1
|
Münzbergová Z, Šurinová M, Biscarini F, Níčová E. Genetic response of a perennial grass to warm and wet environments interacts and is associated with trait means as well as plasticity. J Evol Biol 2024; 37:704-716. [PMID: 38761114 DOI: 10.1093/jeb/voae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 04/15/2024] [Accepted: 05/17/2024] [Indexed: 05/20/2024]
Abstract
The potential for rapid evolution is an important mechanism allowing species to adapt to changing climatic conditions. Although such potential has been largely studied in various short-lived organisms, to what extent we can observe similar patterns in long-lived plant species, which often dominate natural systems, is largely unexplored. We explored the potential for rapid evolution in Festuca rubra, a long-lived grass with extensive clonal growth dominating in alpine grasslands. We used a field sowing experiment simulating expected climate change in our model region. Specifically, we exposed seeds from five independent seed sources to novel climatic conditions by shifting them along a natural climatic grid and explored the genetic profiles of established seedlings after 3 years. Data on genetic profiles of plants selected under different novel conditions indicate that different climate shifts select significantly different pools of genotypes from common seed pools. Increasing soil moisture was more important than increasing temperature or the interaction of the two climatic factors in selecting pressure. This can indicate negative genetic interaction in response to the combined effects or that the effects of different climates are interactive rather than additive. The selected alleles were found in genomic regions, likely affecting the function of specific genes or their expression. Many of these were also linked to morphological traits (mainly to trait plasticity), suggesting these changes may have a consequence on plant performance. Overall, these data indicate that even long-lived plant species may experience strong selection by climate, and their populations thus have the potential to rapidly adapt to these novel conditions.
Collapse
Affiliation(s)
- Zuzana Münzbergová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, Prague, Czech Republic
- Department of Population Ecology, Institute of Botany, Czech Academy of Sciences, Zámek 1, Průhonice, Czech Republic
| | - Maria Šurinová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, Prague, Czech Republic
- Department of Population Ecology, Institute of Botany, Czech Academy of Sciences, Zámek 1, Průhonice, Czech Republic
| | - Filippo Biscarini
- Institute of Agricultural Biology and Biotechnology, National Research Council (IBBA-CNR), Milan, Italy
| | - Eva Níčová
- Department of Population Ecology, Institute of Botany, Czech Academy of Sciences, Zámek 1, Průhonice, Czech Republic
| |
Collapse
|
2
|
Croy JR, Pratt JD, Mooney KA. Latitudinal resource gradient shapes multivariate defense strategies in a long‐lived shrub. Ecology 2022; 103:e3830. [PMID: 35869688 PMCID: PMC10078560 DOI: 10.1002/ecy.3830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 11/06/2022]
Abstract
Plant defense against herbivores is multidimensional, and investment into different defense traits is intertwined due to genetic, physiological, and ecological costs. This relationship is expected to generate a trade-off between direct defense and tolerance that is underlain by resource availability, with increasing resources being associated with increased investment in tolerance and decreased investment in direct resistance. We tested these predictions across populations of the shrub Artemisia californica by growing plants sourced from a latitudinal aridity gradient within common gardens located at the southern (xeric) and northern (mesic) portions of its distribution. We measured plant growth rate, resistance via a damage survey, and tolerance to herbivory by experimentally simulating vertebrate herbivory. Plants from more northern (vs. southern) environments were less resistant (received higher percent damage by vertebrate herbivores) and tended to be more tolerant (marginally significant) with respect to change in biomass measured 12 months after simulated vertebrate herbivory. Also, putative growth and defense traits paralleled patterns of resistance and tolerance, such that leaves from northern populations contained lower concentrations of terpenes and increased N, specific leaf area, and % water. Last, plant growth rate did not demonstrate clear clinal patterns, as northern populations (vs. southern populations) grew more slowly in the southern (xeric) garden, but there was no clinal relationship detected in the northern (mesic) garden. Overall, our findings support the prediction of lower resistance and higher tolerance in plant populations adapted to more resource-rich, mesic environments, but this trade-off was not associated with concomitant trade-offs in growth rate. These findings ultimately suggest that plant adaptation to resource availability and herbivory can shape intraspecific variation in multivariate plant defenses.
