1
|
Moussa M, Pozzolini M, Ferrando S, Mannai A, Tassara E, Giovine M, Said K. Insight on thermal stress response of demosponge Chondrosia reniformis (Nardo, 1847). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169648. [PMID: 38159772 DOI: 10.1016/j.scitotenv.2023.169648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Global warming has led to an increase in extreme weather and climate phenomena, including floods and heatwaves. Marine heatwaves have frightening consequences for coastal benthic communities around the world. Each species exhibits a natural range of thermal tolerance and responds to temperature variations through behavioral, physiological, biochemical, and molecular adjustments. Physiological stress leading to disease and mass mortality appears when tolerance thresholds are exceeded. Sessile species are therefore particularly affected by these phenomena. Among these sessile species, marine sponges are important members of coral reef ecosystems. To better understand the sponge thermal stress response, we tested the response of demosponge Chondrosia reniformis (Nardo, 1847) to three different temperatures (8 °C, 24 °C and 30 °C) during two exposure periods of time (4 and 14 h). Histological studies of whole parts of the sponge, biochemical analyses (Defense enzymes) and gene expression levels of some target genes were undertaken in this study. The exposure to cold temperature (8 °C) resulted in inhibition of antioxidant enzymes and less modification in the gene expression level of the heat shock proteins (HSPs). These latter were strongly upregulated after exposure to a temperature of 24 °C for 4 h. However, exposure to 30 °C at both periods of time resulted in indication of HSP, antioxidant enzymes, the gene involved in the apoptosis process (Bcl-2: B-cell lymphoma 2), the gene involved in inflammation (TNF: Tumor Necrosis Factor), as well as the aquaporin gene, involved in H2O2 permeation. Moreover, the normal organization of the whole organism was disrupted by the extension and fusion of choanocyte chambers and alteration of the pinacoderm. Interestingly, exposure to sublethal temperatures may show that this sponge has an adaptation threshold temperature. These insights into the adaptation mechanisms of sponges contribute to better management and conservation of sponges and to the prediction of ecosystem trajectories with future climate change.
Collapse
Affiliation(s)
- Maha Moussa
- Laboratory of Genetics, Biodiversity, and Bioresources Valorization (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia.
| | - Marina Pozzolini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| | - Sara Ferrando
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| | - Asma Mannai
- Laboratory of Genetics, Biodiversity, and Bioresources Valorization (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia.
| | - Eleonora Tassara
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| | - Marco Giovine
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| | - Khaled Said
- Laboratory of Genetics, Biodiversity, and Bioresources Valorization (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia.
| |
Collapse
|
2
|
Orani AM, Vassileva E, Thomas OP. Marine sponges as coastal bioindicators of rare earth elements bioaccumulation in the French Mediterranean Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119172. [PMID: 35367507 DOI: 10.1016/j.envpol.2022.119172] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
In recent years, the widespread use of rare earth elements (REEs) has raised the issue of their harmful effects on the aquatic environment. REEs are now considered as contaminants of emerging concern. Despite the increasing interest of REEs in modern industry, there is still a lack of knowledge on their potential impact on the environment and especially in the marine environment. In this context, the need for monitoring tools to assess REEs pollution status in marine ecosystems is considered as the first step towards their risk assessment. Similar to mussels, filter-feeder sponges have emerged as a key bio-monitor species for marine chemical pollution. Their key position at a low level of the trophic chain makes them suitable model organisms for the study of REEs potential transfer through the aquatic food web. We therefore undertook a comparative study on seven marine sponge species, assessing their capability to bioaccumulate REEs and to potentially transfer these contaminants to higher positions in the trophic chain. A spike experiment under controlled conditions was carried out and the intra- and inter-species variability of REEs was monitored in the sponge bodies by ICP-MS. Concentrations were found to be up to 170 times higher than the corresponding control specimens. The tubular species Aplysina cavernicola showed the highest concentrations among the studied species. This study shows, for the first time, the potential of marine sponges as bio-monitor of REEs as well as their possible application in the bioremediation of polluted sites.
