1
|
Gonzalez-Fierro A, Domínguez-Gómez G, Chavez-Blanco A, Duenas-Gonzalez A. Pharmacokinetics and pharmacodynamics of angiogenesis inhibitors used to treat cervical cancer: current and future. Expert Opin Drug Metab Toxicol 2024:1-9. [PMID: 39252168 DOI: 10.1080/17425255.2024.2401586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
INTRODUCTION The treatment of advanced cervical cancer is continuously developing. There is a critical need to explore new treatment options to improve cure rates and make treatment more affordable. Despite efforts in prevention, cervical cancer remains the fourth most common cancer worldwide in terms of both incidence and mortality. AREAS COVERED This article offers an updated and critical analysis of angiogenesis inhibitors used in the treatment of advanced cervical cancer. It should be noted that this is not a systematic review. EXPERT OPINION Bevacizumab is currently the primary antiangiogenic agent used alongside chemotherapy and has become the standard of care for advanced cervical cancer. However, there are still uncertainties regarding the molecular mechanisms and associations in cervical cancer that could help in optimizing the use of Bevacizumab. Factors such as cost, toxicity, and methodological issues in the GOG-240 trial must be considered.
Collapse
Affiliation(s)
- Aurora Gonzalez-Fierro
- Subdireccion de Investigacion Basica, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | | | - Alma Chavez-Blanco
- Subdireccion de Investigacion Basica, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Alfonso Duenas-Gonzalez
- Subdireccion de Investigacion Basica, Instituto Nacional de Cancerologia, Mexico City, Mexico
- Departamento de Medicina Genomica y Toxicología Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| |
Collapse
|
2
|
Tadic S, Martínez A. Nucleic acid cancer vaccines targeting tumor related angiogenesis. Could mRNA vaccines constitute a game changer? Front Immunol 2024; 15:1433185. [PMID: 39081320 PMCID: PMC11286457 DOI: 10.3389/fimmu.2024.1433185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Tumor related angiogenesis is an attractive target in cancer therapeutic research due to its crucial role in tumor growth, invasion, and metastasis. Different agents were developed aiming to inhibit this process; however they had limited success. Cancer vaccines could be a promising tool in anti-cancer/anti-angiogenic therapy. Cancer vaccines aim to initiate an immune response against cancer cells upon presentation of tumor antigens which hopefully will result in the eradication of disease and prevention of its recurrence by inducing an efficient and long-lasting immune response. Different vaccine constructs have been developed to achieve this and they could include either protein-based or nucleic acid-based vaccines. Nucleic acid vaccines are simple and relatively easy to produce, with high efficiency and safety, thus prompting a high interest in the field. Different DNA vaccines have been developed to target crucial regulators of tumor angiogenesis. Most of them were successful in pre-clinical studies, mostly when used in combination with other therapeutics, but had limited success in the clinic. Apparently, different tumor evasion mechanisms and reduced immunogenicity still limit the potential of these vaccines and there is plenty of room for improvement. Nowadays, mRNA cancer vaccines are making remarkable progress due to improvements in the manufacturing technology and represent a powerful potential alternative. Apart from their efficiency, mRNA vaccines are simple and cheap to produce, can encompass multiple targets simultaneously, and can be quickly transferred from bench to bedside. mRNA vaccines have already accomplished amazing results in cancer clinical trials, thus ensuring a bright future in the field, although no anti-angiogenic mRNA vaccines have been described yet. This review aims to describe recent advances in anti-angiogenic DNA vaccine therapy and to provide perspectives for use of revolutionary approaches such are mRNA vaccines for anti-angiogenic treatments.
Collapse
Affiliation(s)
| | - Alfredo Martínez
- Angiogenesis Unit, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| |
Collapse
|
3
|
Tan Y, Chen H, Gou X, Fan Q, Chen J. Tumor vaccines: Toward multidimensional anti-tumor therapies. Hum Vaccin Immunother 2023; 19:2271334. [PMID: 37905395 PMCID: PMC10760370 DOI: 10.1080/21645515.2023.2271334] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023] Open
Abstract
For decades, immunotherapies have offered hope for patients with advanced cancer. However, they show distinct benefits and limited clinical effects. Tumor vaccines have the potential to prime tumor-antigen-specific T cells and induce broad subsets of immune responses, ultimately eradicating tumor cells. Here, we classify tumor vaccines by their anti-tumor mechanisms, which include boosting the immune system, overcoming tumor immunosuppression, and modulating tumor angiogenesis. We focus on multidimensional tumor vaccine strategies using combinations of two or three of the above mechanisms, as these are superior to single-dimensional treatments. This review offers a perspective on tumor vaccine strategies and the future role of vaccine therapies in cancer treatment.