Collapse
Affiliation(s)
- Jordan R. Croy
- Department of Ecology and Evolutionary Biology University of California Irvine CA USA
- Department of Entomology University of Georgia Athens GA USA
| | - Jessica D. Pratt
- Department of Ecology and Evolutionary Biology University of California Irvine CA USA
| | - Kailen A. Mooney
- Department of Ecology and Evolutionary Biology University of California Irvine CA USA
| |
Collapse
|
3
|
Rathore N, Thakur D, Kumar D, Chawla A, Kumar S. Time-series eco-metabolomics reveals extensive reshuffling in metabolome during transition from cold acclimation to de-acclimation in an alpine shrub. PHYSIOLOGIA PLANTARUM 2021; 173:1824-1840. [PMID: 34379811 DOI: 10.1111/ppl.13524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Recording environmentally induced variations in the metabolome in plants can be a promising approach for understanding the complex patterns of metabolic regulation and their eco-physiological consequences. Here, we studied metabolome-wide changes and eco-physiological adjustments occurring across the year at high elevation environments in the leaf tissue of Rhododendron anthopogon, an alpine evergreen shrub of the Himalaya. New leaves of R. anthopogon appear after the snow-melt and remain intact even when the plants get covered under snow (November-June). During this whole period, they may undergo several physiological and biochemical adjustments in response to fluctuating temperatures and light conditions. To understand these changes, we analyzed eco-physiological traits, that is, freezing resistance, dry matter content and % of nitrogen and the overall metabolome across 10 different time-points, from August until the snowfall in November 2017, and then from June to August 2018. As anticipated, the freezing resistance increased toward the onset of winters. The leaf tissues exhibited a complete reshuffling of the metabolome during the growth cycle and time-points segregated into four clusters directly correlating with distinct phases of acclimation: non-acclimation (August 22, 2017; August 14, 2018), early cold acclimation (September 12, September 29, October 11, 2017), late cold acclimation (October 23, November 4, 2017), and de-acclimation (June 15, June 28, July 14, 2018). Cold acclimation involved metabolic progression (101 metabolites) with an increase of up to 19.4-fold (gentiobiose), whereas de-acclimation showed regression (120 metabolites) with a decrease of up to 30-fold (sucrose). The changes in the metabolome during de-acclimation were maximum and were not just a reversal of cold acclimation. Our results provided insights into the direction and magnitude of physiological changes in Rhododendron anthopogon that occurred across the year.
Collapse
Affiliation(s)
- Nikita Rathore
- Environmental Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dinesh Thakur
- Environmental Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dinesh Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Chemical Technology Division, CSIR-IHBT, Palampur, India
| | - Amit Chawla
- Environmental Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-IHBT, Palampur, India
| |
Collapse
|
4
|
Consistent community genetic effects in the context of strong environmental and temporal variation in Eucalyptus. Oecologia 2021; 195:367-382. [PMID: 33471200 DOI: 10.1007/s00442-020-04835-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
Provenance translocations of tree species are promoted in forestry, conservation, and restoration in response to global climate change. While this option is driven by adaptive considerations, less is known of the effects translocations can have on dependent communities. We investigated the relative importance and consistency of extended genetic effects in Eucalyptus using two species-E. globulus and E. pauciflora. In E. globulus, the dependent arthropod and pathogen canopy communities were quantified based on the abundance of 49 symptoms from 722 progeny from 13 geographic sub-races across 2 common gardens. For E. pauciflora, 6 symptoms were quantified over 2 years from 238 progeny from 16 provenances across 2 common gardens. Genetic effects significantly influenced communities in both species. However, site and year effects outweighed genetic effects with site explaining approximately 3 times the variation in community traits in E. globulus and site and year explaining approximately 6 times the variation in E. pauciflora. While the genetic effect interaction terms were significant in some community traits, broad trends in community traits associated with variation in home-site latitude for E. globulus and home-site altitude for E. pauciflora were evident. These broad-scale trends were consistent with patterns of adaptive differentiation within each species, suggesting there may be extended consequences of local adaptation. While small in comparison to site and year, the consistency of genetic effects highlights the importance of provenance choice in tree species, such as Eucalyptus, as adaptive divergence among provenances may have significant long-term effects on biotic communities.
