1
|
Mellin C, Hicks CC, Fordham DA, Golden CD, Kjellevold M, MacNeil MA, Maire E, Mangubhai S, Mouillot D, Nash KL, Omukoto JO, Robinson JPW, Stuart-Smith RD, Zamborain-Mason J, Edgar GJ, Graham NAJ. Safeguarding nutrients from coral reefs under climate change. Nat Ecol Evol 2022; 6:1808-1817. [PMID: 36192542 DOI: 10.1038/s41559-022-01878-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/14/2022] [Indexed: 12/15/2022]
Abstract
The sustainability of coral reef fisheries is jeopardized by complex and interacting socio-ecological stressors that undermine their contribution to food and nutrition security. Climate change has emerged as one of the key stressors threatening coral reefs and their fish-associated services. How fish nutrient concentrations respond to warming oceans remains unclear but these responses are probably affected by both direct (metabolism and trophodynamics) and indirect (habitat and species range shifts) effects. Climate-driven coral habitat loss can cause changes in fish abundance and biomass, revealing potential winners and losers among major fisheries targets that can be predicted using ecological indicators and biological traits. A critical next step is to extend research focused on the quantity of available food (fish biomass) to also consider its nutritional quality, which is relevant to progress in the fields of food security and malnutrition. Biological traits are robust predictors of fish nutrient content and thus potentially indicate how climate-driven changes are expected to impact nutrient availability within future food webs on coral reefs. Here, we outline future research priorities and an anticipatory framework towards sustainable reef fisheries contributing to nutrition-sensitive food systems in a warming ocean.
Collapse
Affiliation(s)
- Camille Mellin
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | | | - Damien A Fordham
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Christopher D Golden
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | - M Aaron MacNeil
- Ocean Frontier Institute, Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Eva Maire
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | | | - David Mouillot
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, MARBEC, Montpellier, France
| | - Kirsty L Nash
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
- Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania, Australia
| | - Johnstone O Omukoto
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
- Kenya Marine and Fisheries Research Institute, Mombasa, Kenya
| | | | - Rick D Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Jessica Zamborain-Mason
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Graham J Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | | |
Collapse
|
2
|
Rivas N, Acero P. A, Tavera J. Spatial variation of parrotfish assemblages at oceanic islands in the western Caribbean: evidence of indirect effects of fishing? PeerJ 2022; 10:e14178. [PMID: 36518271 PMCID: PMC9744149 DOI: 10.7717/peerj.14178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Fish populations that bear considerable pressure levels tend to show a decline in the average size of individuals, with the small and unexploited species replacing the large and exploited ones. It is important to carry on with their characterization in areas where they are becoming an important source of food for local human populations. An example of such species are parrotfishes, whose responses to external factors such as fishing need to be understood and predicted. In this study, we used a diver-operated stereo-video to examine individual body size, sex ratios and proportion of species of the parrotfish assemblage and analyze them on a qualitative fishing pressure gradient at four oceanic islands in the Colombian Caribbean. We reported over 10,000 occurrences of eleven parrotfish species, of which we estimated the total length of over 90%, grouping them into three size categories (large, medium, and small). Our data showed a spatial variation of parrotfishes' abundances, biomass, and individual body size. Observed differences are size-category-dependent throughout the qualitative fishing pressure. In general, the medium-bodied species had smaller sizes, lower abundances, and thus lower contribution to the total parrotfish biomass at the most heavily fished island. Unexpectedly, we found evidence of possible indirect effects over the small-bodied species Scarus iseri and Scarus taeniopterus with significantly greater abundances, and larger sizes of males of S. iseri, at the higher fishing pressure sites. Overall, our data highlights the extent of the spatial variation in the parrotfish communities at relatively short distances, and present new insights into the responses of parrotfish species on a spectrum of body sizes along a gradient of human pressure.
Collapse
Affiliation(s)
- Natalia Rivas
- Instituto de Estudios en Ciencias del Mar (Cecimar), Universidad Nacional de Colombia sede Caribe, El Rodadero, Santa Marta, Colombia
| | - Arturo Acero P.