Collapse
Affiliation(s)
- Anna Maria Orani
- International Atomic Energy Agency, Marine Environment Laboratories, 4 Quai Antoine 1er, Monaco
| | - Emilia Vassileva
- International Atomic Energy Agency, Marine Environment Laboratories, 4 Quai Antoine 1er, Monaco.
| | - Olivier P Thomas
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway, (NUI Galway), University Road, H91 TK33, Galway, Ireland
| |
Collapse
|
3
|
Moussa M, Choulak S, Rhouma‐Chatti S, Chatti N, Said K. First insight of genetic diversity, phylogeographic relationships, and population structure of marine sponge Chondrosia reniformis from the eastern and western Mediterranean coasts of Tunisia. Ecol Evol 2022; 12:e8494. [PMID: 35136554 PMCID: PMC8809441 DOI: 10.1002/ece3.8494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/23/2022] Open
Abstract
Despite the strategic localization of Tunisia in the Mediterranean Sea, no phylogeographic study on sponges has been investigated along its shores. The demosponge Chondrosia reniformis, descript only morphologically along Tunisian coasts, was chosen to estimate the influence of natural oceanographic and biogeographic barriers on its genetic differentiation and its Phylogeography. The cytochrome oxidase subunit I (COI) gene was amplified and analyzed for 70 Mediterranean Chondrosia reniformis, collected from eight localities in Tunisia. Polymorphism results revealed high values of haplotype diversity (H d) and very low nucleotide diversity (π). Thus, these results suggest that our sponge populations of C. reniformis may have undergone a bottleneck followed by rapid demographic expansion. This suggestion is strongly confirmed by the results of neutrality tests and "mismatch distribution." The important number of haplotypes between localities and the high genetic differentiation (F st ranged from 0.590 to 0.788) of the current C. reniformis populations could be maintained by the limited gene flow Nm (0.10-0.18). Both haplotype Network and the biogeographic analysis showed a structured distribution according to the geographic origin. C. reniformis populations are subdivided into two major clades: Western and Eastern Mediterranean. This pattern seems to be associated with the well-known discontinuous biogeographic area: the Siculo-Tunisian Strait, which separates two water bodies circulating with different hydrological, physical, and chemical characteristics. The short dispersal of pelagic larvae of C. reniformis and the marine bio-geographic barrier created high differentiation among populations. Additionally, it is noteworthy to mention that the "Mahres/Kerkennah" group diverged from Eastern groups in a single sub-clade. This result was expected, the region Mahres/Kerkennah, presented a particular marine environment.
Collapse
Affiliation(s)
- Maha Moussa
- Laboratory of Genetics, Biodiversity, and Bioresources Valorization (LR11ES41)Higher Institute of Biotechnology of MonastirUniversity of MonastirMonastirTunisia
| | - Sarra Choulak
- Laboratory of Genetics, Biodiversity, and Bioresources Valorization (LR11ES41)Higher Institute of Biotechnology of MonastirUniversity of MonastirMonastirTunisia
| | - Soumaya Rhouma‐Chatti
- Laboratory of Genetics, Biodiversity, and Bioresources Valorization (LR11ES41)Higher Institute of Biotechnology of MonastirUniversity of MonastirMonastirTunisia
| | - Noureddine Chatti
- Laboratory of Genetics, Biodiversity, and Bioresources Valorization (LR11ES41)Higher Institute of Biotechnology of MonastirUniversity of MonastirMonastirTunisia
| | - Khaled Said
- Laboratory of Genetics, Biodiversity, and Bioresources Valorization (LR11ES41)Higher Institute of Biotechnology of MonastirUniversity of MonastirMonastirTunisia
| |
Collapse
|
4
|
Bell JJ, McGrath E, Kandler NM, Marlow J, Beepat SS, Bachtiar R, Shaffer MR, Mortimer C, Micaroni V, Mobilia V, Rovellini A, Harris B, Farnham E, Strano F, Carballo JL. Interocean patterns in shallow water sponge assemblage structure and function. Biol Rev Camb Philos Soc 2020; 95:1720-1758. [PMID: 32812691 DOI: 10.1111/brv.12637] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 01/04/2023]
Abstract
Sponges are a major component of benthic ecosystems across the world and fulfil a number of important functional roles. However, despite their importance, there have been few attempts to compare sponge assemblage structure and ecological functions across large spatial scales. In this review, we examine commonalities and differences between shallow water (<100 m) sponges at bioregional (15 bioregions) and macroregional (tropical, Mediterranean, temperate, and polar) scales, to provide a more comprehensive understanding of sponge ecology. Patterns of sponge abundance (based on density and area occupied) were highly variable, with an average benthic cover between ~1 and 30%. Sponges were generally found to occupy more space (percentage cover) in the Mediterranean and polar macroregions, compared to temperate and tropical macroregions, although sponge densities (sponges m-2 ) were highest in temperate bioregions. Mean species richness standardised by