1
|
Wu NC, Alton L, Bovo RP, Carey N, Currie SE, Lighton JRB, McKechnie AE, Pottier P, Rossi G, White CR, Levesque DL. Reporting guidelines for terrestrial respirometry: Building openness, transparency of metabolic rate and evaporative water loss data. Comp Biochem Physiol A Mol Integr Physiol 2024; 296:111688. [PMID: 38944270 DOI: 10.1016/j.cbpa.2024.111688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Respirometry is an important tool for understanding whole-animal energy and water balance in relation to the environment. Consequently, the growing number of studies using respirometry over the last decade warrants reliable reporting and data sharing for effective dissemination and research synthesis. We provide a checklist guideline on five key sections to facilitate the transparency, reproducibility, and replicability of respirometry studies: 1) materials, set up, plumbing, 2) subject conditions/maintenance, 3) measurement conditions, 4) data processing, and 5) data reporting and statistics, each with explanations and example studies. Transparency in reporting and data availability has benefits on multiple fronts. Authors can use this checklist to design and report on their study, and reviewers and editors can use the checklist to assess the reporting quality of the manuscripts they review. Improved standards for reporting will enhance the value of primary studies and will greatly facilitate the ability to carry out higher quality research syntheses to address ecological and evolutionary theories.
Collapse
Affiliation(s)
- Nicholas C Wu
- Hawkesbury Institute for the Environment, Western Sydney University, New South Wales 2753, Australia.
| | - Lesley Alton
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia. https://twitter.com/lesley_alton
| | - Rafael P Bovo
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, United States. https://twitter.com/bovo_rp
| | - Nicholas Carey
- Marine Directorate for the Scottish Government, Aberdeen, United Kingdom
| | - Shannon E Currie
- Institute for Cell and Systems Biology, University of Hamburg, Martin-Luther-King Plz 3, 20146 Hamburg, Germany; School of Biosciences, University of Melbourne, Victoria, Australia. https://twitter.com/batsinthbelfry
| | - John R B Lighton
- Sable Systems International, North Las Vegas, NV, United States. https://twitter.com/SableSys
| | - Andrew E McKechnie
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, South Africa; DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, South Africa
| | - Patrice Pottier
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia; Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia. https://twitter.com/PatriceEcoEvo
| | - Giulia Rossi
- Department of Biology, McMaster University, Hamilton, Ontario, Canada. https://twitter.com/giuliasrossi
| | - Craig R White
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Danielle L Levesque
- School of Biology and Ecology, University of Maine, Orono, ME, United States. https://twitter.com/dl_levesque
| |
Collapse
|
2
|
Marini D, Szczygieł P, Kurek K, Di Nicola MR, Dorne JLCM, Marenzoni ML, Rüegg J, Bury S, Kiraga Ł. Retrospective Detection of Ophidiomyces ophidiicola from Snake Moults Collected in Bieszczady Mountains, Poland. Microorganisms 2024; 12:1467. [PMID: 39065236 PMCID: PMC11279008 DOI: 10.3390/microorganisms12071467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Ophidiomyces ophidiicola, the causative agent of ophidiomycosis, poses a potential threat to wild snakes worldwide. This study aimed to retrospectively investigate the prevalence of O. ophidiicola in archived snake moults collected from the San River Valley in the Bieszczady Mountains, Poland, from 2010 to 2012. Using qPCR for O. ophidiicola detection and conventional PCR for clade characterisation, we analysed 58 moults and one road-killed specimen of Zamenis longissimus and Natrix natrix. A novel combination of primers (ITS2L) was used to simultaneously confirm SYBR Green-based qPCR results and perform genotyping. O. ophidiicola has been detected from two Z. longissimus and one N. natrix specimens. The identified clade (I-B) is consistent with those found in wild snakes of eastern Europe and San River Valley, indicating that O. ophidiicola has been present in this region for at least a decade. This study underscores the value of historical samples in understanding the long-term presence of pathogens and highlights the potential role of environmental reservoirs in the persistence of O. ophidiicola. Our findings are crucial for informing conservation strategies for the endangered Aesculapian snake populations in Poland, emphasising the need for ongoing monitoring and habitat management to mitigate the potential impact of ophidiomycosis.