- Instituto de Estudios en Ciencias del Mar (Cecimar), Universidad Nacional de Colombia sede Caribe, El Rodadero, Santa Marta, Colombia
| | - José Tavera
- Departamento de Biología, Universidad del Valle, Cali, Colombia
| |
Collapse
|
3
|
Osuka KE, Stewart BD, Samoilys MA, Roche RC, Turner J, McClean C. Protection outcomes for fish trophic groups across a range of management regimes. MARINE POLLUTION BULLETIN 2021; 173:113010. [PMID: 34628347 DOI: 10.1016/j.marpolbul.2021.113010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Understanding how Marine Protected Areas (MPAs) improve conservation outcomes across anthropogenic pressures can improve the benefits derived from them. Effects of protection for coral reefs in the western and central Indian Ocean were assessed using size-spectra analysis of fish and the relationships of trophic group biomass with human population density. Length-spectra relationships quantifying the relative abundance of small and large fish (slope) and overall productivity of the system (intercept) showed inconsistent patterns with MPA protection. The results suggest that both the slopes and intercepts were significantly higher in highly and well-protected MPAs. This indicates that effective MPAs are more productive and support higher abundances of smaller fish, relative to moderately protected MPAs. Trophic group biomass spanning piscivores and herbivores, decreased with increasing human density implying restoration of fish functional structure is needed. This would require addressing fisher needs and supporting effective MPA management to secure ecosystem benefits for coastal communities.
Collapse
Affiliation(s)
- Kennedy E Osuka
- Department of Environment and Geography, University of York, York, UK; CORDIO East Africa, Mombasa, Kenya.
| | - Bryce D Stewart
- Department of Environment and Geography, University of York, York, UK
| | - Melita A Samoilys
- CORDIO East Africa, Mombasa, Kenya; Department of Zoology, University of Oxford, Oxford, UK
| | - Ronan C Roche
- School of Ocean Sciences, Bangor University, Bangor, UK
| | - John Turner
- School of Ocean Sciences, Bangor University, Bangor, UK
| | - Colin McClean
- Department of Environment and Geography, University of York, York, UK
| |
Collapse
|
4
|
Chow CFY, Wassénius E, Dornelas M, Hoey AS. Species differences drive spatial scaling of foraging patterns in herbivorous reef fishes. OIKOS 2021. [DOI: 10.1111/oik.08713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cher F. Y. Chow
- Centre for Biological Diversity and Scottish Oceans Inst., School of Biology, Univ. of St Andrews St Andrews UK
| | - Emmy Wassénius
- Centre for Biological Diversity and Scottish Oceans Inst., School of Biology, Univ. of St Andrews St Andrews UK
- Global Economic Dynamics and the Biosphere, Royal Swedish Academy of Science Stockholm Sweden
- Stockholm Resilience Center, Stockholm Univ. Stockholm Sweden
| | - Maria Dornelas
- Centre for Biological Diversity and Scottish Oceans Inst., School of Biology, Univ. of St Andrews St Andrews UK
| | - Andrew S. Hoey
- ARC Centre of Excellence for Coral Reef Studies, James Cook Univ. Townsville Queensland Australia
| |
Collapse
|
5
|
Mihalitsis M, Bellwood DR. Functional groups in piscivorous fishes. Ecol Evol 2021; 11:12765-12778. [PMID: 34594537 PMCID: PMC8462170 DOI: 10.1002/ece3.8020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 01/17/2023] Open
Abstract
Piscivory is a key ecological function in aquatic ecosystems, mediating energy flow within trophic networks. However, our understanding of the nature of piscivory is limited; we currently lack an empirical assessment of the dynamics of prey capture and how this differs between piscivores. We therefore conducted aquarium-based performance experiments, to test the feeding abilities of 19 piscivorous fish species. We quantified their feeding morphology, striking, capturing, and processing behavior. We identify two major functional groups: grabbers and engulfers. Grabbers are characterized by horizontal, long-distance strikes, capturing their prey tailfirst and subsequently processing their prey using their oral jaw teeth. Engulfers strike from short distances, from high angles above or below their prey, engulfing their prey and swallowing their prey whole. Based on a meta-analysis of 2,209 published in situ predator-prey relationships in marine and freshwater aquatic environments, we show resource partitioning between grabbers and engulfers. Our results provide a functional classification for piscivorous fishes delineating patterns, which transcend habitats, that may help explain size structures in fish communities.