sampling area was similar across all bioregions, except for a few locations that supported very high small-scale biodiversity concentrations. Encrusting growth forms were generally the dominant sponge morphology, with the exception of the Tropical West Atlantic, where upright forms dominated. Annelids and Arthropods were the most commonly reported macrofauna associated with sponges across bioregions. With respect to reproduction, there were no patterns in gametic development (hermaphroditism versus gonochorism), although temperate, tropical, and polar macroregions had an increasingly higher percentage of viviparous species, respectively, with viviparity being the sole gamete development mechanism reported for polar sponges to date. Seasonal reproductive timing was the most common in all bioregions, but continuous timing was more common in the Mediterranean and tropical bioregions compared to polar and temperate bioregions. We found little variation across bioregions in larval size, and the dominant larval type across the globe was parenchymella. No pattens among bioregions were found in the limited information available for standardised respiration and pumping rates. Many organisms were found to predate sponges, with the abundance of sponge predators being higher in tropical systems. While there is some evidence to support a higher overall proportion of phototrophic species in the Tropical Austalian bioregion compared to the Western Atlantic, both also have large numbers of heterotrophic species. Sponges are important spatial competitors across all bioregions, most commonly being reported to interact with anthozoans and algae. Even though the available information was limited for many bioregions, our analyses demonstrate some differences in sponge traits and functions among bioregions, and among macroregions. However, we also identified similarities in sponge assemblage structure and function at global scales, likely reflecting a combination of regional- and local-scale biological and physical processes affecting sponge assemblages, along with common ancestry. Finally, we used our analyses to highlight geographic bias in past sponge research, and identify gaps in our understanding of sponge ecology globally. By so doing, we identified key areas for future research on sponge ecology. We hope that our study will help sponge researchers to consider bioregion-specific features of sponge assemblages and key sponge-mediated ecological processes from a global perspective.
Collapse
Affiliation(s)
- James J Bell
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Emily McGrath
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.,Cawthron Institute, 98 Halifax St E, The Wood, Nelson, 7010, New Zealand
| | - Nora M Kandler
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Joseph Marlow
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.,British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, U.K
| | - Sandeep S Beepat
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Ramadian Bachtiar
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Megan R Shaffer
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Charlotte Mortimer
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Valerio Micaroni
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Valeria Mobilia
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Alberto Rovellini
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Benjamin Harris
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Elizabeth Farnham
- Ministry of Primary Industries, PO Box 2526, Wellington, New Zealand
| | - Francesca Strano
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - José Luis Carballo
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México (UNAM), Avenida Joel Montes Camarena, s/n. apartado postal 811, Mazatlán, 82000, Mexico
| |
Collapse
|
5
|
Pawlik JR, McMurray SE. The Emerging Ecological and Biogeochemical Importance of Sponges on Coral Reefs. ANNUAL REVIEW OF MARINE SCIENCE 2020; 12:315-337. [PMID: 31226028 DOI: 10.1146/annurev-marine-010419-010807] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
With the decline of reef-building corals on tropical reefs, sponges have emerged as an important component of changing coral reef ecosystems. Seemingly simple, sponges are highly diverse taxonomically, morphologically, and in terms of their relationships with symbiotic microbes, and they are one of nature's richest sources of novel secondary metabolites. Unlike most other benthic organisms, sponges have the capacity to disrupt boundary flow as they pump large volumes of seawater into the water column. This seawater is chemically transformed as it passes through the sponge body as a consequence of sponge feeding, excretion, and the activities of microbial symbionts, with important effects on carbon and nutrient cycling and on the organisms in the water column and on the adjacent reef. In this review, we critically evaluate developments in the recently dynamic research area of sponge ecology on tropical reefs and provide a perspective for future studies.
