1
|
Jourquin S, Bokma J, De Cremer L, van Leenen K, Vereecke N, Pardon B. Randomized field trial comparing the efficacy of florfenicol and oxytetracycline in a natural outbreak of calf pneumonia using lung reaeration as a cure criterion. J Vet Intern Med 2022; 36:820-828. [PMID: 34994480 PMCID: PMC8965221 DOI: 10.1111/jvim.16348] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 11/29/2022] Open
Abstract
Background Respiratory infections are the main indication for antimicrobial use in calves. Optimal treatment duration currently is unknown, but shorter duration would likely decrease selection for antimicrobial resistance. Hypothesis/Objectives Determine differences in cure rate and healing time between animals treated with florfenicol and oxytetracycline in a natural outbreak of respiratory disease using reaeration observed on thoracic ultrasound examination as healing criterion. Animals Commercial farm housing 130, 3 to 9 month old Belgian blue beef calves. Methods Randomized clinical trial during an outbreak of respiratory disease. Metaphylactic treatment was initiated, randomly treating animals with either florfenicol or oxytetracycline. Ultrasonographic follow‐up was done the first day and every other day for a 14‐day period. At the individual animal level, treatment was discontinued when reaeration of the lungs occurred. Differences in cure rate and healing time were determined. Results Of the 130 animals studied, 67.7% developed a lung consolidation ≥0.5 cm. The mean ultrasonographic healing time was 2.5 days in the florfenicol group compared to 3.1 days in the oxytetracycline group (P = .04). After single treatment, 80.6% and 60.3% had no consolidations in the florfenicol and oxytetracycline groups, respectively (P = .01). A Mycoplasma bovis strain was genetically and phenotypically determined to be susceptible to both antimicrobials. Conclusions and Clinical Importance Ultrasonographic lung reaeration shows potential as a cure criterion to rationalize antimicrobial use for outbreaks of pneumonia. In our study, florfenicol resulted in a faster cure and higher reduction in antimicrobial usage than did oxytetracycline.
Collapse
Affiliation(s)
- Stan Jourquin
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jade Bokma
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Lieze De Cremer
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Katharina van Leenen
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Nick Vereecke
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,PathoSense, Merelbeke, Belgium
| | - Bart Pardon
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
2
|
Genome-Wide Association Study Reveals Genetic Markers for Antimicrobial Resistance in Mycoplasma bovis. Microbiol Spectr 2021; 9:e0026221. [PMID: 34612702 PMCID: PMC8510175 DOI: 10.1128/spectrum.00262-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mycoplasma bovis causes many health and welfare problems in cattle. Due to the absence of clear insights regarding transmission dynamics and the lack of a registered vaccine in Europe, control of an outbreak depends mainly on antimicrobial therapy. Unfortunately, antimicrobial susceptibility testing (AST) is usually not performed, because it is time-consuming and no standard protocol or clinical breakpoints are available. Fast identification of genetic markers associated with acquired resistance may at least partly resolve former issues. Therefore, the aims of this study were to implement a first genome-wide association study (GWAS) approach to identify genetic markers linked to antimicrobial resistance (AMR) in M. bovis using rapid long-read sequencing and to evaluate different epidemiological cutoff (ECOFF) thresholds. High-quality genomes of 100 M. bovis isolates were generated by Nanopore sequencing, and isolates were categorized as wild-type or non-wild-type isolates based on MIC testing results. Subsequently, a k-mer-based GWAS analysis was performed to link genotypes with phenotypes based on different ECOFF thresholds. This resulted in potential genetic markers for macrolides (gamithromycin and tylosin) (23S rRNA gene and 50S ribosomal unit) and enrofloxacin (GyrA and ParC). Also, for tilmicosin and the tetracyclines, previously described mutations in both 23S rRNA alleles and in one or both 16S rRNA alleles were observed. In addition, two new 16S rRNA mutations were possibly associated with gentamicin resistance. In conclusion, this study shows the potential of quick high-quality Nanopore sequencing and GWAS analysis in the evaluation of phenotypic ECOFF thresholds and the rapid identification of M. bovis strains with acquired resistance. IMPORTANCEMycoplasma bovis is a leading cause of pneumonia but also causes other clinical signs in cattle. Since no effective vaccine is available, current M. bovis outbreak treatment relies primarily on the use of antimicrobials. However, M. bovis is naturally resistant to different antimicrobials, and acquired resistance against macrolides and fluoroquinolones is frequently described. Therefore, AST is important to provide appropriate and rapid antimicrobial treatment in the framework of AMR and to prevent the disease from spreading and/or becoming chronic. Unfortunately, phenotypic AST is time-consuming and, due to the lack of clinical breakpoints, the interpretation of AST in M. bovis is limited to the use of ECOFF values. Therefore, the objective of this study was to identify known and potentially new genetic markers linked to AMR phenotypes of M. bovis isolates, exploiting the power of a GWAS approach. For this, we used high-quality and complete Nanopore-sequenced M. bovis genomes of 100 isolates.