Collapse
Affiliation(s)
- Michalis Mihalitsis
- Research Hub for Coral Reef Ecosystem FunctionsJames Cook UniversityTownsvilleQldAustralia
- College of Science and EngineeringJames Cook UniversityTownsvilleQldAustralia
- Australian Research CouncilCentre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQldAustralia
| | - David R. Bellwood
- Research Hub for Coral Reef Ecosystem FunctionsJames Cook UniversityTownsvilleQldAustralia
- College of Science and EngineeringJames Cook UniversityTownsvilleQldAustralia
- Australian Research CouncilCentre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQldAustralia
| |
Collapse
|
6
|
Holmes MJ, Venables B, Lewis RJ. Critical Review and Conceptual and Quantitative Models for the Transfer and Depuration of Ciguatoxins in Fishes. Toxins (Basel) 2021; 13:toxins13080515. [PMID: 34437386 PMCID: PMC8402393 DOI: 10.3390/toxins13080515] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/05/2021] [Accepted: 07/16/2021] [Indexed: 02/08/2023] Open
Abstract
We review and develop conceptual models for the bio-transfer of ciguatoxins in food chains for Platypus Bay and the Great Barrier Reef on the east coast of Australia. Platypus Bay is unique in repeatedly producing ciguateric fishes in Australia, with ciguatoxins produced by benthic dinoflagellates (Gambierdiscus spp.) growing epiphytically on free-living, benthic macroalgae. The Gambierdiscus are consumed by invertebrates living within the macroalgae, which are preyed upon by small carnivorous fishes, which are then preyed upon by Spanish mackerel (Scomberomorus commerson). We hypothesise that Gambierdiscus and/or Fukuyoa species growing on turf algae are the main source of ciguatoxins entering marine food chains to cause ciguatera on the Great Barrier Reef. The abundance of surgeonfish that feed on turf algae may act as a feedback mechanism controlling the flow of ciguatoxins through this marine food chain. If this hypothesis is broadly applicable, then a reduction in herbivory from overharvesting of herbivores could lead to increases in ciguatera by concentrating ciguatoxins through the remaining, smaller population of herbivores. Modelling the dilution of ciguatoxins by somatic growth in Spanish mackerel and coral trout (Plectropomus leopardus) revealed that growth could not significantly reduce the toxicity of fish flesh, except in young fast-growing fishes or legal-sized fishes contaminated with low levels of ciguatoxins. If Spanish mackerel along the east coast of Australia can depurate ciguatoxins, it is most likely with a half-life of ≤1-year. Our review and conceptual models can aid management and research of ciguatera in Australia, and globally.
Collapse
Affiliation(s)
- Michael J. Holmes
- Queensland Department of Environment and Science, Brisbane 4102, Australia;
| | | | - Richard J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
- Correspondence:
| |
Collapse
|
7
|
Carvalho PG, Setiawan F, Fahlevy K, Subhan B, Madduppa H, Zhu G, Humphries AT. Fishing and habitat condition differentially affect size spectra slopes of coral reef fishes. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02345. [PMID: 33817898 DOI: 10.1002/eap.2345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/30/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Marine food webs are structured through a combination of top-down and bottom-up processes. In coral reef ecosystems, fish size is related to life-history characteristics and size-based indicators can represent the distribution and flow of energy through the food web. Thus, size spectra can be a useful tool for investigating the impacts of both fishing and habitat condition on the health and productivity of coral reef fisheries. In addition, coral reef fisheries are often data-limited and size spectra analysis can be a relatively cost-effective and simple method for assessing fish populations. Abundance size spectra are widely used and quantify the relationship between organism size and relative abundance. Previous studies that have investigated the impacts of fishing and habitat condition together on the size distribution of coral reef fishes, however, have aggregated all fishes regardless of taxonomic identity. This leads to a poor understanding of how fishes with different feeding strategies, body size-abundance relationships, or catchability might be influenced by top-down and bottom-up drivers. To address this gap, we quantified size spectra slopes of carnivorous and herbivorous coral reef fishes across three regions of Indonesia representing a gradient in fishing pressure and habitat conditions. We show that fishing pressure was the dominant driver of size spectra slopes such that they became steeper as fishing pressure increased, which was due to the removal of large-bodied fishes. When considering fish functional groups separately, however, carnivore size spectra slopes were more heavily impacted by fishing than herbivores. Also, structural complexity, which can mediate predator-prey interactions and provisioning of resources, was a relatively important driver of herbivore size spectra slopes such that slopes were shallower in more complex habitats. Our results show that size spectra slopes can be used as indicators of fishing pressure on coral reef fishes, but aggregating fish regardless of trophic identity or functional role overlooks differential impacts of fishing pressure and habitat condition on carnivore and herbivore size distributions.