Collapse
Affiliation(s)
- Yuanfang Tan
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huiyuan Chen
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xi Gou
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qiuying Fan
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Juanjuan Chen
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Fatemi SA, Seifi N, Rasekh S, Amiri S, Moezzi SMI, Bagheri A, Fathi S, Negahdaripour M. Immunotherapeutic approaches for HPV-caused cervical cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 129:51-90. [PMID: 35305725 DOI: 10.1016/bs.apcsb.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cervical cancer, the fourth most frequent women cancer worldwide, is mostly (about 99%) associated with human papillomavirus (HPV). Despite availability of three effective prophylactic vaccines for more than one decade and some other preventive measures, it is still the fourth cause of cancer death among women globally. Thus, development of therapeutic vaccines seems essential, which has been vastly studied using different vaccine platforms. Even with very wide efforts during the past years, no therapeutic vaccine has been approved yet, which might be partly due to the complex events and interactions taken place in the tumor microenvironment. On the other hand, immunotherapy has opened its way into the management plans of some cancers. The recent approval of pembrolizumab for the treatment of metastatic/recurrent cervical cancer brings new hopes to the management of this disease, while some other immunotherapeutic approaches are also under investigation either alone or in combination with vaccines. Here, following a summary about HPV and its pathogenesis, cervical cancer therapeutic vaccines would be reviewed. Cell-based vaccines as well as immunomodulation and other modalities used along with vaccines would be also discussed.
Collapse
Affiliation(s)
- Seyed Amirreza Fatemi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nadia Seifi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Rasekh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sogand Amiri
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Iman Moezzi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ashkan Bagheri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Fathi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Liu L, Cai L, Du X, Zhao J, Zhao Y, Zou C, Yu S, Zhang C, Ye P, Su X, Yan X, Li W. Anti-tumour effect of in situ vaccines combined with VEGFR inhibitors in the treatment of metastatic cervical cancer. Int Immunopharmacol 2021; 101:108302. [PMID: 34717193 DOI: 10.1016/j.intimp.2021.108302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/05/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022]
Abstract
Cervical cancer is the fourth most common malignant tumor in the world, for advanced cervical cancer, more than 30% of patients continue to have tumor and relapse or metastasis after the traditional treatment (concurrent chemoradiotherapy), and the response rate of immune checkpoint inhibitor (PD-1) is less 15%, so additional approaches are required. In situ vaccine is a very promising immunotherapy strategy. In the preclinical study, the combination of CPG and anti-Ox40 antibody can completely resolve injection site tumours and distant tumours and leads to the recovery of most mice with lymphoma. However, our early exploration process found that the effect of CpG + OX40 in the treatment of advanced cervical cancer is not ideal. Hence, we explored the anti-tumor effect of CpG + OX40 combined with anti-angiogenic therapy for the first time. The results showed that the combination significantly inhibited the proliferation of primary and secondary tumor volume and prolonged the survival time of mice, compared with the control group, CD3+, CD4 + and CD8 + T cells in the combined group showed an increasing trend. In addition, in terms of metabolism, the anti-vascular effect of anlotinib can significantly reduce the blood supply and metabolic level of tumor, the expression of Ki67 and CD31 in the control group was significantly higher than that in each administration group. In conclusion, our preclinical research results showed that the combination of in situ vaccine and anti-angiogenic therapy has a good anti-tumor effect, and may potentially offer an effective treatment option for patients with advanced cervical cancer.