Collapse
|
5
|
Galmán A, Abdala‐Roberts L, Wartalska P, Covelo F, Röder G, Szenteczki MA, Moreira X, Rasmann S. Elevational gradients in constitutive and induced oak defences based on individual traits and their correlated expression patterns. OIKOS 2020. [DOI: 10.1111/oik.07588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea Galmán
- Misión Biológica de Galicia (MBG‐CSIC), Pontevedra Galicia Spain
| | - Luis Abdala‐Roberts
- Depto de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Univ. Autónoma de Yucatán, Itzimná, Mérida Yucatán México
| | - Pola Wartalska
- Małopolska Centre of Biotechnology, Jagiellonian Univ. Kraków Poland
| | - Felisa Covelo
- Depto de Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide Sevilla Spain
| | - Gregory Röder
- Inst. of Biology, Univ. of Neuchâtel Neuchâtel Switzerland
| | | | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG‐CSIC), Pontevedra Galicia Spain
| | - Sergio Rasmann
- Inst. of Biology, Univ. of Neuchâtel Neuchâtel Switzerland
| |
Collapse
|
6
|
Data on Herbivore Performance and Plant Herbivore Damage Identify the Same Plant Traits as the Key Drivers of Plant-Herbivore Interaction. INSECTS 2020; 11:insects11120865. [PMID: 33291794 PMCID: PMC7762045 DOI: 10.3390/insects11120865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022]
Abstract
Data on plant herbivore damage as well as on herbivore performance have been previously used to identify key plant traits driving plant-herbivore interactions. The extent to which the two approaches lead to similar conclusions remains to be explored. We determined the effect of a free-living leaf-chewing generalist caterpillar, Spodoptera littoralis (Lepidoptera: Noctuidae), on leaf damage of 24 closely related plant species from the Carduoideae subfamily and the effect of these plant species on caterpillar growth. We used a wide range of physical defense leaf traits and leaf nutrient contents as the plant traits. Herbivore performance and leaf damage were affected by similar plant traits. Traits related to higher caterpillar mortality (higher leaf dissection, number, length and toughness of spines and lower trichome density) also led to higher leaf damage. This fits with the fact that each caterpillar was feeding on a single plant and, thus, had to consume more biomass of the less suitable plants to obtain the same amount of nutrients. The key plant traits driving plant-herbivore interactions identified based on data on herbivore performance largely corresponded to the traits identified as important based on data on leaf damage. This suggests that both types of data may be used to identify the key plant traits determining plant-herbivore interactions. It is, however, important to carefully distinguish whether the data on leaf damage were obtained in the field or in a controlled feeding experiment, as the patterns expected in the two environments may go in opposite directions.
Collapse
|
7
|
Münzbergová Z, Kosová V, Schnáblová R, Rokaya M, Synková H, Haisel D, Wilhelmová N, Dostálek T. Plant Origin, but Not Phylogeny, Drive Species Ecophysiological Response to Projected Climate. FRONTIERS IN PLANT SCIENCE 2020; 11:400. [PMID: 32318088 PMCID: PMC7154175 DOI: 10.3389/fpls.2020.00400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
Knowledge of the relationship between environmental conditions and species traits is an important prerequisite for understanding determinants of community composition and predicting species response to novel climatic conditions. Despite increasing number of studies on this topic, our knowledge on importance of genetic differentiation, plasticity and their interactions along larger sets of species is still limited especially for traits related to plant ecophysiology. We studied variation in traits related to growth, leaf chemistry, contents of photosynthetic pigments and activity of antioxidative enzymes, stomata morphology and photosynthetic activity across eight Impatiens species growing along altitudinal gradients in Himalayas cultivated in three different temperature regimes and explored effects of among species phylogenetic relationships on the results. Original and target climatic conditions determine trait values in our system. The traits are either highly plastic (e.g., APX, CAT, plant size, neoxanthin, β-carotene, chlorophyll a/b, DEPSC) or are highly differentiated among populations (stomata density, lutein production). Many traits show strong among population differentiation in degree of plasticity and direction in response to environmental changes. Most traits indicate that the species will profit from the expected warming. This suggests that different processes determine the values of the different traits and separating the importance of genetic differentiation and plasticity is crucial for our ability to predict species response to future climate changes. The results also indicate that evolution of the traits is not phylogenetically constrained but including phylogenetic information into the analysis may improve our understanding of the trait-environment relationships as was apparent from the analysis of SLA.