Collapse
Affiliation(s)
- Paul G Carvalho
- Department of Fisheries, Animal and Veterinary Sciences, University of Rhode Island, 9 East Alumni Avenue, Kingston, Rhode Island, 02881, USA
| | - Fakhrizal Setiawan
- Department of Marine Science and Technology, Faculty of Fisheries and Marine Science, Institut Pertanian Bogor (IPB), Jalan Rasamala, Bogor, Darmaga, 16680, Indonesia
| | - Karizma Fahlevy
- Department of Marine Science and Technology, Faculty of Fisheries and Marine Science, Institut Pertanian Bogor (IPB), Jalan Rasamala, Bogor, Darmaga, 16680, Indonesia
| | - Beginer Subhan
- Department of Marine Science and Technology, Faculty of Fisheries and Marine Science, Institut Pertanian Bogor (IPB), Jalan Rasamala, Bogor, Darmaga, 16680, Indonesia
| | - Hawis Madduppa
- Department of Marine Science and Technology, Faculty of Fisheries and Marine Science, Institut Pertanian Bogor (IPB), Jalan Rasamala, Bogor, Darmaga, 16680, Indonesia
| | - Guangyu Zhu
- Department of Computer Science and Statistics, University of Rhode Island, 9 Greenhouse Road, Kingston, Rhode Island, 02881, USA
| | - Austin T Humphries
- Department of Fisheries, Animal and Veterinary Sciences, University of Rhode Island, 9 East Alumni Avenue, Kingston, Rhode Island, 02881, USA
- Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, Rhode Island, 02882, USA
| |
Collapse
|
8
|
Ford AK, Visser PM, van Herk MJ, Jongepier E, Bonito V. First insights into the impacts of benthic cyanobacterial mats on fish herbivory functions on a nearshore coral reef. Sci Rep 2021; 11:7147. [PMID: 33785764 PMCID: PMC8009962 DOI: 10.1038/s41598-021-84016-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/04/2021] [Indexed: 11/22/2022] Open
Abstract
Benthic cyanobacterial mats (BCMs) are becoming increasingly common on coral reefs. In Fiji, blooms generally occur in nearshore areas during warm months but some are starting to prevail through cold months. Many fundamental knowledge gaps about BCM proliferation remain, including their composition and how they influence reef processes. This study examined a seasonal BCM bloom occurring in a 17-year-old no-take inshore reef area in Fiji. Surveys quantified the coverage of various BCM-types and estimated the biomass of key herbivorous fish functional groups. Using remote video observations, we compared fish herbivory (bite rates) on substrate covered primarily by BCMs (> 50%) to substrate lacking BCMs (< 10%) and looked for indications of fish (opportunistically) consuming BCMs. Samples of different BCM-types were analysed by microscopy and next-generation amplicon sequencing (16S rRNA). In total, BCMs covered 51 ± 4% (mean ± s.e.m) of the benthos. Herbivorous fish biomass was relatively high (212 ± 36 kg/ha) with good representation across functional groups. Bite rates were significantly reduced on BCM-dominated substratum, and no fish were unambiguously observed consuming BCMs. Seven different BCM-types were identified, with most containing a complex consortium of cyanobacteria. These results provide insight into BCM composition and impacts on inshore Pacific reefs.
Collapse
Affiliation(s)
- Amanda K Ford
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), University of the South Pacific, Suva, Fiji.