Collapse
Affiliation(s)
- Daniele Marini
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden; (D.M.); (J.R.)
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy;
| | - Piotr Szczygieł
- Scientific Society of Veterinary Medicine Students, Faculty of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, 02-776 Warsaw, Poland;
| | - Katarzyna Kurek
- Department of Wildlife Conservation, Institute of Nature Conservation Polish Academy of Science, 31-120 Cracow, Poland;
| | - Matteo Riccardo Di Nicola
- Faculty of Veterinary Medicine, Department of Pathobiology, Pharmacology and Zoological Medicine, Wildlife Health Ghent, Ghent University, 9820 Merelbeke, Belgium
- Unit of Dermatology and Cosmetology, IRCCS San Raffaele Hospital, 20132 Milan, Italy
- Asociación Herpetológica Española, 28911 Leganés, Spain
| | - Jean-Lou C. M. Dorne
- Methodology and Scientific Support Unit, European Food Safety Authority (EFSA), 43126 Parma, Italy;
| | | | - Joëlle Rüegg
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden; (D.M.); (J.R.)
| | - Stanisław Bury
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Cracow, Poland;
- NATRIX Herpetological Association, 52-010 Wrocław, Poland
| | - Łukasz Kiraga
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, 02-786 Warsaw, Poland;
| |
Collapse
|
3
|
Dillon RM, Paterson JE, Manorome P, Ritchie K, Shirose L, Slavik E, Davy CM. Effects of ophidiomycosis on movement, survival, and reproduction of eastern foxsnakes (Pantherophis vulpinus). Sci Rep 2024; 14:4948. [PMID: 38418485 PMCID: PMC10901895 DOI: 10.1038/s41598-024-54568-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/14/2024] [Indexed: 03/01/2024] Open
Abstract
Ophidiomycosis (snake fungal disease) is caused by the fungal pathogen Ophidiomyces ophidiicola, which causes dermal lesions, occasional systemic infections, and in some cases, mortality. To better understand potential conservation implications of ophidiomycosis (i.e., population-level effects), we investigated its impacts on individual fitness in a population of endangered eastern foxsnakes (Pantherophis vulpinus). We tracked 38 foxsnakes over 6 years and quantified body condition, movement patterns, oviposition rates, and survival. Body condition, distance travelled, and oviposition rates were similar between snakes with and without ophidiomycosis. Interestingly, snakes that tested positive for the pathogen travelled farther, suggesting that movement through a greater diversity of habitats increases risk of exposure. Ophidiomycosis did not negatively affect survival, and most apparently infected snakes persisted in a manner comparable to snakes without ophidiomycosis. Only one mortality was directly attributed to ophidiomycosis, although infected snakes were overrepresented in a sample of snakes killed by predators. Overall, our results suggest that ophidiomycosis may have sublethal effects on eastern foxsnakes, but do not suggest direct effects on survival, ovipositioning, or viability of the study population.
Collapse
Affiliation(s)
- Rachel M Dillon
- Environmental and Life Sciences Program, Trent University, Peterborough, ON, K9H 7B8, Canada.
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources, 2Nd Flr DNA Building, 2140 East Bank Dr., Peterborough, ON, K9L 1Z8, Canada.
- Wildlife Preservation Canada, 5420 Highway 6 North, Guelph, ON, N1H 6J2, Canada.
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| | - James E Paterson
- Environmental and Life Sciences Program, Trent University, Peterborough, ON, K9H 7B8, Canada
- Institute for Wetland and Waterfowl Research, Ducks Unlimited Canada, Stonewall, MB, Canada
| | - Pilar Manorome
- Ontario Parks, Ontario Ministry of Environment, Conservation, and Parks, 300 Water Street, 3Rd Floor S, Peterborough, ON, K9J 8M5, Canada
| | - Kyle Ritchie
- Wildlife Preservation Canada, 5420 Highway 6 North, Guelph, ON, N1H 6J2, Canada
| | - Leonard Shirose
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
- Canadian Wildlife Health Cooperative - Ontario/Nunavut, Guelph, ON, N1G 2W1, Canada
| | - Emily Slavik
- Lake Erie Management Unit, Ontario Ministry of Natural Resources, 320 Milo Road, Wheatley, ON, N0P 2P0, Canada
| | - Christina M Davy
- Environmental and Life Sciences Program, Trent University, Peterborough, ON, K9H 7B8, Canada.