Collapse
Affiliation(s)
- Zuzana Münzbergová
- Department of Population Ecology, Institute of Botany, Czech Academy of Sciences, Prague, Czechia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Veronika Kosová
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Renáta Schnáblová
- Department of Population Ecology, Institute of Botany, Czech Academy of Sciences, Prague, Czechia
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Maan Rokaya
- Department of Population Ecology, Institute of Botany, Czech Academy of Sciences, Prague, Czechia
| | - Helena Synková
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Daniel Haisel
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Nada Wilhelmová
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Tomáš Dostálek
- Department of Population Ecology, Institute of Botany, Czech Academy of Sciences, Prague, Czechia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
8
|
Kergunteuil A, Humair L, Maire AL, Moreno-Aguilar MF, Godschalx A, Catalán P, Rasmann S. Tritrophic interactions follow phylogenetic escalation and climatic adaptation. Sci Rep 2020; 10:2074. [PMID: 32034273 PMCID: PMC7005781 DOI: 10.1038/s41598-020-59068-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/24/2020] [Indexed: 11/29/2022] Open
Abstract
One major goal in plant evolutionary ecology is to address how and why tritrophic interactions mediated by phytochemical plant defences vary across species, space, and time. In this study, we tested three classical hypotheses about plant defences: (i) the resource-availability hypothesis, (ii) the altitudinal/elevational gradient hypothesis and (iii) the defence escalation hypothesis. For this purpose, predatory soil nematodes were challenged to hunt for root herbivores based on volatile cues from damaged or intact roots of 18 Alpine Festuca grass species adapted to distinct climatic niches spanning 2000 meters of elevation. We found that adaptation into harsh, nutrient-limited alpine environments coincided with the production of specific blends of volatiles, highly attractive for nematodes. We also found that recently-diverged taxa exposed to herbivores released higher amounts of volatiles than ancestrally-diverged species. Therefore, our model provides evidence that belowground indirect plant defences associated with tritrophic interactions have evolved under two classical hypotheses in plant ecology. While phylogenetic drivers of volatile emissions point to the defence-escalation hypothesis, plant local adaptation of indirect defences is in line with the resource availability hypothesis.
Collapse
Affiliation(s)
- Alan Kergunteuil
- Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
- INRAE, UMR Laboratoire d'Agronomie et Environnement, Vandoeuvre-lès, 54518, Nancy, France
| | - Laureline Humair
- Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Anne-Laure Maire
- Botanical Garden Neuchâtel, Chemin du Pertuis-du-Sault 58, 2000, Neuchâtel, Switzerland
| | - María Fernanda Moreno-Aguilar
- Departamento de Ciencias Agrarias y del Medio Natural, Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Ctra. Cuarte km 1, 22071, Huesca, Spain
| | - Adrienne Godschalx
- INRAE, UMR Laboratoire d'Agronomie et Environnement, Vandoeuvre-lès, 54518, Nancy, France
| | - Pilar Catalán
- Departamento de Ciencias Agrarias y del Medio Natural, Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Ctra. Cuarte km 1, 22071, Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
- Department of Botany, Institute of Biology, Tomsk State University, Lenin Av. 36, Tomsk, 634050, Russia
| | - Sergio Rasmann
- Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland.
| |
Collapse
|
9
|
Li M, Cappellin L, Xu J, Biasioli F, Varotto C. High-throughput screening for in planta characterization of VOC biosynthetic genes by PTR-ToF-MS. JOURNAL OF PLANT RESEARCH 2020; 133:123-131. [PMID: 31701286 PMCID: PMC6946754 DOI: 10.1007/s10265-019-01149-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Functional characterization of plant volatile organic compound (VOC) biosynthetic genes and elucidation of the biological function of their products often involve the screening of large numbers of plants from either independent transformation events or mapping populations. The low time resolution of standard gas chromatographic methods, however, represents a major bottleneck for in planta genetic characterization of VOC biosynthetic genes. Here we present a fast and highly-sensitive method for the high-throughput characterization of VOC emission levels/patterns by coupling a Proton Transfer Reaction Time-of-Flight Mass Spectrometer to an autosampler for automation of sample measurement. With this system more than 700 samples per day can be screened, detecting for each sample hundreds of spectrometric peaks in the m/z 15-300 range. As a case study, we report the characterization of VOC emissions from 116 independent Arabidopsis thaliana lines transformed with a putative isoprene synthase gene, confirming its function also when fused to a C-terminal 3×FLAG tag. We demonstrate that the method is more reliable than conventional characterization of transgene expression for the identification of the most highly isoprene-emitting lines. The throughput of this VOC screening method exceeds that of existing alternatives, potentially allowing its application to reverse and forward genetic screenings of genes contributing to VOC emission, constituting a powerful tool for the functional characterization of VOC biosynthetic genes and elucidation of the biological functions of their products directly in planta.
Collapse
Affiliation(s)
- Mingai Li
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all' Adige, TN, Italy
| | - Luca Cappellin
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all' Adige, TN, Italy
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35121, Padua, Italy
| | - Jia Xu
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all' Adige, TN, Italy
- Dipartimento di Biologia, Università di Padova, Viale G. Colombo 3, 35121, Padua, Italy
| | - Franco Biasioli
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all' Adige, TN, Italy
| | - Claudio Varotto
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all' Adige, TN, Italy.
| |
Collapse
|