Collapse
|
3
|
Monitoring Mycoplasma bovis Diversity and Antimicrobial Susceptibility in Calf Feedlots Undergoing a Respiratory Disease Outbreak. Pathogens 2020; 9:pathogens9070593. [PMID: 32708285 PMCID: PMC7400015 DOI: 10.3390/pathogens9070593] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 01/23/2023] Open
Abstract
Bovine respiratory diseases (BRD) are widespread in veal calf feedlots. Several pathogens are implicated, both viruses and bacteria, one of which, Mycoplasma bovis, is under-researched. This worldwide-distributed bacterium has been shown to be highly resistant in vitro to the main antimicrobials used to treat BRD. Our objective was to monitor the relative prevalence of M. bovis during BRD episodes, its diversity, and its resistance phenotype in relation to antimicrobial use. For this purpose, a two-year longitudinal follow-up of 25 feedlots was organized and 537 nasal swabs were collected on 358 veal calves at their arrival in the lot, at the BRD peak and 4 weeks after collective antimicrobial treatments. The presence of M. bovis was assessed by real-time PCR and culture. The clones isolated were then subtyped (polC subtyping and PFGE analysis), and their susceptibility to five antimicrobials was determined. The course of the disease and the antimicrobials used had no influence on the genetic diversity of the M. bovis strains: The subtype distribution was the same throughout the BRD episode and similar to that already described in France, with a major narrowly-variable subtype circulating, st2. The same conclusion holds for antimicrobial resistance (AMR) phenotypes: All the clones were already multiresistant to the main antimicrobials used (except for fluoroquinolones) prior to any treatments. By contrast, changes of AMR phenotypes could be suspected for Pasteurellaceae in two cases in relation to the treatments registered.
Collapse
|
4
|
Ledger L, Eidt J, Cai HY. Identification of Antimicrobial Resistance-Associated Genes through Whole Genome Sequencing of Mycoplasma bovis Isolates with Different Antimicrobial Resistances. Pathogens 2020; 9:pathogens9070588. [PMID: 32707642 PMCID: PMC7400188 DOI: 10.3390/pathogens9070588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 01/08/2023] Open
Abstract
Antimicrobial resistance (AMR) in Mycoplasma bovis has been previously associated with topoisomerase and ribosomal gene mutations rather than specific resistance-conferring genes. Using whole genome sequencing (WGS) to identify potential new AMR mechanisms for M. bovis, it was found that a 2019 clinical isolate with high MIC (2019-043682) for fluoroquinolones, macrolides, lincosamides, pleuromutilins and tetracyclines had a new core genome multilocus sequencing (cgMLST) type (ST10-like) and 91% sequence similarity to the published genome of M. bovis PG45. Closely related to PG45, a 1982 isolate (1982-M6152) shared the same cgMLST type (ST17), 97.2% sequence similarity and low MIC results. Known and potential AMR- associated genetic events were identified through multiple sequence alignment of the three genomes. Isolate 2019-043682 had 507 genes with non-synonymous mutations (NSMs) and 67 genes disrupted. Isolate 1982-M6152 had 81 NSMs and 20 disruptions. Using functional roles and known mechanisms of antimicrobials, a 55 gene subset was assessed for AMR potential. Seventeen were previously identified from other bacteria as sites of AMR mutation, 38 shared similar functions to them, and 11 contained gene-disrupting mutations. This study indicated that M. bovis may obtain high AMR characteristics by mutating or disrupting other functional genes, in addition to topoisomerases and ribosomal genes.