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources, 2Nd Flr DNA Building, 2140 East Bank Dr., Peterborough, ON, K9L 1Z8, Canada.
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
4
|
Montoya B, Torres R, Hernández A, Alejandro V. IGF-1 Levels Increase during an Immune but Not an Oxidative Challenge in an Avian Model, the Japanese Quail. Physiol Biochem Zool 2023; 96:450-457. [PMID: 38237191 DOI: 10.1086/728771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
AbstractInsulin-like growth factor 1 (IGF-1) is positively linked with growth and reproduction but negatively linked with survival, so a potential role of IGF-1 in modulating life history trade-offs has been proposed. However, the underlying mechanisms of the negative link between IGF-1 and survival are not yet clear, and oxidative stress has been proposed as a candidate. Immune activation is one important source of oxidative stress, and both immune activation and oxidative stress are known to reduce survival. We experimentally administrated an immune or oxidative insult to Japanese quails to evaluate whether oxidative stress is a proximate cost of holding elevated IGF-1 levels during a life challenge (e.g., infection, intoxication). IGF-1 levels increased in the presence of the immune insult, but they were not affected by the oxidative insult. Hence, IGF-1 may be linked to the survival costs of activating an immune response, but oxidative stress might not be directly involved as an underlying mechanism.
Collapse
|
5
|
Kendall MW, Wright AD, Adamovicz LA, Durante K, Andersson KE, Frederickson K, Vivirito K, Ospina EA, Delaney MA, Allender MC. Environmental temperature influences ophidiomycosis progression and survival in experimentally challenged prairie rattlesnakes (Crotalus viridis). PLoS One 2023; 18:e0289641. [PMID: 37535551 PMCID: PMC10399908 DOI: 10.1371/journal.pone.0289641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023] Open
Abstract
Ophidiomycosis is a prevalent and intermittently pervasive disease of snakes globally caused by the opportunistic fungal pathogen, Ophidiomyces ophidiicola. Host response has yet to be fully explored, including the role of temperature in disease progression and hematologic changes. This study enrolled twelve adult prairie rattlesnakes (Crotalus viridis) in an experimental challenge with O. ophidiicola at two temperatures, 26°C (n = 6) and 20°C (n = 6). Each temperature cohort included four inoculated and two control snakes. Assessments involving physical exams, lesion swabbing, and hematology were performed weekly. Differences were observed between inoculated and control snakes in survival, behavior, clinical signs, ultraviolet (UV) fluorescence, hematologic response, and histologic lesions. All inoculated snakes held at 20°C were euthanized prior to study end date due to severity of clinical signs while only one inoculated animal in the 26°C trial met this outcome. In both groups, qPCR positive detection preceded clinical signs with regards to days post inoculation (dpi). However, the earliest appearance of gross lesions occurred later in the 20°C snakes (20 dpi) than the 26°C snakes (13 dpi). Relative leukocytosis was observed in all inoculated snakes and driven by heterophilia in the 20°C snakes, and azurophilia in the 26°C group. Histologically, 20°C snakes had more severe lesions, a lack of appropriate inflammatory response, and unencumbered fungal proliferation and invasion. In contrast, 26°C snakes had marked granulomatous inflammation with encapsulation of fungi and less invasion and dissemination. The results of this study identified that O. ophidiicola-infected rattlesnakes exposed to lower temperatures have decreased survival and more robust hematologic change, though minimal and ineffective inflammatory response at site of infection. Ophidiomycosis is a complex disease with host, pathogen, and environmental factors influencing disease presentation, progression, and ultimately, survival. This study highlighted the importance of temperature as an element impacting the host response to O. ophidiicola.