Collapse
Affiliation(s)
- Joseph R Pawlik
- Department of Biology and Marine Biology and Center for Marine Science, University of North Carolina Wilmington, Wilmington, North Carolina 28409, USA; ,
| | - Steven E McMurray
- Department of Biology and Marine Biology and Center for Marine Science, University of North Carolina Wilmington, Wilmington, North Carolina 28409, USA; ,
| |
Collapse
|
6
|
Zwerschke N, Eagling L, Roberts D, O'Connor N. Can an invasive species compensate for the loss of a declining native species? Functional similarity of native and introduced oysters. MARINE ENVIRONMENTAL RESEARCH 2020; 153:104793. [PMID: 31582298 DOI: 10.1016/j.marenvres.2019.104793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
The widespread introduction of the Pacific oyster, Magallana gigas, has raised concerns regarding its potential impact on the functioning of invaded ecosystems. Concurrently, populations of the European oyster, Ostrea edulis, are in decline. We quantified the functional role of the native oyster, O. edulis, in terms of nutrient cycling and associated infaunal biodiversity and compared it directly to that of the invading oyster, M. gigas. The presence and density of both species were manipulated in the field and we tested for differences in concentration of ammonium, phosphate, total oxidised nitrogen and silicate in pore-water; total organic nitrogen and carbon in sediment; microbial activity; chlorophyll concentration; and the assemblage structure and richness of associated benthic taxa. No differences in nutrient cycling rates or associated benthic assemblages were identified between both oyster species. Nutrient concentrations were mostly affected by differences in oyster density and their significance varied among sampling events. Our findings suggest that M. gigas could compensate for the loss of ecosystem functions performed by O. edulis in areas where native oysters have been extirpated.
Collapse
Affiliation(s)
- Nadescha Zwerschke
- Queen's University Marine Laboratory, 12-13 the Strand, Portaferry, BT22 1PF, UK.
| | - Lawrence Eagling
- Queen's University Marine Laboratory, 12-13 the Strand, Portaferry, BT22 1PF, UK
| | - Dai Roberts
- Queen's University Marine Laboratory, 12-13 the Strand, Portaferry, BT22 1PF, UK; Queen's University Belfast, School of Biological Science, Belfast, BT9 7BL, UK
| | - Nessa O'Connor
- Queen's University Belfast, School of Biological Science, Belfast, BT9 7BL, UK
| |
Collapse
|
7
|
Abstract
Larvae of the sponge R. odorabile survived exposure to high concentrations of petroleum hydrocarbons; however, their ability to settle and metamorphose was adversely affected at environmentally relevant concentrations, and these effects were paralleled by marked changes in sponge gene expression and preceded by disruption of the symbiotic microbiome. Given the ecological importance of sponges, uncontrolled hydrocarbon releases from shipping accidents or production could affect sponge recruitment, which would have concomitant consequences for reef ecosystem function. Accidental oil spills from shipping and during extraction can threaten marine biota, particularly coral reef species which are already under pressure from anthropogenic disturbances. Marine sponges are an important structural and functional component of coral reef ecosystems; however, despite their ecological importance, little is known about how sponges and their microbial symbionts respond to petroleum products. Here, we use a systems biology-based approach to assess the effects of water-accommodated fractions (WAF) of crude oil, chemically enhanced water-accommodated fractions of crude oil (CWAF), and dispersant (Corexit EC9500A) on the survival, metamorphosis, gene expression, and microbial symbiosis of the abundant reef sponge Rhopaloeides odorabile in larval laboratory-based assays. Larval survival was unaffected by the 100% WAF treatment (107 μg liter−1 polycyclic aromatic hydrocarbon [PAH]), whereas significant decreases in metamorphosis were observed at 13% WAF (13.9 μg liter−1 PAH). The CWAF and dispersant treatments were more toxic, with decreases in metamorphosis identified at 0.8% (0.58 μg liter−1 PAH) and 1.6% (38 mg liter−1 Corexit EC9500A), respectively. In addition to the negative impact on larval settlement, significant changes in host gene expression and disruptions to the microbiome were evident, with microbial shifts detected at the lowest treatment level (1.6% WAF; 1.7 μg liter−1 PAH), including a significant reduction in the relative abundance of a previously described thaumarchaeal symbiont. The responsiveness of the R. odorabile microbial community to the lowest level of hydrocarbon treatment highlights the utility of the sponge microbiome as a sensitive marker for exposure to crude oils and dispersants. IMPORTANCE Larvae of the sponge R. odorabile survived exposure to high concentrations of petroleum hydrocarbons; however, their ability to settle and metamorphose was adversely affected at environmentally relevant concentrations, and these effects were paralleled by marked changes in sponge gene expression and preceded by disruption of the symbiotic microbiome. Given the ecological importance of sponges, uncontrolled hydrocarbon releases from shipping accidents or production could affect sponge recruitment, which would have concomitant consequences for reef ecosystem function.