Collapse
|
5
|
Klein U, de Jong A, Youala M, El Garch F, Stevenin C, Moyaert H, Rose M, Catania S, Gyuranecz M, Pridmore A, Ayling RD. New antimicrobial susceptibility data from monitoring of Mycoplasma bovis isolated in Europe. Vet Microbiol 2019; 238:108432. [PMID: 31648729 DOI: 10.1016/j.vetmic.2019.108432] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/21/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022]
Abstract
Mycoplasma bovis is an important respiratory pathogen of cattle across Europe and is included in the MycoPath pan-European antimicrobial susceptibility monitoring programme. M. bovis strains (232) were isolated from cattle, not recently treated with antimicrobials, at diverse geographical locations in France, Great Britain, Hungary, Italy and Spain during 2014 to 2016. Only one isolate per farm and per outbreak was retained. For each isolate, the MICs of ten antimicrobials were determined in a central laboratory using a broth microdilution method with modified Eaton's medium and incubation at 35 °C ± 1 °C for 24 ± 6 h. MIC50/MIC90 (mg/L) values for the 232 strains were: danofloxacin 0.25/1; enrofloxacin 0.5/8; marbofloxacin 1/4; gamithromycin >64/>64; spiramycin 8/16; tilmicosin >64/>64; tulathromycin >64/>64; tylosin 64/>64; florfenicol 4/8; oxytetracycline 8/32. Minor between-country differences in the MIC90 values were observed for the fluoroquinolones, spiramycin and oxytetracycline, whilst the MIC values for the other compounds were similar. Spain and Italy had the higher MIC90 values for the fluoroquinolones. Compared with the 2010-2012 study (156 isolates) results are similar, with an overall MIC50 increase of at most one doubling dilution for enrofloxacin, spiramycin, tylosin, florfenicol and oxytetracycline. In contrast, the MIC90 value for oxytetracycline decreased from >64 to 32 mg/L. Standardized laboratory methods and interpretive criteria for MIC testing of veterinary mycoplasmas are clearly needed; there are currently no clinical breakpoints available to facilitate data interpretation and correlation of MICs with in vivo efficacy.
Collapse
Affiliation(s)
- Ulrich Klein
- MycoPath Study Group, c/o CEESA, 168 Av de Tervueren, 1150, Brussels, Belgium; Elanco Animal Health, Basingstoke, UK
| | - Anno de Jong
- MycoPath Study Group, c/o CEESA, 168 Av de Tervueren, 1150, Brussels, Belgium; Bayer Animal Health GmbH, Monheim, Germany.
| | - Myriam Youala
- MycoPath Study Group, c/o CEESA, 168 Av de Tervueren, 1150, Brussels, Belgium; Virbac, Carros, France
| | - Farid El Garch
- MycoPath Study Group, c/o CEESA, 168 Av de Tervueren, 1150, Brussels, Belgium; Vetoquinol S.A, Lure, France
| | - Clelia Stevenin
- MycoPath Study Group, c/o CEESA, 168 Av de Tervueren, 1150, Brussels, Belgium; Boehringer Ingelheim Vetmedica, Ingelheim, Germany
| | - Hilde Moyaert
- MycoPath Study Group, c/o CEESA, 168 Av de Tervueren, 1150, Brussels, Belgium; Zoetis, Zaventem, Belgium
| | - Markus Rose
- MycoPath Study Group, c/o CEESA, 168 Av de Tervueren, 1150, Brussels, Belgium; MSD Animal Health Innovation GmbH, Schwabenheim, Germany
| | - Salvatore Catania
- Mycoplasma Unit, Istituto Zooprofilattico Sperimentale delle Venezie, Verona, Italy
| | - Miklós Gyuranecz
- Institute for Veterinary Medical Research CAR-HAS, Budapest, Hungary
| | | | | |
Collapse
|
6
|
Hananeh WM, Momani WMA, Ababneh MM, Abutarbush SM. Mycoplasma bovis arthritis and pneumonia in calves in Jordan: An emerging disease. Vet World 2019; 11:1663-1668. [PMID: 30774255 PMCID: PMC6362338 DOI: 10.14202/vetworld.2018.1663-1668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/25/2018] [Indexed: 01/04/2023] Open
Abstract
Aim: Clinical, microbiological, molecular, and pathological assays were undertaken to characterize an outbreak of increasingly reported signs of unresponsive arthritis and pneumonia of Mycoplasma bovis infection in young calves in Jordan. Materials and Methods: Clinical history of the affected bovine herd was investigated for the presence of respiratory and/or joint problems. Two calves with such history were clinically examined and necropsied. Representative tissues were sent for microbiological, molecular, and pathological examinations for M. bovis infection. Results: The outbreak started in a herd of 220 nursing calves, 2 months before the receiving of two calves for postmortem examination. Clinically, respiratory signs and infection of one or more joints dominated in the affected calves. The morbidity and case fatality rates were 27.27% and 61.7%, respectively. The left carpal joint was markedly swollen in both calves and exhibited necrofibrinous to granulomatous arthritis in varying degrees of severity. The anteroventral lung lobes in both calves were consistently affected and revealed multifocal to coalescing severe necrogranulomatous and fibrinopurulent bronchopneumonia. Microbiological and molecular findings confirmed the pathological examination. Furthermore, bovine viral diarrhea (BVD) was diagnosed in one calf by histopathology and polymerase chain reaction. Conclusion: This investigation reports the first outbreak of M. bovis infection in calves located in Jordan that could occur concurrently with BVD.
Collapse
Affiliation(s)
- Wael M Hananeh
- Department of Veterinary Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box, 3030, Irbid 22110, Jordan
| | - Waleed M Al Momani
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Mustafa M Ababneh
- Department of Basic Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Sameeh M Abutarbush
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|