Collapse
Affiliation(s)
- Michelle Waligora Kendall
- Wildlife Epidemiology Lab, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Allison D Wright
- Wildlife Epidemiology Lab, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Laura A Adamovicz
- Wildlife Epidemiology Lab, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
- The Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Kennymac Durante
- Wildlife Epidemiology Lab, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Kirsten E Andersson
- Wildlife Epidemiology Lab, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Kelcie Frederickson
- Wildlife Epidemiology Lab, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Katie Vivirito
- Wildlife Epidemiology Lab, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Emilie A Ospina
- Wildlife Epidemiology Lab, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
- The Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Martha A Delaney
- Zoological Pathology Program, University of Illinois, Brookfield, IL, United States of America
| | - Matthew C Allender
- Wildlife Epidemiology Lab, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
- The Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
- The Brookfield Zoo, Chicago Zoological Society, Brookfield, Illinois, United States of America
| |
Collapse
|
6
|
Lind CM, Meyers RA, Moore IT, Agugliaro J, McPherson S, Farrell TM. Ophidiomycosis is associated with alterations in the acute glycemic and glucocorticoid stress response in a free-living snake species. Gen Comp Endocrinol 2023; 339:114295. [PMID: 37121405 DOI: 10.1016/j.ygcen.2023.114295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/10/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
Emerging fungal pathogens are a direct threat to vertebrate biodiversity. Elucidating the mechanisms by which mycoses impact host fitness is an important step towards effective prediction and management of disease outcomes in populations. The vertebrate acute stress response is an adaptive mechanism that allows individuals to meet challenges to homeostasis and survival in dynamic environments. Disease may cause stress, and coping with fungal infections may require shifts in resource allocation that alter the ability of hosts to mount an acute response to other external stressors. We examined the glucocorticoid and glycemic response to acute capture stress in a population of free-living pygmy rattlesnakes, Sistrurus miliarius, afflicted with an emerging mycosis (ophidiomycosis) across seasons. In all combinations of disease status and season, acute capture stress resulted in a significant glucocorticoid and glycemic response. While disease was not associated with elevated baseline or stress-induced corticosterone (CORT), disease was associated with an increased glucocorticoid stress response (post-stress minus baseline) across seasons. Both baseline and stress-induced glucose were lower in snakes with ophidiomycosis compared to uninfected snakes. The relationship between glucose and pre- and post-stress CORT depended on infection status, and positive correlations were only observed in uninfected snakes. The variables which explained CORT and glucose levels were different. The pattern of CORT was highly seasonal (winter high - summer low) and negatively related to body condition. Glucose, on the other hand, did not vary seasonally or with body condition and was strongly related to sex (male high - female low). Our results highlight the fact that circulating CORT and glucose are sensitive to different intrinsic and extrinsic predictor variables and support the hypothesis that disease alters the acute physiological stress response. Whether the effects of ophidiomycosis on the acute stress response result in sublethal effects on fitness should be investigated in future studies.
Collapse
Affiliation(s)
- Craig M Lind
- Stockton University, 101 Vera King Farris Dr, Galloway, NJ 08205, United States.
| | - Riley A Meyers
- Virginia Tech, Dept. Biological Sciences, Blacksburg, VA 24061, United States
| | - Ignacio T Moore
- Virginia Tech, Dept. Biological Sciences, Blacksburg, VA 24061, United States
| | - Joseph Agugliaro
- Fairleigh Dickinson University, 285 Madison Avenue, Madison, NJ 07940, United States
| | - Samantha McPherson
- Stetson University, 421 N Woodland Blvd, DeLand, FL 32723, United States
| | - Terence M Farrell
- Stetson University, 421 N Woodland Blvd, DeLand, FL 32723, United States
| |
Collapse
|
7
|
McQuigg JL, Kissner K, Boone MD. Exposure to Amphibian Chytrid Fungus Alters Terrestrial Growth and Feeding Rate in Metamorphic Anurans. J HERPETOL 2023. [DOI: 10.1670/21-048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
8
|
Schilliger L, Paillusseau C, François C, Bonwitt J. Major Emerging Fungal Diseases of Reptiles and Amphibians. Pathogens 2023; 12:pathogens12030429. [PMID: 36986351 PMCID: PMC10053826 DOI: 10.3390/pathogens12030429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Emerging infectious diseases (EIDs) are caused by pathogens that have undergone recent changes in terms of geographic spread, increasing incidence, or expanding host range. In this narrative review, we describe three important fungal EIDs with keratin trophism that are relevant to reptile and amphibian conservation and veterinary practice. Nannizziopsis spp. have been mainly described in saurians; infection results in thickened, discolored skin crusting, with eventual progression to deep tissues. Previously only reported in captive populations, it was first described in wild animals in Australia in 2020. Ophidiomyces ophidiicola (formely O. ophiodiicola) is only known to infect snakes; clinical signs include ulcerating lesions in the cranial, ventral, and pericloacal regions. It has been associated with mortality events in wild populations in North America. Batrachochytrium spp. cause ulceration, hyperkeratosis, and erythema in amphibians. They are a major cause of catastrophic amphibian declines worldwide. In general, infection and clinical course are determined by host-related characteristics (e.g., nutritional, metabolic, and immune status), pathogens (e.g., virulence and environmental survival), and environment (e.g., temperature, hygrometry, and water quality). The animal trade is thought to be an important cause of worldwide spread, with global modifications in temperature, hygrometry, and water quality further affecting fungal pathogenicity and host immune response.