Collapse
|
8
|
Gantt SE, McMurray SE, Stubler AD, Finelli CM, Pawlik JR, Erwin PM. Testing the relationship between microbiome composition and flux of carbon and nutrients in Caribbean coral reef sponges. MICROBIOME 2019; 7:124. [PMID: 31466521 PMCID: PMC6716902 DOI: 10.1186/s40168-019-0739-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 08/19/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Sponges are important suspension-feeding members of reef communities, with the collective capacity to overturn the entire water column on shallow Caribbean reefs every day. The sponge-loop hypothesis suggests that sponges take up dissolved organic carbon (DOC) and, via assimilation and shedding of cells, return carbon to the reef ecosystem as particulate organic carbon (POC). Sponges host complex microbial communities within their tissues that may play a role in carbon and nutrient cycling within the sponge holobiont. To investigate this relationship, we paired microbial community characterization (16S rRNA analysis, Illumina Mi-Seq platform) with carbon (DOC, POC) and nutrient (PO4, NOx, NH4) flux data (specific filtration rate) for 10 common Caribbean sponge species at two distant sites (Florida Keys vs. Belize, ~ 1203 km apart). RESULTS Distance-based linear modeling revealed weak relationships overall between symbiont structure and carbon and nutrient flux, suggesting that the observed differences in POC, DOC, PO4, and NOx flux among sponges are not caused by variations in the composition of symbiont communities. In contrast, significant correlations between symbiont structure and NH4 flux occurred consistently across the dataset. Further, several individual symbiont taxa (OTUs) exhibited relative abundances that correlated with NH4 flux, including one OTU affiliated with the ammonia-oxidizing genus Cenarchaeum. CONCLUSIONS Combined, these results indicate that microbiome structure is uncoupled from sponge carbon cycling and does not explain variation in DOC uptake among Caribbean coral reef sponges. Accordingly, differential DOC assimilation by sponge cells or stable microbiome components may ultimately drive carbon flux in the sponge holobiont.
Collapse
Affiliation(s)
- Shelby E Gantt
- Center for Marine Science and Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, 28409, USA
| | - Steven E McMurray
- Center for Marine Science and Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, 28409, USA
| | - Amber D Stubler
- Biology Department, Occidental College, 1600 Campus Road, Los Angeles, CA, 90041, USA
| | - Christopher M Finelli
- Center for Marine Science and Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, 28409, USA
| | - Joseph R Pawlik
- Center for Marine Science and Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, 28409, USA
| | - Patrick M Erwin
- Center for Marine Science and Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, 28409, USA.
| |
Collapse
|
9
|
Bell JJ, Bennett HM, Rovellini A, Webster NS. Sponges to Be Winners under Near-Future Climate Scenarios. Bioscience 2018. [DOI: 10.1093/biosci/biy142] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- James J Bell
- School of Biological Sciences at Victoria University of Wellington, in Wellington, New Zealand
| | - Holly M Bennett
- Australian Institute of Marine Science, in Townsville, Queensland
- Cawthron Institute in Nelson
| | - Alberto Rovellini
- School of Biological Sciences at Victoria University of Wellington, in Wellington, New Zealand
| | - Nicole S Webster
- Australian Institute of Marine Science, in Townsville, Queensland
- Australian Centre for Ecogenomics, at The University of Queensland, in Brisbane
| |
Collapse
|
10
|
Growth and longevity in giant barrel sponges: Redwoods of the reef or Pines in the Indo-Pacific? Sci Rep 2018; 8:15317. [PMID: 30333574 PMCID: PMC6193018 DOI: 10.1038/s41598-018-33294-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 09/19/2018] [Indexed: 11/16/2022] Open
Abstract
Describing life history dynamics of functionally important species is critical for successful management. Barrel sponges (Xestospongia spp.) fill ecologically important roles on coral reefs due to their large size and water column interactions. Studies of Caribbean X. muta suggest they may be up to 1000 s of years old. However, nothing is known of barrel sponge growth rates outside the Caribbean. We assessed Indo-Pacific barrel sponge demography with a focus on specific growth rate (SGR), density, and mean volume across four sites of varying habitat quality. Four growth models were compared using Akaike’s Information Criterion using a multi-model inference approach. Age was extrapolated and validated based on sponge size on a shipwreck of known age. Sponges from different sites showed differences in density, volume gained, and mean volume, but not growth rates. Interestingly, SGRs were slightly slower than that of X. muta, yet growth models supported rapid growth; published estimates of comparably sized X. muta were over twice as old as Indo-Pacific sponges (53–55 as compared to 23 years of age, respectively), although extrapolation errors are likely to increase with sponge size. This suggests that barrel sponge growth rates in the Indo-Pacific might be more comparable to Pines rather than Redwoods.
