1
|
Attard MRG, Bowen J, Portugal SJ. Surface texture heterogeneity in maculated bird eggshells. J R Soc Interface 2023; 20:20230293. [PMID: 37434502 PMCID: PMC10336372 DOI: 10.1098/rsif.2023.0293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 06/21/2023] [Indexed: 07/13/2023] Open
Abstract
Many of the world's 10 000 bird species lay coloured or patterned eggs. The large diversity of eggshell patterning among birds, achieved through pigment, has been attributed to a few selective agents such as crypsis, thermoregulation, egg recognition, mate signalling, egg strength and protecting the embryo from UV. Pigmentation may influence the texture of eggshells, which in turn may be important for dealing with water and microbes. We measured surface roughness (Sa, nm), surface skewness (Ssk) and surface kurtosis (Sku), which describe different aspects of surface texture, across 204 bird species with maculated (patterned) eggs and 166 species with immaculate (non-patterned) eggs. Using phylogenetically controlled analyses, we tested whether maculated eggshells have different surface topography between the foreground colour and background colour, and between the background colour of maculated eggshells and the surface of immaculate eggshells. Secondly, we determined to what extent variation in eggshell pigmentation of the foreground and background colour is determined by phylogenetic relatedness, and whether certain life-history traits are important predictors of eggshell surface structure. We show that the surface of maculated eggs consists of a rougher foreground pigment compared to the background pigment across 71% of the 204 bird species (54 families) investigated. Species that lay immaculate eggs showed no difference in surface roughness, kurtosis or skewness compared to background pigment of maculated eggs. The difference in eggshell surface roughness between foreground and background pigmentation was greater among species that occupied dense habitats, such as forests with closed canopies, compared to those that nest in open and semi-open habitats (e.g. cities, deserts, grasslands, open shrubland and seashores). Among maculated eggs, foreground texture was correlated with habitat, parental care, diet, nest location, avian group and nest type, while background texture was correlated with clutch size, annual temperature, development mode and annual precipitation. Surface roughness among immaculate eggs was greatest for herbivores, and species that have larger clutch sizes. Together, this suggests that multiple life-history traits have influenced the evolution of eggshell surface textures in modern birds.
Collapse
Affiliation(s)
- Marie R. G. Attard
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
- School of Engineering & Innovation, Open University, Milton Keynes MK7 6AA, UK
- Mapping and Geographic Information Centre, British Antarctic Survey, Cambridge CB3 0ET, UK
| | - James Bowen
- School of Engineering & Innovation, Open University, Milton Keynes MK7 6AA, UK
| | - Steven J. Portugal
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
- The Natural History Museum, Tring HP23 6AP, UK
| |
Collapse
|
2
|
Malinowska K, Szala K, Podkowa P, Surmacki A. Effect of light intensity in the nest site on eggshell pigmentation in a hole-nesting passerine. Sci Rep 2023; 13:9764. [PMID: 37328505 PMCID: PMC10276044 DOI: 10.1038/s41598-023-36658-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023] Open
Abstract
Daylight is an important factor necessary for the proper embryonic development of birds, which raises the question, what happens when birds nest in relatively dim sites? The study experimentally tested whether there is a relationship between light conditions at the nesting site and the protoporphyrin-based pigmentation in the eggshell of the Great Tit (Parus major). We hypothesised that at lower light levels, eggs are less pigmented to increase the amount of light reaching the embryo. Our study system consisted of two types of nest boxes: "dark", in which the only source of light was the entrance hole, and "bright", which had two additional side windows. Photographs of clutches taken during the incubation period were used to quantify eggshell pigmentation. Multispectral image analyses were performed to measure variables correlating with protoporphyrin content, such as spot brightness, average spot size, spotting coverage, and spot red chroma. Repeatability analysis indicated that eggshell colouration characteristics were significantly and moderately repeatable between eggs from a single clutch, which suggests that they are under genetic and environmental control. However, none of the pigmentation traits differed significantly between the two types of nest boxes. We speculate about other ecological aspects that might have influenced the observed variability in eggshell pigmentation.
Collapse
Affiliation(s)
- Katarzyna Malinowska
- Population Ecology Lab, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
- Department of Avian Biology and Ecology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Klaudia Szala
- Department of Avian Biology and Ecology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Paweł Podkowa
- Department of Avian Biology and Ecology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Adrian Surmacki
- Department of Avian Biology and Ecology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| |
Collapse
|
3
|
Ruiz-Raya F, Noguera JC, Velando A. Covariation between glucocorticoid levels and receptor expression modulates embryo development and postnatal phenotypes in gulls. Horm Behav 2023; 149:105316. [PMID: 36731260 DOI: 10.1016/j.yhbeh.2023.105316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/21/2022] [Accepted: 01/17/2023] [Indexed: 02/01/2023]
Abstract
The hypothalamic-pituitary-adrenocortical axis can translate, through glucocorticoid secretion, the prenatal environment to development to produce phenotypes that match prevailing environmental conditions. However, whether developmental plasticity is modulated by the interaction between circulating glucocorticoids and receptor expression remains unclear. Here, we tested whether covariation between plasma corticosterone (CORT) and glucocorticoid receptor gene (Nr3c1) expression in blood underlies embryonic developmental programming in yellow-legged gulls (Larus michahellis). We examined variations in circulating levels of CORT and the expression and DNA methylation patterns of Nr3c1 in response to two ecologically relevant prenatal factors: adult alarm calls (a cue of predator presence) and changes in prenatal light environment (a cue of competitive disadvantage). We then determined whether embryonic development and postnatal phenotypes were associated with CORT levels and Nr3c1 expression, and explored direct and indirect relationships between the prenatal environment, hormone-receptor covariation, and postnatal phenotypes. Prenatal exposure to alarm calls increased CORT levels and up-regulated Nr3c1 expression in gull chicks, while exposure to light cues reduced both hormone levels and receptor expression. Chicks prenatally exposed to alarm calls showed altered DNA methylation profiles in the Nr3c1 regulatory region, but patterns varied throughout the breeding season and between years. Moreover, our results suggest a negative relationship between DNA methylation and expression in Nr3c1 , at least at specific CpG sites. The interplay between circulating CORT and Nr3c1 expression affected embryo developmental timing and vocalizations, as well as hatchling mass and fitness-relevant behaviours. These findings provide a link between prenatal inputs, glucocorticoid function and phenotypic outcomes, suggesting that hormone-receptor interaction may underlie developmental programming in free-living animals.
Collapse
Affiliation(s)
- Francisco Ruiz-Raya
- Centro de Investigación Mariña, Universidade de Vigo, Grupo de Ecoloxía Animal, Vigo 36310, Spain.
| | - Jose C Noguera
- Centro de Investigación Mariña, Universidade de Vigo, Grupo de Ecoloxía Animal, Vigo 36310, Spain
| | - Alberto Velando
- Centro de Investigación Mariña, Universidade de Vigo, Grupo de Ecoloxía Animal, Vigo 36310, Spain
| |
Collapse
|
4
|
Li X, McLean N, MacIsaac J, Martynenko A, Rathgeber B. Effect of photoperiod during incubation on embryonic temperature, hatch traits and performance of two commercial broiler strains. Poult Sci 2023; 102:102632. [PMID: 37031587 PMCID: PMC10120375 DOI: 10.1016/j.psj.2023.102632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Provision of light during incubation has shown the potential to enhance hatching traits and affect posthatch productivity, physiology, and behavior. In this study, 2 repeated trials were conducted to investigate the effect of photoperiod and strain on the embryo temperature, hatching traits and posthatch growth performance of 2 commercial strains of broilers (Ross 308 and Cobb 500). In each trial, hatching eggs were randomly distributed into 6 incubators with 3 photoperiod treatments: blue LED light for 12 h d-1 (12L:12D) or 18 h d-1 (18L:6D) during entire incubation were compared with no illumination condition (DARK). Data were analyzed as a 3 × 2 factorial arrangement with the trial as the blocking factor. Embryos incubated under 12L:12D and 18L:6D had lower air cell temperature (P < 0.05) than the DARK embryos from d 13 of incubation onward except on the day of candling. The response of air cell temperature to periodic illumination differed between 2 strains. Cobb embryos had lower air cell temperature in 12L:12D than those incubated with 18L:6D from d 16 of incubation onward, whereas lower air cell temperature was found in Ross embryos when illuminated with 18L:6D photoperiod compared to those under 12L:12D. The 12L:12D treatment was associated with improved (P < 0.05) navel closure condition of hatchlings. There were no differences in hatchability, embryo mortality, body weight, or length at hatch among photoperiod groups or its combination with strain. No differences in production parameters were found between DARK and illuminated groups. However, 12L:12D had heavier (P < 0.05) body weight on d 14 of age and higher (P < 0.05) body weight gain than 18L:6D from d 7 to 14 of age. The results of this study indicate that providing blue LED light up to 18 h d-1 has no detrimental effect on production of broilers, however, 12L:12D light regime improved chick quality at hatch compared to DARK and resulted in heavier birds by d 14 compared to 18L:6D.