Collapse
Affiliation(s)
- Lionel Schilliger
- Argos Veterinary Clinic of Paris Auteuil, 35 Rue Leconte de Lisle, 75016 Paris, France
- SpéNac Referral Center, 100 Boulevard de la Tour Maubourg, 75007 Paris, France
- Correspondence: ; Tel.: +33-188-616-831
| | - Clément Paillusseau
- Argos Veterinary Clinic of Paris Auteuil, 35 Rue Leconte de Lisle, 75016 Paris, France
- SpéNac Referral Center, 100 Boulevard de la Tour Maubourg, 75007 Paris, France
| | - Camille François
- Argos Veterinary Clinic of Paris Auteuil, 35 Rue Leconte de Lisle, 75016 Paris, France
- SpéNac Referral Center, 100 Boulevard de la Tour Maubourg, 75007 Paris, France
| | - Jesse Bonwitt
- Department of Anthropology, Durham University, South Rd., Durham DH1 3LE, UK
| |
Collapse
|
9
|
Lind CM, Agugliaro J, Lorch JM, Farrell TM. Ophidiomycosis is related to seasonal patterns of reproduction, ecdysis, and thermoregulatory behavior in a free‐living snake species. J Zool (1987) 2022. [DOI: 10.1111/jzo.13024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - J. M. Lorch
- U.S. Geological Survey ‐ National Wildlife Health Center Madison WI USA
| | | |
Collapse
|
10
|
Ophidiomyces ophidiicola detection and infection: a global review on a potential threat to the world’s snake populations. EUR J WILDLIFE RES 2022. [DOI: 10.1007/s10344-022-01612-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractOphidiomyces ophidiicola (Oo) is one of the most relevant fungal pathogens for snakes. It is the etiological agent of ophidiomycosis, an emerging disease causing dysecdysis, skin abnormalities, crusting cutaneous lesions, and ulcerations. Despite this major tegumentary “tropism”, Oo infection can be systemic and it is capable of inducing visceral lesions. Moreover, ophidiomycosis may lead to abnormalities of reproductive physiology, hunting behavior, and thermoregulation, thus increasing the risks of sublethal effects and predation on affected snakes. Oo seems horizontally transmitted and can induce postnatal mortality. This article reviews published data on Oo detection and infection in all snake species in countries around the world and categorizes these data using new classification parameters. The presence of this fungus has been recorded in 11 states (considering the USA as a whole); however, in four states, the mycosis has only been reported in snakes held in captivity. Detection and/or infection of Oo has been ascertained in 62 snake species, divided into nine families. The taxa have been categorized with diagnostic criteria in order to report, for each species, the highest rank of categorization resulting from all cases. Therefore, 20 species have been included within the class “Ophidiomycosis and Oo shedder”, 11 within “Ophidiomycosis”, 16 in “Apparent ophidiomycosis”, and 15 within “Ophidiomyces ophidiicola present”. We also discuss the significance and limits of case classifications and Oo’s impact on wild populations, and we suggest methods for preliminary surveillance. Standardized methods, interdisciplinary studies, and cooperation between various research institutions may facilitate further Oo screening studies, elucidate the unclear aspects of the disease, and protect ophidiofauna from this emerging threat at the global level.