Collapse
|
11
|
Van Duyl FC, Mueller B, Meesters EH. Spatio-temporal variation in stable isotope signatures (δ 13C and δ 15N) of sponges on the Saba Bank. PeerJ 2018; 6:e5460. [PMID: 30128208 PMCID: PMC6097495 DOI: 10.7717/peerj.5460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/26/2018] [Indexed: 12/02/2022] Open
Abstract
Sponges are ubiquitous on coral reefs, mostly long lived and therefore adaptive to changing environmental conditions. They feed on organic matter withdrawn from the passing water and they may harbor microorganisms (endosymbionts), which contribute to their nutrition. Their diets and stable isotope (SI) fractionation determine the SI signature of the sponge holobiont. Little is known of spatio–temporal variations in SI signatures of δ13C and δ15N in tropical sponges and whether they reflect variations in the environment. We investigated the SI signatures of seven common sponge species with different functional traits and their potential food sources between 15 and 32 m depth along the S-SE and E-NE side of the Saba Bank, Eastern Caribbean, in October 2011 and October 2013. SI signatures differed significantly between most sponge species, both in mean values and in variation, indicating different food preferences and/or fractionation, inferring sponge species-specific isotopic niche spaces. In 2011, all sponge species at the S-SE side were enriched in d13C compared to the E-NE side. In 2013, SI signatures of sponges did not differ between the two sides and were overall lighter in δ13C and δ15N than in 2011. Observed spatio–temporal changes in SI in sponges could not be attributed to changes in the SI signatures of their potential food sources, which remained stable with different SI signatures of pelagic (particulate organic matter (POM): δ13C −24.9‰, δ15N +4.3‰) and benthic-derived food (macroalgae: δ13C −15.4‰, δ15N +0.8‰). Enriched δ13C signatures in sponges at the S-SE side in 2011 are proposed to be attributed to predominantly feeding on benthic-derived C. This interpretation was supported by significant differences in water mass constituents between sides in October 2011. Elevated NO3 and dissolved organic matter concentrations point toward a stronger reef signal in reef overlying water at the S-SE than N-NE side of the Bank in 2011. The depletions of δ13C and δ15N in sponges in October 2013 compared to October 2011 concurred with significantly elevated POM concentrations. The contemporaneous decrease in δ15N suggests that sponges obtain their N mostly from benthic-derived food with a lower δ15N than pelagic food. Average proportional feeding on available sources varied between sponge species and ranged from 20% to 50% for benthic and 50% to 80% for pelagic-derived food, assuming trophic enrichment factors of 0.5‰ ± sd 0.5 for δ13C and 3‰ ± sd 0.5 for δ15N for sponges. We suggest that observed variation of SI in sponges between sides and years were the result of shifts in the proportion of ingested benthic- and pelagic-derived organic matter driven by environmental changes. We show that sponge SI signatures reflect environmental variability in space and time on the Saba Bank and that SI of sponges irrespective of their species-specific traits move in a similar direction in response to these environmental changes.
Collapse
Affiliation(s)
- Fleur C Van Duyl
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Den Burg, The Netherlands
| | - Benjamin Mueller
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Den Burg, The Netherlands.,Department for Freshwater and Marine Ecology, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
12
|
Bell JJ, Rovellini A, Davy SK, Taylor MW, Fulton EA, Dunn MR, Bennett HM, Kandler NM, Luter HM, Webster NS. Climate change alterations to ecosystem dominance: how might sponge-dominated reefs function? Ecology 2018; 99:1920-1931. [PMID: 29989167 DOI: 10.1002/ecy.2446] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/29/2018] [Accepted: 06/18/2018] [Indexed: 11/10/2022]
Abstract
Anthropogenic stressors are impacting ecological systems across the world. Of particular concern are the recent rapid changes occurring in coral reef systems. With ongoing degradation from both local and global stressors, future reefs are likely to function differently from current coral-dominated ecosystems. Determining key attributes of future reef states is critical to reliably predict outcomes for ecosystem service provision. Here we explore the impacts of changing sponge dominance on coral reefs. Qualitative modelling of reef futures suggests that changing sponge dominance due to increased sponge abundance will have different outcomes for other trophic levels compared with increased sponge dominance as a result of declining coral abundance. By exploring uncertainty in the model outcomes we identify the need to (1) quantify changes in carbon flow through sponges, (2) determine the importance of food limitation for sponges, (3) assess the ubiquity of the recently described "sponge loop," (4) determine the competitive relationships between sponges and other benthic taxa, particularly algae, and (5) understand how changing dominance of other organisms alters trophic pathways and energy flows through ecosystems. Addressing these knowledge gaps will facilitate development of more complex models that assess functional attributes of sponge-dominated reef ecosystems.