Collapse
Affiliation(s)
- Xujie Li
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Nancy McLean
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Janice MacIsaac
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Alex Martynenko
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Bruce Rathgeber
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada.
| |
Collapse
|
5
|
Hall CA, Potvin DA, Conroy GC. A new candling procedure for thick and opaque eggs and its application to avian conservation management. Zoo Biol 2022; 42:296-307. [PMID: 36070084 DOI: 10.1002/zoo.21730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/25/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022]
Abstract
The ability to monitor developing avian embryos and their associated vascular system via candling enables the application of important reproductive management techniques. Egg candling facilitates the confirmation of egg viability throughout the incubation process and identification of a precise position on a vein for the safe extraction of blood. Blood samples may then be analysed to retrieve vital health and genetic information to assist in conservation management. However, the thick or opaque egg shell characteristics of some avian species prevents the observation of egg contents using traditional candling methods, thus limiting management options. This paper tests a novel method of preparing thick-shelled or opaque eggs so that traditional egg candling and blood extraction methods may be applied. Eggs from captive emu (Dromaius novaehollandiae, Latham 1790) and southern cassowary (Casuarius casuarius johnsonii, Linnaeus 1758) were obtained, and partial fenestration was performed on two areas of shell either before incubation or at ⅓ of incubation. Hatchability and weight loss were examined as a measure of effect of the fenestration process on the developing embryo. Clear observation of vascular development was successful in 97% of viable fenestrated eggs, without affecting hatchability or weight loss. Blood samples were taken from developing embryos and DNA was successfully extracted for proof of concept of this new technique. The ability to observe vascular development and monitor the developing embryo in thick and opaque eggs will significantly improve both in situ and ex situ population management options such as in ovo sexing in species of concern.
Collapse
Affiliation(s)
- Clancy A Hall
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Dominique A Potvin
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Gabriel C Conroy
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia.,Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
| |
Collapse
|
6
|
Ruiz-Raya F, Noguera JC, Velando A. Light received by embryos promotes postnatal junior phenotypes in a seabird. Behav Ecol 2022. [DOI: 10.1093/beheco/arac079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Light is a salient and variable ecological factor that can impact developmental trajectories of vertebrate embryos, yet whether prenatal light environment can act as an anticipatory cue preparing organisms to cope with postnatal conditions is still unclear. In asynchronous birds, last-laid eggs are particularly exposed to sunlight as parental incubation behavior becomes intermittent after the hatching of senior chicks. Here, we explore whether natural variations in prenatal light exposure shape the distinctive phenotype showed by last-hatched chicks of a semi-precocial seabird, the yellow-legged gull (Larus michahellis), potentially preparing them to cope with the postnatal competitive context. To do this, we manipulated the amount of light received by last-laid eggs (within a natural range) during last stages of embryonic development. Prenatal exposure to light cues promoted the development of the resilient “junior phenotype” exhibited by last-hatched gull chicks, characterized by accelerated hatching, increased begging behavior and a slower growth rate. These developmental and behavioral adjustments were accompanied by down-regulation of genes involved in metabolism and development regulation (SOD2 and TRalpha), as well as changes in the HPA-axis functioning (lower baseline corticosterone and robust adrenocortical response). Junior chicks exposed to light cues during the embryonic development showed longer telomeres during the early postnatal period, suggesting that light-induced adjustments could allow them to buffer the competitive disadvantages associated with hatching asynchrony. Our study provides evidence that postnatal junior phenotypes are, at least in part, prenatally shaped by light cues that act during a critical temporal window of developmental sensitivity.
Collapse
Affiliation(s)
- Francisco Ruiz-Raya
- Centro de Investigación Mariña, Universidade de Vigo, Grupo de Ecoloxía Animal , Vigo 36310 , Spain
| | - Jose C Noguera
- Centro de Investigación Mariña, Universidade de Vigo, Grupo de Ecoloxía Animal , Vigo 36310 , Spain
| | - Alberto Velando
- Centro de Investigación Mariña, Universidade de Vigo, Grupo de Ecoloxía Animal , Vigo 36310 , Spain
| |
Collapse
|
7
|
YALCIN S, Özkan S, Shah T. Incubation Temperature and Lighting: Effect on Embryonic Development, Post-Hatch Growth, and Adaptive Response. Front Physiol 2022; 13:899977. [PMID: 35634161 PMCID: PMC9136109 DOI: 10.3389/fphys.2022.899977] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/18/2022] [Indexed: 11/29/2022] Open
Abstract
During incubation, the content of the egg is converted into a chick. This process is controlled by incubation conditions, which must meet the requirements of the chick embryo to obtain the best chick quality and maximum hatchability. Incubation temperature and light are the two main factors influencing embryo development and post-hatch performance. Because chicken embryos are poikilothermic, embryo metabolic development relies on the incubation temperature, which influences the use of egg nutrients and embryo development. Incubation temperature ranging between 37 and 38°C (typically 37.5–37.8°C) optimizes hatchability. However, the temperature inside the egg called “embryo temperature” is not equal to the incubator air temperature. Moreover, embryo temperature is not constant, depending on the balance between embryonic heat production and heat transfer between the eggshell and its environment. Recently, many studies have been conducted on eggshell and/or incubation temperature to meet the needs of the embryo and to understand the embryonic requirements. Numerous studies have also demonstrated that cyclic increases in incubation temperature during the critical period of incubation could induce adaptive responses and increase the thermotolerance of chickens without affecting hatchability. Although the commercial incubation procedure does not have a constant lighting component, light during incubation can modify embryo development, physiology, and post-hatch behavior indicated by lowering stress responses and fearful behavior and improving spatial abilities and cognitive functions of chicken. Light-induced changes may be attributed to hemispheric lateralization and the entrainment of circadian rhythms in the embryo before the hatching. There is also evidence that light affects embryonic melatonin rhythms associated with body temperature regulation. The authors’ preliminary findings suggest that combining light and cyclic higher eggshell temperatures during incubation increases pineal aralkylamine N-acetyltransferase, which is a rate-limiting enzyme for melatonin hormone production. Therefore, combining light and thermal manipulation during the incubation could be a new approach to improve the resistance of broilers to heat stress. This review aims to provide an overview of studies investigating temperature and light manipulations to improve embryonic development, post-hatch growth, and adaptive stress response in chickens.
