physics of
Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Tarak Karmakar
- Chemistry and Physics of
Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of
Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
3
|
Stability and Activity of Porcine Lipase Against Temperature and Chemical Denaturants. Appl Biochem Biotechnol 2014; 174:2711-24. [DOI: 10.1007/s12010-014-1220-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/02/2014] [Indexed: 10/24/2022]
|
4
|
Mahalka AK, Kirkegaard T, Jukola LT, Jäättelä M, Kinnunen PK. Human heat shock protein 70 (Hsp70) as a peripheral membrane protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1344-61. [DOI: 10.1016/j.bbamem.2014.01.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/13/2014] [Accepted: 01/17/2014] [Indexed: 11/28/2022]
|
5
|
Gonçalves KM, Barbosa LR, Lima LMT, Cortines JR, Kalume DE, Leal IC, Mariz e Miranda LS, de Souza RO, Cordeiro Y. Conformational dissection of Thermomyces lanuginosus lipase in solution. Biophys Chem 2014; 185:88-97. [DOI: 10.1016/j.bpc.2013.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/02/2013] [Accepted: 12/04/2013] [Indexed: 01/05/2023]
|
6
|
Karimpil JJ, Melo J, D'Souza S. Hen egg white as a feeder protein for lipase immobilization. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2011.04.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Cruz JC, Pfromm PH, Tomich JM, Rezac ME. Conformational changes and catalytic competency of hydrolases adsorbing on fumed silica nanoparticles: II. Secondary structure. Colloids Surf B Biointerfaces 2010; 81:1-10. [DOI: 10.1016/j.colsurfb.2010.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 06/08/2010] [Indexed: 10/19/2022]
|
8
|
Cruz JC, Pfromm PH, Tomich JM, Rezac ME. Conformational changes and catalytic competency of hydrolases adsorbing on fumed silica nanoparticles: I. Tertiary structure. Colloids Surf B Biointerfaces 2010; 79:97-104. [DOI: 10.1016/j.colsurfb.2010.03.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 03/23/2010] [Accepted: 03/25/2010] [Indexed: 11/25/2022]
|
9
|
Microwave-assisted biosynthesis of glycerol monolaurate in reverse microemulsion system: key parameters and mechanism. Eur Food Res Technol 2010. [DOI: 10.1007/s00217-010-1327-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Influence of glycosylation on the adsorption of Thermomyces lanuginosus lipase to hydrophobic and hydrophilic surfaces. Eur J Pharm Sci 2010; 40:273-81. [PMID: 20380877 DOI: 10.1016/j.ejps.2010.03.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 03/25/2010] [Accepted: 03/30/2010] [Indexed: 11/23/2022]
Abstract
In the pharmaceutical industry, protein drugs are modified by, for instance, glycosylation in order to obtain protein drugs with improved delivery profiles and/or increased stability. The effect of glycosylation on protein adsorption behaviour is one of the stability aspects that must be evaluated during development of glycosylated protein drug products. We have studied the effect of glycosylation on the adsorption behaviour of Thermomyces lanuginosus lipase to hydrophobic and hydrophilic surfaces using total internal reflection fluorescence, surface plasmon resonance, far-UV circular dichroism and fluorescence. Three glyco-variants were used, namely the mono-glycosylated wildtype T. lanuginosus lipase, a non-glycosylated variant and a penta-glycosylated variant, the latter two containing one and nine amino acid substitutions, respectively. All the glycosylations were N-linked and contained no charged sugar residues. Glycosylation did not affect the adsorption of wildtype T. lanuginosus lipase to the hydrophobic surfaces. The number of molecules adsorbing per unit surface area, the structural changes occurring upon adsorption, and the orientation upon adsorption were found to be unaffected by the varying glycosylation. However, the interaction with a hydrophilic surface was different between the three glyco-variants. The penta-glycosylated T. lanuginosus lipase adsorbed, in contrast to the two other glyco-variants. In conclusion, adsorption of T. lanuginosus lipase to hydrophobic surfaces was not affected by N-linked glycosylation. Only penta-glycosylated T. lanuginosus lipase adsorbed to the hydrophilic surface, apparently due to its increased net charge of +3 caused by amino acid substitutions in the primary sequence.
Collapse
|
11
|
|
12
|
Jutila A, Zhu K, Tuominen EKJ, Kinnunen PKJ. Fluorescence spectroscopic characterization of Humicola lanuginosa lipase dissolved in its substrate. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1702:181-9. [PMID: 15488770 DOI: 10.1016/j.bbapap.2004.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 08/04/2004] [Accepted: 08/18/2004] [Indexed: 11/28/2022]
Abstract
The conformational dynamics of Humicola lanuginosa lipases (HLL) and its three mutants were investigated by steady state and time-resolved fluorescence spectroscopy in two different media, aqueous buffer and the substrate triacetin. The fluorescence of the four Trps of the wild-type HLL (wt) reports on the global changes of the whole lipase molecule. In order to monitor conformational changes specifically in the alpha-helical surface loop, the so-called 'lid' of HLL comprised of residues 86-93, the single Trp mutant W89m (W117F, W221H, W260H) was employed. Mutants W89L and W89mN33Q (W117F, W221H, W260H, N33Q) were used to survey the impact of Trp89 and mannose residues, respectively. Based on the data obtained, the following conclusions can be drawn. (i) HLL adapts the 'open' conformation in triacetin, with the alpha-helical surface loop moving so as to expose the active site. (ii) Trp89 contained in the lid plays an unprecedently important role in the structural stability of HLL. (iii) In triacetin, but not in the buffer, the motion of the Trp89 side chain becomes distinguishable from the motion of the lid. (iv) The carbohydrate moiety at Asn33 has only minor effects on the dynamics of Trp89 in the lid as judged from the fluorescence characteristics of the latter residue.