Collapse
Affiliation(s)
- James J Bell
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
| | - Alberto Rovellini
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
| | - Michael W Taylor
- School of Biological Sciences & Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag, 92019, Auckland, New Zealand
| | - Elizabeth A Fulton
- CSIRO Oceans & Atmosphere, G.P.O. Box 1538, Hobart, Tasmania, 7001, Australia.,Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania, Australia
| | - Matthew R Dunn
- National Institute of Water and Atmospheric Research Ltd., 301 Evans Bay Parade, Wellington, 6021, New Zealand
| | - Holly M Bennett
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
| | - Nora M Kandler
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
| | - Heidi M Luter
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand.,Australian Institute of Marine Science, PMB 3, Townsville Mail Centre, Townsville, Queensland, 4810, Australia
| | - Nicole S Webster
- Australian Institute of Marine Science, PMB 3, Townsville Mail Centre, Townsville, Queensland, 4810, Australia.,Australian Centre for Ecogenomics, University of Queensland, St Lucia, Queensland, 4072, Australia
| |
Collapse
|
13
|
Pawlik JR, Loh TL, McMurray SE. A review of bottom-up vs. top-down control of sponges on Caribbean fore-reefs: what's old, what's new, and future directions. PeerJ 2018; 6:e4343. [PMID: 29404224 PMCID: PMC5797447 DOI: 10.7717/peerj.4343] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/19/2018] [Indexed: 11/20/2022] Open
Abstract
Interest in the ecology of sponges on coral reefs has grown in recent years with mounting evidence that sponges are becoming dominant members of reef communities, particularly in the Caribbean. New estimates of water column processing by sponge pumping activities combined with discoveries related to carbon and nutrient cycling have led to novel hypotheses about the role of sponges in reef ecosystem function. Among these developments, a debate has emerged about the relative effects of bottom-up (food availability) and top-down (predation) control on the community of sponges on Caribbean fore-reefs. In this review, we evaluate the impact of the latest findings on the debate, as well as provide new insights based on older citations. Recent studies that employed different research methods have demonstrated that dissolved organic carbon (DOC) and detritus are the principal sources of food for a growing list of sponge species, challenging the idea that the relative availability of living picoplankton is the sole proxy for sponge growth or abundance. New reports have confirmed earlier findings that reef macroalgae release labile DOC available for sponge nutrition. Evidence for top-down control of sponge community structure by fish predation is further supported by gut content studies and historical population estimates of hawksbill turtles, which likely had a much greater impact on relative sponge abundances on Caribbean reefs of the past. Implicit to investigations designed to address the bottom-up vs. top-down debate are appropriate studies of Caribbean fore-reef environments, where benthic communities are relatively homogeneous and terrestrial influences and abiotic effects are minimized. One recent study designed to test both aspects of the debate did so using experiments conducted entirely in shallow lagoonal habitats dominated by mangroves and seagrass beds. The top-down results from this study are reinterpreted as supporting past research demonstrating predator preferences for sponge species that are abundant in these lagoonal habitats, but grazed away in fore-reef habitats. We conclude that sponge communities on Caribbean fore-reefs of the past and present are largely structured by predation, and offer new directions for research, such as determining the environmental conditions under which sponges may be food-limited (e.g., deep sea, lagoonal habitats) and monitoring changes in sponge community structure as populations of hawksbill turtles rebound.
Collapse
Affiliation(s)
- Joseph R Pawlik
- Department of Biology and Marine Biology and Center for Marine Science, UNCW, Wilmington, NC, USA
| | | | - Steven E McMurray
- Department of Biology and Marine Biology and Center for Marine Science, UNCW, Wilmington, NC, USA
| |
Collapse
|