Collapse
Affiliation(s)
| | - Sezen Özkan
- *Correspondence: Servet YALCIN, ; Sezen Özkan,
| | | |
Collapse
|
8
|
Holleley CE, Grieve AC, Grealy A, Medina I, Langmore NE. Thicker eggshells are not predicted by host egg ejection behaviour in four species of Australian cuckoo. Sci Rep 2022; 12:6320. [PMID: 35428801 PMCID: PMC9012832 DOI: 10.1038/s41598-022-09872-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/29/2022] [Indexed: 11/30/2022] Open
Abstract
Defences of hosts against brood parasitic cuckoos include detection and ejection of cuckoo eggs from the nest. Ejection behaviour often involves puncturing the cuckoo egg, which is predicted to drive the evolution of thicker eggshells in cuckoos that parasitise such hosts. Here we test this prediction in four Australian cuckoo species and their hosts, using Hall-effect magnetic-inference to directly estimate eggshell thickness in parasitised clutches. In Australia, hosts that build cup-shaped nests are generally adept at ejecting cuckoo eggs, whereas hosts that build dome-shaped nests mostly accept foreign eggs. We analysed two datasets: a small sample of hosts with known egg ejection rates and a broader sample of hosts where egg ejection behaviour was inferred based on nest type (dome or cup). Contrary to predictions, cuckoos that exploit dome-nesting hosts (acceptor hosts) had significantly thicker eggshells relative to their hosts than cuckoos that exploit cup-nesting hosts (ejector hosts). No difference in eggshell thicknesses was observed in the smaller sample of hosts with known egg ejection rates, probably due to lack of power. Overall cuckoo eggshell thickness did not deviate from the expected avian relationship between eggshell thickness and egg length estimated from 74 bird species. Our results do not support the hypothesis that thicker eggshells have evolved in response to host ejection behaviour in Australian cuckoos, but are consistent with the hypothesis that thicker eggshells have evolved to reduce the risk of breakage when eggs are dropped into dome nests.
Collapse
Affiliation(s)
- Clare E Holleley
- Australian National Wildlife Collection, National Research Collections Australia, CSIRO, Canberra, ACT, 2601, Australia.
| | - Alice C Grieve
- Australian National Wildlife Collection, National Research Collections Australia, CSIRO, Canberra, ACT, 2601, Australia
| | - Alicia Grealy
- Australian National Wildlife Collection, National Research Collections Australia, CSIRO, Canberra, ACT, 2601, Australia.,Langmore Group, Research School of Biology, Building 46, Australian National University, Canberra, ACT, 0200, Australia
| | - Iliana Medina
- School of BioSciences, University of Melbourne, Royal Parade, VIC, 3010, Australia
| | - Naomi E Langmore
- Langmore Group, Research School of Biology, Building 46, Australian National University, Canberra, ACT, 0200, Australia.
| |
Collapse
|
9
|
Kulshreshtha G, D’Alba L, Dunn IC, Rehault-Godbert S, Rodriguez-Navarro AB, Hincke MT. Properties, Genetics and Innate Immune Function of the Cuticle in Egg-Laying Species. Front Immunol 2022; 13:838525. [PMID: 35281050 PMCID: PMC8914949 DOI: 10.3389/fimmu.2022.838525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/31/2022] [Indexed: 01/13/2023] Open
Abstract
Cleidoic eggs possess very efficient and orchestrated systems to protect the embryo from external microbes until hatch. The cuticle is a proteinaceous layer on the shell surface in many bird and some reptile species. An intact cuticle forms a pore plug to occlude respiratory pores and is an effective physical and chemical barrier against microbial penetration. The interior of the egg is assumed to be normally sterile, while the outer eggshell cuticle hosts microbes. The diversity of the eggshell microbiome is derived from both maternal microbiota and those of the nesting environment. The surface characteristics of the egg, outer moisture layer and the presence of antimicrobial molecules composing the cuticle dictate constituents of the microbial communities on the eggshell surface. The avian cuticle affects eggshell wettability, water vapor conductance and regulates ultraviolet reflectance in various ground-nesting species; moreover, its composition, thickness and degree of coverage are dependent on species, hen age, and physiological stressors. Studies in domestic avian species have demonstrated that changes in the cuticle affect the food safety of eggs with respect to the risk of contamination by bacterial pathogens such as Salmonella and Escherichia coli. Moreover, preventing contamination of internal egg components is crucial to optimize hatching success in bird species. In chickens there is moderate heritability (38%) of cuticle deposition with a potential for genetic improvement. However, much less is known about other bird or reptile cuticles. This review synthesizes current knowledge of eggshell cuticle and provides insight into its evolution in the clade reptilia. The origin, composition and regulation of the eggshell microbiome and the potential function of the cuticle as the first barrier of egg defense are discussed in detail. We evaluate how changes in the cuticle affect the food safety of table eggs and vertical transmission of pathogens in the production chain with respect to the risk of contamination. Thus, this review provides insight into the physiological and microbiological characteristics of eggshell cuticle in relation to its protective function (innate immunity) in egg-laying birds and reptiles.
Collapse
Affiliation(s)
- Garima Kulshreshtha
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Liliana D’Alba
- Evolutionary Ecology, Naturalis Biodiversity Center, Leiden, Netherlands
| | - Ian C. Dunn
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Maxwell T. Hincke
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
10
|
Ren J, Yang Q, Tang Q, Liu R, Hu J, Li L, Bai L, Liu H. Metabonomics reveals the main small molecules differences between green and white egg shells in ducks. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2021.2024096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jia Ren
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qinglan Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qian Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ruixin Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lili Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Thompson CF, Hodges KE, Mortimer NT, Vrailas-Mortimer AD, Sakaluk SK, Hauber ME. Avian eggshell coloration predicts shell-matrix protoporphyrin content. CAN J ZOOL 2022; 100:77-81. [PMID: 35185156 PMCID: PMC8855982 DOI: 10.1139/cjz-2021-0134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Avian eggshell pigmentation may provide information about a female's physiological condition, in particular her state of oxidative balance. Previously we found that female house wrens (Troglodytes aedon Vieillot, 1809) with lighter, less-maculated, and redder ground-colored shells were older and produced heavier offspring than females laying darker, browner eggs. The strong pro-oxidant protoporphyrin is responsible for this species' eggshell pigmentation, so differences in pigmentary coloration may be related to eggshell protoporphyrin content and reflect female oxidative balance and condition during egg-formation. Therefore, we tested the assumption that egg-surface coloration is related to the amount of protoporphyrin in the shell matrix. We analyzed digital photographs of eggs to determine maculation coverage as a measure of the overall ground coloration of the egg and its red-, green-, and blue-channel pixel values. Pigments were then extracted from these same eggs and analyzed using high-performance liquid chromatography. There was a strong, positive relationship between eggshell redness and protoporphyrin content of eggshells, but no relationship between percent maculation and protoporphyrin content. Thus, when older, larger females deposit more protoporphyrin in their eggshells, this may reflect a tolerance for high levels of circulating protoporphyrin or an effective mechanism for off-loading protoporphyrin into the eggshell matrix.
Collapse
Affiliation(s)
- Charles F Thompson
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Kara E Hodges
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Nathan T Mortimer
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | | | - Scott K Sakaluk
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Mark E Hauber
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Illinois, USA
| |
Collapse
|
12
|
Tainika B, Bayraktar ÖH. Lighted incubation: embryonic development, hatchability and hatching quality of broiler chicks. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2022.1988806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Brian Tainika
- Department of Animal Production and Technologies, Faculty of Ayhan Şahenk Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Özer Hakan Bayraktar
- Department of Animal Science, Faculty of Agriculture, Ege University, İzmir, Turkey
| |
Collapse
|
13
|
Price-Waldman R, Stoddard MC. Avian Coloration Genetics: Recent Advances and Emerging Questions. J Hered 2021; 112:395-416. [PMID: 34002228 DOI: 10.1093/jhered/esab015] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
The colorful phenotypes of birds have long provided rich source material for evolutionary biologists. Avian plumage, beaks, skin, and eggs-which exhibit a stunning range of cryptic and conspicuous forms-inspired early work on adaptive coloration. More recently, avian color has fueled discoveries on the physiological, developmental, and-increasingly-genetic mechanisms responsible for phenotypic variation. The relative ease with which avian color traits can be quantified has made birds an attractive system for uncovering links between phenotype and genotype. Accordingly, the field of avian coloration genetics is burgeoning. In this review, we highlight recent advances and emerging questions associated with the genetic underpinnings of bird color. We start by describing breakthroughs related to 2 pigment classes: carotenoids that produce red, yellow, and orange in most birds and psittacofulvins that produce similar colors in parrots. We then discuss structural colors, which are produced by the interaction of light with nanoscale materials and greatly extend the plumage palette. Structural color genetics remain understudied-but this paradigm is changing. We next explore how colors that arise from interactions among pigmentary and structural mechanisms may be controlled by genes that are co-expressed or co-regulated. We also identify opportunities to investigate genes mediating within-feather micropatterning and the coloration of bare parts and eggs. We conclude by spotlighting 2 research areas-mechanistic links between color vision and color production, and speciation-that have been invigorated by genetic insights, a trend likely to continue as new genomic approaches are applied to non-model species.