Collapse
|
11
|
SEASONAL AND INTERSPECIFIC VARIATION IN THE PREVALENCE OF OPHIDIOMYCES OPHIDIICOLA AND OPHIDIOMYCOSIS IN A COMMUNITY OF FREE-RANGING SNAKES. J Wildl Dis 2022; 58:791-802. [PMID: 36240744 DOI: 10.7589/jwd-d-21-00134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 05/24/2022] [Indexed: 12/05/2022]
Abstract
Ophidiomycosis in snakes is caused by the fungus Ophidiomyces ophidiicola. Clinical signs associated with the disease range from minor skin lesions to severe swelling of the face. In some cases, the fungus invades the snake's underlying muscle and bone and internal organs; disease severity appears to peak during brumation. We quantified the prevalence of O. ophidiicola and ophidiomycosis in free-ranging snakes to explore seasonal variation in detection of the pathogen and disease. We collected skin swabs (n=464 samples) from seven species of free-ranging snakes (n=336) from Rondeau Provincial Park (Ontario, Canada) and tested the swabs for O. ophidiicola using quantitative PCR. We also assessed individuals for lesions consistent with ophidiomycosis and monitored changes in gross lesions over time in recaptured individuals. Eastern foxsnakes (Pantherophis vulpinus) had the highest prevalence of O. ophidiicola (24/84) and of lesions consistent with ophidiomycosis (34/84). On other species (Nerodia sipedon, Storeria dekayi, Thamnophis sirtalis, and Thamnophis sauritus), we detected the pathogen on only 4/229 snakes and observed gross lesions consistent with ophidiomycosis on 24/229 snakes. Body length of eastern foxsnakes was associated with detection of O. ophidiicola, suggesting that eastern foxsnakes' large size increases the risk of pathogen exposure relative to the other, smaller, species at our study site. Ophidiomyces ophidiicola and lesions consistent with ophidiomycosis were detected most frequently in eastern foxsnakes soon after emergence from brumation and less frequently later in the active season (O. ophidiicola: April=29.8%, October=3.9%; lesions: April=36.1%, October=5.5%). This decrease corresponded with resolution of lesions in 6/13 resampled eastern foxsnakes. Considering the seasonal cycle of O. ophidiicola and ophidiomycosis when planning disease surveillance research may improve detection probabilities for ophidiomycosis in Nearctic snakes.
Collapse
|
12
|
Host microbiome responses to the Snake Fungal Disease pathogen (Ophidiomyces ophidiicola) are driven by changes in microbial richness. Sci Rep 2022; 12:3078. [PMID: 35197501 PMCID: PMC8866498 DOI: 10.1038/s41598-022-07042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/07/2022] [Indexed: 11/24/2022] Open
Abstract
Dermatophytic pathogens are a source of disturbance to the host microbiome, but the temporal progression of these disturbances is unclear. Here, we determined how Snake Fungal Disease, caused by Ophidiomyces ophidiicola, resulted in disturbance to the host microbiome. To assess disease effects on the microbiome, 22 Common Watersnakes (Nerodia sipedon) were collected and half were inoculated with O. ophidiicola. Epidermal swabs were collected weekly for use in microbiome and pathogen load characterization. For the inoculated treatment only, we found a significant effect of disease progression on microbial richness and Shannon diversity consistent with the intermediate disturbance hypothesis. When explicitly accounting for differences in assemblage richness, we found that β-diversity among snakes was significantly affected by the interaction of time and treatment group, with assemblages becoming more dissimilar across time in the inoculated, but not the control group. Also, differences between treatments in average microbiome composition became greater with time, but this interactive effect was not evident when accounting for assemblage richness. These results suggest that changes in composition of the host microbiome associated with disease largely occur due to changes in microbial richness related to disease progression.