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden.
| | - Petra M Visser
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Maria J van Herk
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Evelien Jongepier
- Bioinformatics, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
9
|
Site-Level Variation in Parrotfish Grazing and Bioerosion as a Function of Species-Specific Feeding Metrics. DIVERSITY 2020. [DOI: 10.3390/d12100379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Parrotfish provide important ecological functions on coral reefs, including the provision of new settlement space through grazing and the generation of sediment through bioerosion of reef substrate. Estimating these functions at an ecosystem level depends on accurately quantifying the functional impact of individuals, yet parrotfish feeding metrics are only available for a limited range of sites, species and size classes. We quantified bite rates, proportion of bites leaving scars and scar sizes in situ for the dominant excavator (Cetoscarus ocellatus, Chlorurus strongylocephalus, Ch. sordidus) and scraper species (Scarus rubroviolaceus, S. frenatus, S. niger, S. tricolor, S. scaber, S. psittacus) in the central Indian Ocean. This includes the first record of scar frequencies and sizes for the latter three species. Bite rates varied with species and life phase and decreased with body size. The proportion of bites leaving scars and scar sizes differed among species and increased with body size. Species-level allometric relationships between body size and each of these feeding metrics were used to parameterize annual individual grazing and bioerosion rates which increase non-linearly with body size. Large individuals of C. ocellatus, Ch. strongylocephalus and S. rubroviolaceus can graze 200–400 m2 and erode >500 kg of reef substrate annually. Smaller species graze 1–100 m2 yr−1 and erode 0.2–30 kg yr−1. We used these individual functional rates to quantify community grazing and bioerosion levels at 15 sites across the Maldives and the Chagos Archipelago. Although parrotfish density was 2.6 times higher on Maldivian reefs, average grazing (3.9 ± 1.4 m2 m−2 reef yr−1) and bioerosion levels (3.1 ± 1.2 kg m−2 reef yr−1) were about 15% lower than in the Chagos Archipelago (4.5 ± 2.3 and 3.7 ± 3.0, respectively), due to the dominance of small species and individuals in the Maldives (90% <30 cm length). This demonstrates that large-bodied species and individuals contribute disproportionally to both grazing and bioerosion. Across all sites, grazing increased by 66 ± 5 m2 ha−1 and bioerosion by 109 ± 9 kg ha−1 for every kg increase in parrotfish biomass. However, for a given level of parrotfish biomass, grazing and bioerosion levels were higher on Maldivian reefs than in the Chagos Archipelago. This suggests that small-bodied fish assemblages can maintain ecosystem functions, but only if key species are present in sufficiently high numbers.
Collapse
|
10
|
Habitat zonation on coral reefs: Structural complexity, nutritional resources and herbivorous fish distributions. PLoS One 2020; 15:e0233498. [PMID: 32497043 PMCID: PMC7272040 DOI: 10.1371/journal.pone.0233498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 05/06/2020] [Indexed: 11/20/2022] Open
Abstract
Distinct zonation of community assemblages among habitats is a ubiquitous feature of coral reefs. The distribution of roving herbivorous fishes (parrotfishes, surgeonfishes and rabbitfishes) is a particularly clear example, with the abundance of these fishes generally peaking in shallow-water, high-energy habitats, regardless of the biogeographic realm. Yet, our understanding of the factors which structure this habitat partitioning, especially with regards to different facets of structural complexity and nutritional resource availability, is limited. To address this issue, we used three-dimensional photogrammetry and structure-from-motion technologies to describe five components of structural complexity (rugosity, coral cover, verticality, refuge density and field-of-view) and nutritional resource availability (grazing surface area) among habitats and considered how these factors are related to herbivorous fish distributions. All complexity metrics (including coral cover) were highest on the slope and crest. Nutritional resource availability differed from this general pattern and peaked on the outer-flat. Unexpectedly, when compared to the distribution of herbivorous fishes, none of the complexity metrics had a marked influence in the models. However, grazing surface area was a strong predictor of both the abundance and biomass of herbivorous fishes. The strong relationship between grazing surface area and herbivorous fish distributions indicates that nutritional resource availability may be one of the primary factors driving the distribution of roving herbivorous fishes. The lack of a relationship between complexity and herbivorous fishes, and a strong affinity of herbivorous fishes for low-complexity, algal turf-dominated outer-flat habitats, offers some cautious optimism that herbivory may be sustained on future, low-complexity, algal turf-dominated reef configurations.
Collapse
|