Collapse
|
14
|
Providing colored photoperiodic light stimulation during incubation: 1. Effects on embryo development and hatching performance in broiler hatching eggs. Poult Sci 2021; 100:101336. [PMID: 34298385 PMCID: PMC8322468 DOI: 10.1016/j.psj.2021.101336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 11/23/2022] Open
Abstract
Providing lighting schedule during incubation has been shown to improve chick quality and reduce stress posthatch. This study was conducted to evaluate the effects of providing light of different colors during incubation on embryo development, air cell temperature, the spread of hatch, and hatching performance. Four batches of eggs (n = 2,176, 1,664, 1,696 and 1,600) from Ross 308 broiler breeders were used in the experiment. In each trial, eggs were randomly distributed into 4 lighting treatments. The incubation lighting treatments included: incubated under dark as control, illuminated with white, red or blue lights for 12 h daily. There were no incubation lighting treatment differences in embryo development, the spread of hatch, hatchability, embryo mortality, hatch weight, chick length, navel closure quality, yolk-free body weight, or relative spleen weight. However, embryos incubated under red light had lower average air cell temperature than those in dark, white or blue light treatments. This finding may suggest higher melatonin secretion during the scotophase when illuminated with red light. Male chicks incubated under dark had a higher bursa of Fabricius weight than males illuminated with blue light. In conclusion, these results suggest that the red, white and blue light stimulation during incubation had no negative effects on hatchability, embryo mortality, spread of hatch or day-old chick quality, but may have potential impacts on immunity and energy metabolism in broiler embryos.
Collapse
|
15
|
Reproductive aspects of Japanese quails (Coturnix coturnix japonica) hatched from eggs incubated under different light colors. Theriogenology 2021; 170:67-76. [PMID: 33992886 DOI: 10.1016/j.theriogenology.2021.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 11/21/2022]
Abstract
The objective of this study was to evaluate the effect of exposure to different colors of light during egg incubation on the reproductive parameters of male and female Japanese quails. A total of 1776 eggs were incubated under four lighting conditions for 24 h a day during the entire incubation period: white LEDs, green LEDs, red LEDs and darkness (control). The experimental design was a randomized block (incubation time) with four treatments of six replicates of two cages each. After hatching, the birds were housed in brood cages with 18 birds each to 35 days of age, when they were sexed and transferred to production cages for evaluation of reproductive parameters. After the onset of laying, the number of eggs in each cage was recorded daily, and the values were used to obtain the age of the females at first egg and at 80% laying. At 35 and 60 days of age, several birds from each cage were euthanized for anatomical and histological evaluation of the gonads. Two females from each cage were weighed every three days until 60 days of age to determine the growth curve. After 60 days, eggs from each cage were collected and assessed for external and internal quality. At 70, 74 and 78 days of age, semen collection was performed and seminal quality was evaluated. Then, the males were transferred to cages containing 9 females for the fertility test. Hatchability was higher (P < 0.05) in eggs incubated in the dark and under the red LED. The age of maximum growth was higher (P < 0.05) in birds from eggs incubated in the dark and under the white LED. There was no difference (P > 0.05) in the anatomical and histological characteristics of the testicles between the groups incubated under different light colors, except for the diameter of the seminiferous tubules, which was greater (P = 0.05) in the dark and in the white LED groups. There was no effect (P > 0.05) of light color during incubation on the productive index or egg quality of adult birds. There was also no effect (P > 0.05) on sperm quality, except for sperm motility, the values of which were higher (P < 0.05) in birds from eggs incubated in different colors of light. However, this difference was not sufficient to significantly (P > 0.05) influence bird fertility. It is concluded that under the studied conditions, the incubation of quail eggs under white, red, and green LED lamps does not influence the reproductive characteristics of the quails.
Collapse
|
16
|
Liu H, Hu J, Guo Z, Fan W, Xu Y, Liang S, Liu D, Zhang Y, Xie M, Tang J, Huang W, Zhang Q, Xi Y, Li Y, Wang L, Ma S, Jiang Y, Feng Y, Wu Y, Cao J, Zhou Z, Hou S. A single nucleotide polymorphism variant located in the cis-regulatory region of the ABCG2 gene is associated with mallard egg colour. Mol Ecol 2021; 30:1477-1491. [PMID: 33372351 DOI: 10.1111/mec.15785] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 12/30/2022]
Abstract
Avian egg coloration is shaped by natural selection, but its genetic basis remains unclear. Here, we used genome-wide association analysis and identity by descent to finely map green egg colour to a 179-kb region of Chr4 based on the resequencing of 352 ducks (Anas platyrhynchos) from a segregating population resulting from the mating of Pekin ducks (white-shelled eggs) and mallards (green-shelled eggs). We further narrowed the candidate region to a 30-kb interval by comparing genome divergence in seven indigenous duck populations. Among the genes located in the finely mapped region, only one transcript of the ABCG2 gene (XM_013093252.2) exhibited higher uterine expression in green-shelled individuals than in white-shelled individuals, as supported by transcriptome data from four populations. ABCG2 has been reported to encode a protein that functions as a membrane transporter for biliverdin. Sanger sequencing of the whole 30-kb candidate region (Chr4: 47.41-47.44 Mb) and a plasmid reporter assay helped to identify a single nucleotide polymorphism (Chr4: 47,418,074 G>A) located in a conserved predicted promoter region whose variation may alter ABCG2 transcription activity. We provide a useful molecular marker for duck breeding and contribute data to the research on ecological evolution based on egg colour patterns among birds.
Collapse
Affiliation(s)
- Hehe Liu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jian Hu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhanbao Guo
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenlei Fan
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaxi Xu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Suyun Liang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dapeng Liu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunsheng Zhang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ming Xie
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Tang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Huang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Zhang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Xi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yanying Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lei Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shengchao Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yong Jiang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yulong Feng
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongbao Wu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junting Cao
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhengkui Zhou
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuisheng Hou
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Photobiomodulation of avian embryos by red laser. Lasers Med Sci 2020; 36:1177-1189. [PMID: 33011859 DOI: 10.1007/s10103-020-03152-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
The current research focuses on the effect of variable doses of red laser on the chick embryonic development. He-Ne laser of 632-nm wavelength was used as an irradiation source in the first 48 h post-laying of chicken eggs. We have used five different doses: 2, 1, 0.3, 0.2, and 0.1 mJ/cm2 that needed a time range for about 400-20 s. Those irradiated embryos were left for additional 11 days for incubation in normal conditions, where they are blindly studied after the 11th day. Light microscopy was used in this study to investigate the histological and pathological features of the different experimental groups compared to the control one. However, electron microcopy was utilized to trace the apoptotic distribution in the developmental embryos. Minor abnormalities that are dependent on the laser dose have been shown in the irradiated embryos when compared to the sham group, where the highest laser dose showed about 12% embryonic development anomalies when related to the other irradiated groups. Irradiated embryos were found to express more INF-γ and IL-2 as circulating cytokines relative to the unexposed group, where the levels of IL-2 were highly significantly increased by all laser doses (0.3 mJ/cm2 light dose recipient group showed significant increase only when compared to the control group). IFN-γ levels were significantly increased as well by light doses above 0.2 mJ/cm2. This IFN-γ increase trend seemed to be laser dose-dependent. Simultaneously, these combined results propose the ability of high laser doses in inducing incurable changes in the embryonic development and consequently such alterations can have potential therapeutic applications through what is known as photobiomodulation.