Collapse
Affiliation(s)
- Lixiao Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Luya Cai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Xuedan Du
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Jinduo Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Ye Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Chengyang Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Shanshan Yu
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Chunhong Zhang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Piaopiao Ye
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Xiaoping Su
- School of Basic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China; Department of Gastroenterology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China.
| | - Xiaojian Yan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China; Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Hospital and Institute of Translation Medicine, Zhejiang University School of Medicine, Hangzhou, PR China.
| | - Wenfeng Li
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
6
|
Nunes SC, Serpa J. Recycling the Interspecific Relations with Epithelial Cells: Bacteria and Cancer Metabolic Symbiosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:77-91. [PMID: 32130694 DOI: 10.1007/978-3-030-34025-4_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Several aspects of the human physiology are controlled by the microbiota that plays a key role in health and disease. In fact, microbial dysbiosis is associated with numerous diseases, including several types of cancer such as colon, gastric, esophageal, pancreatic, laryngeal, breast and gallbladder carcinomas.Metabolic symbiosis between non-malignant cells and the resident microbita is crucial for the host homeostasis. However, cancer cells are able to repurpose the pre-existing metabolic symbiosis, being able to recycle those relations and also create novel metabolic symbiosis, leading to profound alterations on the local microenvironment.In here we will explore some of these symbiotic metabolic interactions between bacteria and non-malignant cells in two different contexts: colon and uterine cervix. The way malignant cells are able to recycle these normal interactions and also create novel types of symbiotic metabolic relations will also be discussed.The knowledge of these complex interactions and recycling mechanisms is of extreme importance for cancer treatment, as new therapeutic targets could be developed.
Collapse
Affiliation(s)
- Sofia C Nunes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal.
| |
Collapse
|
7
|
Shirjang S, Alizadeh N, Mansoori B, Mahmoodpoor A, Kafil HS, Hojjat-Farsangi M, Yousefi M. Promising immunotherapy: Highlighting cytokine-induced killer cells. J Cell Biochem 2018; 120:8863-8883. [PMID: 30556298 DOI: 10.1002/jcb.28250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022]
Abstract
For many years, cancer therapy has appeared to be a challenging issue for researchers and physicians. By the introduction of novel methods in immunotherapy, the prospect of cancer therapy even more explained than before. Cytokine-induced killer (CIK) cell-based immunotherapy demonstrated to have potentiality in improving clinical outcomes and relieving major side effects of standard treatment options. In addition, given the distinctive features such as high safety, low toxicity effects on healthy cells, numerous clinical trials conducted on CIK cells. Due to the shortcomings that observed in CIK cell immunotherapy alone, arising a tendency to make modifications (combined modality therapy or combination therapy) including the addition of various types of cytokines, genetic engineering, combination with immune checkpoints, and so on. In this review, we have tried to bring forth the latest immunotherapy methods and their overview. We have discussed the combination therapies with CIK cells and the conducted clinical trials. This helps the future studies to use integrated therapies with CIK cells as a promising treatment of many types of cancers.
Collapse
Affiliation(s)
- Solmaz Shirjang
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Pierini S, Perales-Linares R, Uribe-Herranz M, Pol JG, Zitvogel L, Kroemer G, Facciabene A, Galluzzi L. Trial watch: DNA-based vaccines for oncological indications. Oncoimmunology 2017; 6:e1398878. [PMID: 29209575 DOI: 10.1080/2162402x.2017.1398878] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/16/2022] Open
Abstract
DNA-based vaccination is a promising approach to cancer immunotherapy. DNA-based vaccines specific for tumor-associated antigens (TAAs) are indeed relatively simple to produce, cost-efficient and well tolerated. However, the clinical efficacy of DNA-based vaccines for cancer therapy is considerably limited by central and peripheral tolerance. During the past decade, considerable efforts have been devoted to the development and characterization of novel DNA-based vaccines that would circumvent this obstacle. In this setting, particular attention has been dedicated to the route of administration, expression of modified TAAs, co-expression of immunostimulatory molecules, and co-delivery of immune checkpoint blockers. Here, we review preclinical and clinical progress on DNA-based vaccines for cancer therapy.
Collapse
Affiliation(s)
- Stefano Pierini
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Ovarian Cancer Research Center (OCRC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Renzo Perales-Linares
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Ovarian Cancer Research Center (OCRC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mireia Uribe-Herranz
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Ovarian Cancer Research Center (OCRC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan G Pol
- Université Paris Descartes/Paris V, France.,Université Pierre et Marie Curie/Paris VI, Paris.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, France.,Université Pierre et Marie Curie/Paris VI, Paris.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP; Paris, France
| | - Andrea Facciabene
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Ovarian Cancer Research Center (OCRC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|