Collapse
Affiliation(s)
- Arimatti Jutila
- Helsinki Biophysics and Biomembrane Group, Institute of Biomedicine/Biochemistry, PO Box 63 (Haartmaninkatu 8), FIN-00014 University of Helsinki, Finland.
| | | | | | | |
Collapse
|
13
|
Acharya P, Rao NM. Stability studies on a lipase from Bacillus subtilis in guanidinium chloride. JOURNAL OF PROTEIN CHEMISTRY 2003; 22:51-60. [PMID: 12739898 DOI: 10.1023/a:1023067827678] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Lipase from Bacillus subtilis is a "lidless" lipase that does not show interfacial activation. Due to exposure of the active site to solvent, the lipase tends to aggregate. We have investigated the solution properties and unfolding of the lipase in guanidinium chloride (GdmCl) to understand its aggregation behavior and stability. Dynamic light scattering (DLS), near- and far-UV circular dichroism, activity and intrinsic fluorescence of lipase suggest that the protein undergoes unfolding between 1 M and 2 M GdmCl. The polarity sensitive dye, 1,1',-bis-(4anilino)naphthalene-5,5"-disulfonic acid (bis-ANS), a probe for hydrophobic pockets, binds cooperatively to the native lipase. An intermediate populated in 1.75 M GdmCl that strongly binds bis-ANS was identified. Tendency of the native protein to aggregate in solution and specific binding to bis-ANS confirms that the lipase has exposed hydrophobic pockets and this surface hydrophobicity strongly influences the unfolding pathway of the lipase in GdmCl.
Collapse
Affiliation(s)
- Priyamvada Acharya
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
14
|
Peters GH. The dynamic response of a fungal lipase in the presence of charged surfactants. Colloids Surf B Biointerfaces 2002. [DOI: 10.1016/s0927-7765(01)00307-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Söderlund T, Zhu K, Jutila A, Kinnunen PK. Effects of betaine on the structural dynamics of Thermomyces (Humicola) lanuginosa lipase. Colloids Surf B Biointerfaces 2002. [DOI: 10.1016/s0927-7765(02)00032-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Hedin EMK, Patkar SA, Vind J, Svendsen A, Hult K, Berglund P. Selective reduction and chemical modification of oxidized lipase cysteine mutants. CAN J CHEM 2002. [DOI: 10.1139/v02-046] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thirteen single-cysteine mutants of the 33 kDa fungal triacylglycerol lipase Thermomyces (formerly Humicola) lanuginosa lipase (TLL, EC 3.1.1.3) were produced and characterized for the purpose of site-directed chemical modification with spectroscopic reporter groups. All cysteine mutants were found to be predominantly blocked by oxidation to disulfides with endogenous cysteine during production. The fraction of lipase molecules with free sulfhydryl groups was analyzed by labeling with N-biotinylaminoethyl methanethiosulfonate, followed by a novel dot-blot method based on biotin-streptavidin interactions. A non-invasive method for the reduction of the introduced cysteine was elaborated for this protein containing three native disulfide bridges. The site-specifically reduced TLL mutants were then labeled with the sulfhydryl-specific reagents 2-(5-dimethylaminonaphth-1-ylsulfonamido)ethyl methanethiosulfonate or (1-oxyl-2,2,5,5-tetramethyl-Δ3-pyrroline-3-methyl) methanethiosulfonate, and studied by fluorescence and electron spin resonance (ESR) spectroscopy.Key words: lipase, cysteine mutant, selective reduction, chemical modification, methanethiosulfonate.
Collapse
|
17
|
Zhu K, Jutila A, Tuominen EK, Patkar SA, Svendsen A, Kinnunen PK. Impact of the tryptophan residues of Humicola lanuginosa lipase on its thermal stability. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1547:329-38. [PMID: 11410289 DOI: 10.1016/s0167-4838(01)00198-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Thermal stability of wild type Humicola lanuginosa lipase (wt HLL) and its two mutants, W89L and the single Trp mutant W89m (W117F, W221H, and W260H), were compared. Differential scanning calorimetry revealed unfolding of HLL at T(d)=74.4 degrees C whereas for W89L and W89m this endotherm was decreased to 68.6 and 62 degrees C, respectively, demonstrating significant contribution of the above Trp residues to the structural stability of HLL. Fluorescence emission spectra revealed the average microenvironment of Trps of wt HLL and W89L to become more hydrophilic at elevated temperatures whereas the opposite was true for W89m. These changes in steady-state emission were sharp, with midpoints (T(m)) at approx. 70.5, 61.0, and 65.5 degrees C for wt HLL, W89L, and W89m, respectively. Both steady-state and time resolved fluorescence spectroscopy further indicated that upon increasing temperature, the local movements of tryptophan(s) in these lipases were first attenuated. However, faster mobilities became evident when the unfolding temperatures (T(m)) were exceeded, and the lipases became less compact as indicated by the increased hydrodynamic radii. Even at high temperatures (up to 85 degrees C) a significant extent of tertiary and secondary structure was revealed by circular dichroism. Activity measurements are in agreement with increased amplitudes of conformational fluctuations of HLL with temperature. Our results also indicate that the thermal unfolding of these lipases is not a two-state process but involves intermediate states. Interestingly, a heating and cooling cycle enhanced the activity of the lipases, suggesting the protein to be trapped in an intermediate, higher energy state. The present data show that the mutations, especially W89L in the lid, contribute significantly to the stability, structure and activity of HLL.
Collapse
Affiliation(s)
- K Zhu
- Helsinki Biophysics and Biomembrane Group, Department of Medical Chemistry, Institute of Biomedicine, University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|