Collapse
|
18
|
Ladouce M, Barakat T, Su BL, Deparis O, Mouchet SR. Scattering of ultraviolet light by avian eggshells. Faraday Discuss 2020; 223:63-80. [PMID: 32719833 DOI: 10.1039/d0fd00034e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eggshells are essential for the reproduction of birds since the optical properties of shells may have an impact on biological functions such as heating and UV protection, recognition by parents or camouflage. Whereas ultraviolet reflection by some bird eggshells has been recently described, its physical origin remains poorly understood. In this study, we identified a porous structure in eggshells. Using Mie scattering modelling, we found it was most likely responsible for reflectance peaks (intensities of ca. 20-50%) observed in the near-UV range. These peaks were observed by spectrophotometric measurements from eggshells of several breeds of hen, one breed of duck and one breed of quail. This optical response was interpreted in terms of the distinct visual perception of hens and humans: eggshells appearing achromatic for humans proved to be chromatic for hens. Fluorescence emission from these eggs was also characterised and attributed to the presence of protoporphyrin IX and biliverdin IXα in the shells. Electron microscopy observations revealed the presence of pores within the so-called calcified shell part (i.e., at depths between ca. 20 μm and ca. 240 μm from the eggshell's outer surface). Mercury intrusion porosimetry allowed us to quantify the pore size distribution. Simulations of the UV response of this porous structure using Mie scattering theory as well as an effective approach accounting for multiple scattering indicate that these pores are responsible for the backscattering peaks observed in the UV range, in the case of beige hen eggshells. Due to the similarities between the pore size distributions observed for beige hen eggshells and other investigated poultry eggshells, we expect Mie backscattering to be the origin of the UV response of the eggshells of many other bird species.
Collapse
Affiliation(s)
- Mathieu Ladouce
- Department of Physics, Namur Institute of Structured Matter (NISM), University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium.
| | | | | | | | | |
Collapse
|
19
|
Morales J. Eggshell Biliverdin as an Antioxidant Maternal Effect. Bioessays 2020; 42:e2000010. [DOI: 10.1002/bies.202000010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/25/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Judith Morales
- National Museum of Natural SciencesSpanish National Research Council (CSIC) c/ José Gutiérrez Abascal 2 Madrid 28006 Spain
| |
Collapse
|
20
|
A Nondestructive Eggshell Thickness Measurement Technique Using Terahertz Waves. Sci Rep 2020; 10:1052. [PMID: 31974471 PMCID: PMC6978418 DOI: 10.1038/s41598-020-57774-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/02/2020] [Indexed: 12/03/2022] Open
Abstract
Eggshells play a number of important roles in the avian and reptile kingdom: protection of internal contents and as a major source of minerals for developing embryos. However, when researching these respective roles, eggshell thickness measurement remains a bottleneck due to the lack of a non-destructive measurement techniques. As a result, many avian and reptile research protocols omit consideration of eggshell thickness bias on egg or embryo growth and development. Here, we validate a non-destructive method to estimate eggshell thickness based on terahertz (THz) reflectance spectroscopy using chicken white coloured eggs. Since terahertz waves are reflected from outer air-eggshell interface, as well as the inner eggshell-membrane boundary, the resulting interference signals depend on eggshell thickness. Thus, it is possible to estimate shell thickness from the oscillation distance in frequency-domain. A linear regression-based prediction model for non-destructive eggshell thickness measurement was developed, which had a coefficient of determination (R2) of 0.93, RMSEP of 0.009, RPD of 3.45 and RER 13.67. This model can estimate eggshell thickness to a resolution of less than 10 μm. This method has the potential to expand the protocols in the field of avian and reptile research, as well as be applied to industrial grading of eggs.
Collapse
|
21
|
The global distribution of avian eggshell colours suggest a thermoregulatory benefit of darker pigmentation. Nat Ecol Evol 2019; 4:148-155. [DOI: 10.1038/s41559-019-1003-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 09/11/2019] [Indexed: 01/18/2023]
|
22
|
Abstract
Implementing a photoperiod during incubation has been shown to be a potential next step to removing one more stressor for newly hatched poultry species. The distribution of hatch over time is a parameter that may be influenced by photoperiod that could benefit from a photoperiod but has not been studied at this time and is the objective of this paper. The impact on hatch rate for three strains of chicken, Barred Plymouth Rock (BR), Lohmann Brown (LB) and Lohmann Lite (LL), was measured following the provision of a 12L : 12D (12 h light : 12 h dark) photoperiod starting at 0, 9 or 17 days of incubation and compared with incubation in the dark. The cumulative number of chicks hatched eggs at four points in time (489, 498, 507 and 516 h of incubation) was analysed using repeated measures analysis in a 3 × 4 factorial arrangement of treatments. Repeated measures analysis was done to determine the main and interaction effects of photoperiod and bird strain, and a regression analysis was used to determine how these effects evolved over time. Lohmann Brown embryos provided a 12L : 12D photoperiod throughout incubation were first to reach 50% of total chicks hatched and rate of hatch from 50% to 75% of total chicks hatched as well. As the LB chicks did not begin to hatch earlier or finish later, the LB strain was the most synchronised when provided a 12L : 12D photoperiod from the beginning of incubation. Similar results were found for LL, but no difference on the percentage hatched over time was found when provided the 12L : 12D photoperiod at the beginning of incubation or at day 9. The BR strain only showed a significant difference in hatch window synchronisation when provided a 12L : 12D photoperiod at day 9 of incubation. These results indicate that the strain of chicken impacts the hatch window, and each strain responds to a photoperiod during incubation differently. This information could be useful for hatchery managers to deal with different strains of chicken for incubation.
Collapse
|
23
|
Ostertag E, Scholz M, Klein J, Rebner K, Oelkrug D. Pigmentation of White, Brown, and Green Chicken Eggshells Analyzed by Reflectance, Transmittance, and Fluorescence Spectroscopy. ChemistryOpen 2019; 8:1084-1093. [PMID: 31406655 PMCID: PMC6682939 DOI: 10.1002/open.201900154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/24/2019] [Indexed: 12/19/2022] Open
Abstract
We report on the reflectance, transmittance and fluorescence spectra (λ=200-1200 nm) of four types of chicken eggshells (white, brown, light green, dark green) measured in situ without pretreatment and after ablation of 20-100 μm of the outer shell regions. The color pigment protoporphyrin IX (PPIX) is embedded in the protein phase of all four shell types as highly fluorescent monomers, in the white and light green shells additionally as non-fluorescent dimers, and in the brown and dark green shells mainly as non-fluorescent poly-aggregates. The green shell colors are formed from an approximately equimolar mixture of PPIX and biliverdin. The axial distribution of protein and colorpigments were evaluated from the combined reflectances of both the outer and inner shell surfaces, as well as from the transmittances. For the data generation we used the radiative transfer model in the random walk and Kubelka-Munk approaches.