Collapse
|
13
|
Brewster CL, Gifford M, Ortega J, Beaupre SJ. Analyzing Time-Energy Constraints to Understand the Links between Environmental Change and Local Extinctions in Terrestrial Ectotherms. Am Nat 2021; 198:719-733. [PMID: 34762575 DOI: 10.1086/716725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractAccelerated extinction rates have prompted an increased focus on the interplay between environmental change and species response. The effects of environmental change on thermal opportunity are typically considered through a climate change context. However, habitat alteration can also have strong effects on the thermal environment. Additionally, habitat alteration is considered a leading factor of species extinction, yet few studies address the influence of habitat alteration on thermal opportunity and time-energy budgets in at-risk species. Here, we show the strong effects that habitat degradation can have on thermal opportunity, time-energy budgets, and life history demographics of local populations. In the Ozark Mountains of northern Arkansas, woody vegetation encroachment has resulted in a shift in life history traits that appears to play an important role in recent extirpations of eastern collared lizards (Crotaphytus collaris). Populations in degraded habitats experienced a decline in thermal opportunity and less time at body temperatures (time at Tb) suitable for digestion compared with those in intact habitats. We used our data to model the effect of reduced time at Tb on the net assimilated energy available for growth and reproduction. Our model predicts an ∼46% decline in the annual fecundity of individuals, which is similar to empirical observations of reproduction of C. collaris populations in degraded habitats (~49%). We conclude that C. collaris in degraded habitats experienced reduced growth and reproduction primarily as a result of constrained thermal opportunity leading to a decline in digestive processing rates. Our study applies an underappreciated approach to identify the biophysical and time-energy effects of habitat alteration.
Collapse
|
14
|
A REVIEW OF MORTALITY IN TENTACLED SNAKES ( ERPETON TENTACULATUM) IN A MULTI-INSTITUTION ZOOLOGICAL COLLECTION BETWEEN 1966 AND 2017. J Zoo Wildl Med 2021; 52:909-917. [PMID: 34687507 DOI: 10.1638/2020-0099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2021] [Indexed: 11/21/2022] Open
Abstract
The tentacled snake (Erpeton tentaculatum) is a viviparous aquatic snake that is a desirable species to exhibit in zoological collections because of its unique appearance and feeding strategies. Despite its presence in zoo collections over the past 50 yr, a comprehensive review of mortality and morbidity in the species has not been published. This study retrospectively reviewed 125 pathology reports from tentacled snakes in a multi-institution zoological collection in New York (The Wildlife Conservation Society's Bronx and Central Park zoos) between 1966 and 2017. Just over half of the deaths were due to infectious disease (n = 67; 53.6%), and of these, over half (n = 40; 59.7%) were due to fungal dermatitis. Fungal histomorphology was consistent with Paranannizziopsis spp. in most cases. Death due to bacterial infection was also relatively common (n = 21; 16.8%), and one-third had intralesional bacilli consistent with Mycobacterium spp. (n = 7; 5.6%). The most common comorbidities included gastrointestinal parasitism (n = 44; 35.2%), renal pathology (n = 31; 24.8%), and lipid accumulation of hepatocytes (n = 13; 10.4%). This retrospective review suggests that managing infectious diseases plays a role in the long-term care and survival of captive tentacled snakes.
Collapse
|
15
|
Butler MW, Stierhoff EN, Carpenetti JM, Bertone MA, Addesso AM, Knutie SA. Oxidative damage increases with degree of simulated bacterial infection, but not ectoparasitism, in tree swallow nestlings. J Exp Biol 2021; 224:272162. [PMID: 34427672 DOI: 10.1242/jeb.243116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/18/2021] [Indexed: 11/20/2022]
Abstract
The purpose of mounting an immune response is to destroy pathogens, but this response comes at a physiological cost, including the generation of oxidative damage. However, many studies on the effects of immune challenges employ a single high dose of a simulated infection, meaning that the consequences of more mild immune challenges are poorly understood. We tested whether the degree of immunological challenge in tree swallows (Tachycineta bicolor) affects oxidative physiology and body mass, and whether these metrics correlate with parasitic nest mite load. We injected 14 day old nestlings with 0, 0.01, 0.1 or 1 mg lipopolysaccharide (LPS) per kg body mass, then collected a blood sample 24 h later to quantify multiple physiological metrics, including oxidative damage (i.e. d-ROMs), circulating amounts of triglyceride and glycerol, and levels of the acute phase protein haptoglobin. After birds had fledged, we identified and counted parasitic nest mites (Dermanyssus spp. and Ornithonyssus spp.). We found that only nestlings injected with 1 mg LPS kg-1 body mass, which is a common dosage in ecoimmunological studies, lost more body mass than individuals from other treatment groups. However, every dose of LPS resulted in a commensurate increase in oxidative damage. Parasitic mite abundance had no effect on oxidative damage across treatments. The amount of oxidative damage correlated with haptoglobin levels, suggesting compensatory mechanisms to limit self-damage during an immune response. We conclude that while only the highest-intensity immune challenges resulted in costs related to body mass, even low-intensity immune challenges result in detectable increases in oxidative damage.