Collapse
Affiliation(s)
- Edwin Ostertag
- Process Analysis and Technology (PA&T)Reutlingen UniversityAlteburgstr. 15072762ReutlingenGermany
| | - Miriam Scholz
- Process Analysis and Technology (PA&T)Reutlingen UniversityAlteburgstr. 15072762ReutlingenGermany
| | - Julia Klein
- Process Analysis and Technology (PA&T)Reutlingen UniversityAlteburgstr. 15072762ReutlingenGermany
| | - Karsten Rebner
- Process Analysis and Technology (PA&T)Reutlingen UniversityAlteburgstr. 15072762ReutlingenGermany
| | - Dieter Oelkrug
- Institute of Physical and Theoretical ChemistryUniversity of TübingenAuf der Morgenstelle 1872076TübingenGermany
| |
Collapse
|
24
|
Parental Effects and Climate Change: Will Avian Incubation Behavior Shield Embryos from Increasing Environmental Temperatures? Integr Comp Biol 2019; 59:1068-1080. [DOI: 10.1093/icb/icz083] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abstract
A major driver of wildlife responses to climate change will include non-genomic effects, like those mediated through parental behavior and physiology (i.e., parental effects). Parental effects can influence lifetime reproductive success and survival, and thus population-level processes. However, the extent to which parental effects will contribute to population persistence or declines in response to climate change is not well understood. These effects may be substantial for species that exhibit extensive parental care behaviors, like birds. Environmental temperature is important in shaping avian incubation behavior, and these factors interact to determine the thermal conditions embryos are exposed to during development, and subsequently avian phenotypes and secondary sex ratios. In this article, we argue that incubation behavior may be an important mediator of avian responses to climate change, we compare incubation strategies of two species adapted to different thermal environments nesting in extreme heat, and we present a simple model that estimates changes in egg temperature based on these incubation patterns and predicted increases in maximum daily air temperature. We demonstrate that the predicted increase in air temperature by 2100 in the central USA will increase temperatures that eggs experience during afternoon off-bouts and the proportion of nests exposed to lethal temperatures. To better understand how species and local adaptations and behavioral-plasticity of incubation behavior will contribute to population responses to climate change comparisons are needed across more avian populations, species, and thermal landscapes.
Collapse
|
25
|
El-Hussein A, Kasem MA, Elfaham MM, Saad A, Hamblin MR. WITHDRAWN: Effect of He-Ne laser irradiation on embryonic development in chicken eggs. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019:S0079-6107(19)30074-4. [PMID: 31077705 DOI: 10.1016/j.pbiomolbio.2019.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/28/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). These articles are retracted at the request of the authors. The joint Editors-in-Chief agree with this decision.
Collapse
Affiliation(s)
- A El-Hussein
- The National Institute of Laser Enhanced Science, Cairo University, Egypt
| | - M A Kasem
- The National Institute of Laser Enhanced Science, Cairo University, Egypt
| | | | - A Saad
- Faculty of Science, Cairo University, Egypt
| | - M R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
26
|
Jackson D, Thompson JE, Hemmings N, Birkhead TR. Common guillemot ( Uria aalge) eggs are not self-cleaning. ACTA ACUST UNITED AC 2018; 221:jeb.188466. [PMID: 30322981 DOI: 10.1242/jeb.188466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/03/2018] [Indexed: 11/20/2022]
Abstract
Birds are arguably the most evolutionarily successful extant vertebrate taxon, in part because of their ability to reproduce in virtually all terrestrial habitats. Common guillemots, Uria aalge, incubate their single egg in an unusual and harsh environment; on exposed cliff ledges, without a nest, and in close proximity to conspecifics. As a consequence, the surface of guillemot eggshells is frequently contaminated with faeces, dirt, water and other detritus, which may impede gas exchange or facilitate microbial infection of the developing embryo. Despite this, guillemot chicks survive incubation and hatch from eggs heavily covered with debris. To establish how guillemot eggs cope with external debris, we tested three hypotheses: (1) contamination by debris does not reduce gas exchange efficacy of the eggshell to a degree that may impede normal embryo development; (2) the guillemot eggshell surface is self-cleaning; (3) shell accessory material (SAM) prevents debris from blocking pores, allowing relatively unrestricted gas diffusion across the eggshell. We showed that natural debris reduces the conductance of gases across the guillemot eggshell by blocking gas exchange pores. Despite this problem, we found no evidence that guillemot eggshells are self-cleaning, but instead showed that the presence of SAM on the eggshell surface largely prevents pore blockages from occurring. Our results demonstrate that SAM is a crucial feature of the eggshell surface in a species with eggs that are frequently in contact with debris, acting to minimise pore blockages and thus ensure a sufficient rate of gas diffusion for embryo development.
Collapse
Affiliation(s)
- Duncan Jackson
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Jamie E Thompson
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Nicola Hemmings
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Timothy R Birkhead
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
27
|
Abstract
The proteins and pigment of the eggshell of the Siamese crocodile (Crocodylus siamensis) were analysed. For proteomic analysis, various decalcification methods were used when the two main surface layers were analyzed. These layers are important for antimicrobial defense of egg (particularly the cuticle). We found 58 proteins in both layers, of which 4 were specific for the cuticle and 26 for the palisade (honeycomb) layer. Substantial differences between proteins in the eggshell of crocodile and previously described birds' eggshells exist (both in terms of quality and quantity), however, the entire proteome of Crocodilians has not been described yet. The most abundant protein was thyroglobulin. The role of determined proteins in the eggshell of the Siamese crocodile is discussed. For the first time, the presence of porphyrin pigment is reported in a crocodilian eggshell, albeit in a small amount (about 2 to 3 orders of magnitude lower than white avian eggs).
Collapse
|
28
|
Gómez J, Ramo C, Stevens M, Liñán‐Cembrano G, Rendón MA, Troscianko JT, Amat JA. Latitudinal variation in biophysical characteristics of avian eggshells to cope with differential effects of solar radiation. Ecol Evol 2018; 8:8019-8029. [PMID: 30250681 PMCID: PMC6144973 DOI: 10.1002/ece3.4335] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/08/2018] [Accepted: 06/13/2018] [Indexed: 12/22/2022] Open
Abstract
Solar radiation is an important driver of animal coloration, not only because of the effects of coloration on body temperature but also because coloration may protect from the deleterious effects of UV radiation. Indeed, dark coloration may protect from UV, but may increase the risk of overheating. In addition, the effect of coloration on thermoregulation should change with egg size, as smaller eggs have higher surface-volume ratios and greater convective coefficients than larger eggs, so that small eggs can dissipate heat quickly. We tested whether the reflectance of eggshells, egg spottiness, and egg size of the ground-nesting Kentish plover Charadrius alexandrinus is affected by maximum ambient temperature and solar radiation at breeding sites. We measured reflectance, both in the UV and human visible spectrum, spottiness, and egg size in photographs from a museum collection of plover eggshells. Eggshells of lower reflectance (darker) were found at higher latitudes. However, in southern localities where solar radiation is very high, eggshells are also of dark coloration. Eggshell coloration had no significant relationship with ambient temperature. Spotiness was site-specific. Small eggs tended to be light-colored. Thermal constraints may drive the observed spatial variation in eggshell coloration, which may be lighter in lower latitudes to diminish the risk of overheating as a result of higher levels of solar radiation. However, in southern localities with very high levels of UV radiation, eggshells are of dark coloration likely to protect embryos from more intense UV radiation. Egg size exhibited variation in relation to coloration, likely through the effect of surface area-to-volume ratios on overheating and cooling rates of eggs. Therefore, differential effects of solar radiation on functions of coloration and size of eggshells may shape latitudinal variations in egg appearance in the Kentish plover.
Collapse
Affiliation(s)
- Jesús Gómez
- Departamento de Ecología de HumedalesEstación Biológica de Doñana (EBD‐CSIC)SevillaSpain
| | - Cristina Ramo
- Departamento de Ecología de HumedalesEstación Biológica de Doñana (EBD‐CSIC)SevillaSpain
| | - Martin Stevens
- Centre for Ecology and ConservationCollege of Life and Environmental SciencesUniversity of ExeterPenrynUK
| | - Gustavo Liñán‐Cembrano
- Instituto de Microelectrónica de Sevilla (IMSE‐CNM CSIC/Universidad de Sevilla)SevillaSpain
| | - Miguel A. Rendón
- Departamento de Ecología de HumedalesEstación Biológica de Doñana (EBD‐CSIC)SevillaSpain
| | - Jolyon T. Troscianko
- Centre for Ecology and ConservationCollege of Life and Environmental SciencesUniversity of ExeterPenrynUK
| | - Juan A. Amat
- Departamento de Ecología de HumedalesEstación Biológica de Doñana (EBD‐CSIC)SevillaSpain
| |
Collapse
|
29
|
Abstract
Why are avian eggs ovoid, while the eggs of most other vertebrates are symmetrical? The interaction between an egg and its environment likely drives selection that will shape eggs across evolutionary time. For example, eggs incubated in hot, arid regions face acute exposure to harsh climatic conditions relative to those in temperate zones, and this exposure will differ across nest types, with eggs in open nests being more exposed to direct solar radiation than those in enclosed nests. We examined the idea that the geographical distribution of both egg shapes and nest types should reflect selective pressures of key environmental parameters, such as ambient temperature and the drying capacity of air. We took a comparative approach, using 310 passerine species from Australia, many of which are found in some of the most extreme climates on earth. We found that, across the continent, egg elongation decreases and the proportion of species with domed nests with roofs increases in hotter and drier areas with sparse plant canopies. Eggs are most spherical in open nests in the hottest environments, and most elongate in domed nests in wetter, shadier environments. Our findings suggest that climatic conditions played a key role in the evolution of passerine egg shape.
Collapse
|
30
|
Keeping eggs warm: thermal and developmental advantages for parasitic cuckoos of laying unusually thick-shelled eggs. Naturwissenschaften 2018; 105:10. [PMID: 29294204 DOI: 10.1007/s00114-017-1532-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 02/02/2023]
Abstract
Obligate brood parasites have evolved unusually thick-shelled eggs, which are hypothesized to possess a variety of functions such as resistance to puncture ejection by their hosts. In this study, we tested the hypothesis that obligate brood parasites lay unusually thick-shelled eggs to retain more heat for the developing embryo and thus contribute to early hatching of parasite eggs. By doing so, we used an infrared thermal imaging system as a non-invasive method to quantify the temperature of eggshells of common cuckoos (Cuculus canorus) and their Oriental reed warbler (Acrocephalus orientalis) hosts in an experiment that artificially altered the duration of incubation. Our results showed that cuckoo eggshells had higher temperature than host eggs during incubation, but also less fluctuations in temperature during incubation disturbance. Therefore, there was a thermal and hence a developmental advantage for brood parasitic cuckoos of laying thick-shelled eggs, providing another possible explanation for the unusually thick-shelled eggs of obligate brood parasites and earlier hatching of cuckoo eggs compared to those of the host.
Collapse
|
31
|
D'Alba L, Maia R, Hauber ME, Shawkey MD. The evolution of eggshell cuticle in relation to nesting ecology. Proc Biol Sci 2017; 283:rspb.2016.0687. [PMID: 27488648 DOI: 10.1098/rspb.2016.0687] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/14/2016] [Indexed: 11/12/2022] Open
Abstract
Avian eggs are at risk of microbial infection prior to and during incubation. A large number of defence mechanisms have evolved in response to the severe costs imposed by these infections. The eggshell's cuticle is an important component of antimicrobial defence, and its role in preventing contamination by microorganisms in domestic chickens is well known. Nanometer-scale cuticular spheres that reduce microbial attachment and penetration have recently been identified on eggs of several wild avian species. However, whether these spheres have evolved specifically for antimicrobial defence is unknown. Here, we use comparative data on eggshell cuticular structure and nesting ecology to test the hypothesis that birds nesting in habitats with higher risk of infection (e.g. wetter and warmer) are more likely to evolve cuticular nanospheres on their eggshells than those nesting in less risky habitats. We found that nanostructuring, present in 54 of 296 analysed species, is the ancestral condition of avian eggshells and has been retained more often in taxa that nest in humid infection-prone environments, suggesting that they serve critical roles in antimicrobial egg defence.
Collapse
Affiliation(s)
- Liliana D'Alba
- Department of Biology and Integrated Bioscience Program, University of Akron, Akron, OH 44325-3908, USA Department of Biology, Terrestrial Ecology Unit, University of Ghent, 9000 Ghent, Belgium
| | - Rafael Maia
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA
| | - Mark E Hauber
- Department of Psychology, Hunter College and the Graduate Center, City University of New York, New York, NY 10065, USA
| | - Matthew D Shawkey
- Department of Biology and Integrated Bioscience Program, University of Akron, Akron, OH 44325-3908, USA Department of Biology, Terrestrial Ecology Unit, University of Ghent, 9000 Ghent, Belgium
| |
Collapse
|
32
|
Hargitai R, Boross N, Hámori S, Neuberger E, Nyiri Z. Eggshell Biliverdin and Protoporphyrin Pigments in a Songbird: Are They Derived from Erythrocytes, Blood Plasma, or the Shell Gland? Physiol Biochem Zool 2017; 90:613-626. [DOI: 10.1086/694297] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
D'Alba L, Torres R, Waterhouse GIN, Eliason C, Hauber ME, Shawkey MD. What Does the Eggshell Cuticle Do? A Functional Comparison of Avian Eggshell Cuticles. Physiol Biochem Zool 2017; 90:588-599. [PMID: 28745930 DOI: 10.1086/693434] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The avian eggshell is a highly ordered structure with several layers (mammillae, palisades, and vertical crystal layer) composed of calcium carbonate (∼96%) and minerals within an organic matrix. The cuticle is a noncalcified layer that covers the eggshells of most bird species. Eggshells are multifunctional structures that have evolved in response to diverse embryonic requirements and challenges, including protection from microbial infection, nest flooding, and exposure to solar radiation. However, experimental evidence for these functions across diverse taxa is currently limited. Here we investigated the effects of nanosphere cuticles on (1) bacterial attachment and transshell penetration, (2) eggshell wettability, (3) water vapor conductance, and (4) regulation of ultraviolet (UV) reflectance in seven ground-nesting bird species. We found considerable interspecific variation in ultrastructure and chemical composition of cuticles. Experimental removal of the cuticle confirmed that all nanospheres were highly effective at decreasing attachment of bacteria to shell surfaces and at preventing bacterial penetration. Cuticles also greatly decreased the amount of UV reflected by eggshells. In species with particularly small nanospheres, gas exchange was reduced by the presence of cuticle. Our results support the hypothesis that microbes and solar UV radiation can cause strong selection on bird eggs but also show that we need a greater understanding about the effects of specific nesting conditions (e.g., hydric and gaseous milieu) on embryo well-being and eggshell structure variation.
Collapse
|
34
|
Montgomery EM, Hamel JF, Mercier A. Patterns and Drivers of Egg Pigment Intensity and Colour Diversity in the Ocean: A Meta-Analysis of Phylum Echinodermata. ADVANCES IN MARINE BIOLOGY 2016; 76:41-104. [PMID: 28065296 DOI: 10.1016/bs.amb.2016.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Egg pigmentation is proposed to serve numerous ecological, physiological, and adaptive functions in egg-laying animals. Despite the predominance and taxonomic diversity of egg layers, syntheses reviewing the putative functions and drivers of egg pigmentation have been relatively narrow in scope, centring almost exclusively on birds. Nonvertebrate and aquatic species are essentially overlooked, yet many of them produce maternally provisioned eggs in strikingly varied colours, from pale yellow to bright red or green. We explore the ways in which these colour patterns correlate with behavioural, morphological, geographic and phylogenetic variables in extant classes of Echinodermata, a phylum that has close phylogenetic ties with chordates and representatives in nearly all marine environments. Results of multivariate analyses show that intensely pigmented eggs are characteristic of pelagic or external development whereas pale eggs are commonly brooded internally. Of the five egg colours catalogued, orange and yellow are the most common. Yellow eggs are a primitive character, associated with all types of development (predominant in internal brooders), whereas green eggs are always pelagic, occur in the most derived orders of each class and are restricted to the Indo-Pacific Ocean. Orange eggs are geographically ubiquitous and may represent a 'universal' egg pigment that functions well under a diversity of environmental conditions. Finally, green occurs chiefly in the classes Holothuroidea and Ophiuroidea, orange in Asteroidea, yellow in Echinoidea, and brown in Holothuroidea. By examining an unprecedented combination of egg colours/intensities and reproductive strategies, this phylum-wide study sheds new light on the role and drivers of egg pigmentation, drawing parallels with theories developed from the study of more derived vertebrate taxa. The primary use of pigments (of any colour) to protect externally developing eggs from oxidative damage and predation is supported by the comparatively pale colour of equally large, internally brooded eggs. Secondarily, geographic location drives the evolution of egg colour diversity, presumably through the selection of better-adapted, more costly pigments in response to ecological pressure.
Collapse
Affiliation(s)
| | - J-F Hamel
- Society for Exploration and Valuing of the Environment (SEVE), Portugal Cove-St. Phillips, NL, Canada
| | - A Mercier
- Memorial University, St. John's, NL, Canada
| |
Collapse
|
35
|
Hargitai R, Boross N, Nyiri Z, Eke Z. Biliverdin- and protoporphyrin-based eggshell pigmentation in relation to antioxidant supplementation, female characteristics and egg traits in the canary (Serinus canaria). Behav Ecol Sociobiol 2016. [DOI: 10.1007/s00265-016-2214-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Abstract
The vibrant colors of many birds' eggs, particularly those that are blue to blue-green, are extraordinary in that they are striking traits present in hundreds of species that have nevertheless eluded evolutionary functional explanation. We propose that egg pigmentation mediates a trade-off between two routes by which solar radiation can harm bird embryos: transmittance through the eggshell and overheating through absorbance. We quantitatively test four components of this hypothesis on variably colored eggs of the village weaverbird (Ploceus cucullatus) in a controlled light environment: (1) damaging ultraviolet radiation can transmit through bird eggshells, (2) infrared radiation at natural intensities can heat the interior of eggs, (3) more intense egg coloration decreases light transmittance ("pigment as parasol"), and (4) more intense egg coloration increases absorbance of light by the eggshell and heats the egg interior ("dark car effect"). Results support all of these predictions. Thus, in sunlit nesting environments, less pigmentation will increase the detrimental effect of transmittance, but more pigmentation will increase the detrimental effect of absorbance. The optimal pigmentation level for a bird egg in a given light environment, all other things being equal, will depend on the balance between light transmittance and absorbance in relation to embryo fitness.
Collapse
|
37
|
Brulez K, Mikšík I, Cooney CR, Hauber ME, Lovell PG, Maurer G, Portugal SJ, Russell D, Reynolds SJ, Cassey P. Eggshell pigment composition covaries with phylogeny but not with life history or with nesting ecology traits of British passerines. Ecol Evol 2016; 6:1637-45. [PMID: 26904185 PMCID: PMC4752363 DOI: 10.1002/ece3.1960] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 12/02/2022] Open
Abstract
No single hypothesis is likely to explain the diversity in eggshell coloration and patterning across birds, suggesting that eggshell appearance is most likely to have evolved to fulfill many nonexclusive functions. By controlling for nonindependent phylogenetic associations between related species, we describe this diversity using museum eggshells of 71 British breeding passerine species to examine how eggshell pigment composition and concentrations vary with phylogeny and with life‐history and nesting ecology traits. Across species, concentrations of biliverdin and protoporphyrin, the two main pigments found in eggshells, were strongly and positively correlated, and both pigments strongly covaried with phylogenetic relatedness. Controlling for phylogeny, cavity‐nesting species laid eggs with lower protoporphyrin concentrations in the shell, while higher biliverdin concentrations were associated with thicker eggshells for species of all nest types. Overall, these relationships between eggshell pigment concentrations and the biology of passerines are similar to those previously found in nonpasserine eggs, and imply that phylogenetic dependence must be considered across the class in further explanations of the functional significance of avian eggshell coloration.
Collapse
Affiliation(s)
- Kaat Brulez
- Centre for Ornithology School of Biosciences College of Life & Environmental Sciences University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Ivan Mikšík
- Department of Analytical Chemistry Faculty of Chemical Technology University of Pardubice Pardubice Czech Republic
| | - Christopher R Cooney
- Department of Animal and Plant Sciences University of Sheffield Sheffield S10 2TN UK
| | - Mark E Hauber
- Department of Psychology Hunter College and the Graduate Center of the City University of New York 695 Park Ave New York City New York 10065
| | - Paul George Lovell
- Division of Psychology, Social and Health Sciences Abertay University Dundee DD1 1HG UK
| | - Golo Maurer
- School of Biological Sciences University of Adelaide Adelaide South Australia 5005 Australia
| | - Steven J Portugal
- School of Biological Sciences Royal Holloway University of London Egham Surrey TW20 0EX UK
| | - Douglas Russell
- Bird Group Department of Life Sciences Natural History Museum Akeman Street Tring Hertfordshire HP23 6AP UK
| | - Silas James Reynolds
- Centre for Ornithology School of Biosciences College of Life & Environmental Sciences University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Phillip Cassey
- School of Biological Sciences University of Adelaide Adelaide South Australia 5005 Australia
| |
Collapse
|
38
|
Fecheyr-Lippens DC, Igic B, D'Alba L, Hanley D, Verdes A, Holford M, Waterhouse GIN, Grim T, Hauber ME, Shawkey MD. The cuticle modulates ultraviolet reflectance of avian eggshells. Biol Open 2015; 4:753-9. [PMID: 25964661 PMCID: PMC4571098 DOI: 10.1242/bio.012211] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/13/2015] [Indexed: 12/03/2022] Open
Abstract
Avian eggshells are variedly coloured, yet only two pigments, biliverdin and protoporphyrin IX, are known to contribute to the dramatic diversity of their colours. By contrast, the contributions of structural or other chemical components of the eggshell are poorly understood. For example, unpigmented eggshells, which appear white to the human eye, vary in their ultraviolet (UV) reflectance, which may be detectable by birds. We investigated the proximate mechanisms for the variation in UV-reflectance of unpigmented bird eggshells using spectrophotometry, electron microscopy, chemical analyses, and experimental manipulations. We specifically tested how UV-reflectance is affected by the eggshell cuticle, the outermost layer of most avian eggshells. The chemical dissolution of the outer eggshell layers, including the cuticle, increased UV-reflectance for only eggshells that contained a cuticle. Our findings demonstrate that the outer eggshell layers, including the cuticle, absorb UV-light, probably because they contain higher levels of organic components and other chemicals, such as calcium phosphates, compared to the predominantly calcite-based eggshell matrix. These data highlight the need to examine factors other than the known pigments in studies of avian eggshell colour.
Collapse
Affiliation(s)
| | - Branislav Igic
- Department of Biology, University of Akron, Akron, OH 44325, USA
| | - Liliana D'Alba
- Department of Biology, University of Akron, Akron, OH 44325, USA
| | - Daniel Hanley
- Department of Zoology and Laboratory of Ornithology, Palacký University, Olomouc 771 46, Czech Republic
| | - Aida Verdes
- Department of Chemistry, Hunter College and the Graduate Center, City University of New York, New York, NY 10021, USA
| | - Mande Holford
- Department of Chemistry, Hunter College and the Graduate Center, City University of New York, New York, NY 10021, USA
| | | | - Tomas Grim
- Department of Zoology and Laboratory of Ornithology, Palacký University, Olomouc 771 46, Czech Republic
| | - Mark E Hauber
- Department of Psychology, Hunter College and the Graduate Center, City University of New York, New York, NY 10065, USA
| | | |
Collapse
|