Collapse
Affiliation(s)
| | | | | | - Matthew A Bertone
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Alyssa M Addesso
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Sarah A Knutie
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
16
|
Venesky MD, Laskey CA. Infection with Batrachochytrium dendrobatidis reduces salamander capacity to mount a cell-mediated immune response. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 337:273-281. [PMID: 34102032 DOI: 10.1002/jez.2497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 11/06/2022]
Abstract
The vertebrate immune system is a costly defense system that is responsible for preventing and eliminating parasites and pathogens. Theory predicts that hosts experience tradeoffs associated with immune deployment and other physiological functions. Although empirical evidence for immune-physiology tradeoffs are well documented in the literature, fewer studies have examined tradeoffs within the immune system in wild vertebrates. We explored the topic of concomitant immune challenges in amphibians by exposing salamanders (Plethodon cinereus) to a fungal pathogen Batrachochytrium dendrobatidis (hereafter "Bd") and then to phytohemagglutinin (hereafter "PHA"). We measured Bd infection using quantitative PCR and used measurements of the tail thickness at the PHA injection site as an estimate of skin swelling. We tested whether Bd reduced the salamander's capacity to mount an immune response towards PHA or whether Bd would stimulate immune activity and thereby increase the response towards PHA. Salamanders that were infected with Bd had a reduced skin-swelling when injected with PHA compared to noninfected salamanders, a result that is consistent with the hypothesis that Bd-infected salamanders have lower immunocompetence than noninfected salamanders. We also found that PHA-induced swelling response was negatively associated with Bd infection abundance (i.e., the infection burden of all exposed salamanders, including those that were exposed but not infected), indicating that salamanders with a higher infection abundance had the lowest swelling response to PHA. Our results suggest that individuals of P. cinereus might experience an energetic tradeoff between successfully fighting off Bd and mounting an immune response towards PHA.
Collapse
Affiliation(s)
- Matthew D Venesky
- Department of Biology, Allegheny College, Meadville, Pennsylvania, USA
| | - Corey A Laskey
- Department of Biology, Allegheny College, Meadville, Pennsylvania, USA
| |
Collapse
|
17
|
Zimmerman LM. The reptilian perspective on vertebrate immunity: 10 years of progress. J Exp Biol 2020; 223:223/21/jeb214171. [DOI: 10.1242/jeb.214171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
ABSTRACT
Ten years ago, ‘Understanding the vertebrate immune system: insights from the reptilian perspective’ was published. At the time, our understanding of the reptilian immune system lagged behind that of birds, mammals, fish and amphibians. Since then, great progress has been made in elucidating the mechanisms of reptilian immunity. Here, I review recent discoveries associated with the recognition of pathogens, effector mechanisms and memory responses in reptiles. Moreover, I put forward key questions to drive the next 10 years of research, including how reptiles are able to balance robust innate mechanisms with avoiding self-damage, how B cells and antibodies are used in immune defense and whether innate mechanisms can display the hallmarks of memory. Finally, I briefly discuss the links between our mechanistic understanding of the reptilian immune system and the field of eco-immunology. Overall, the field of reptile immunology is poised to contribute greatly to our understanding of vertebrate immunity in the next 10 years.
Collapse
|
18
|
Ophidiomycosis, an emerging fungal disease of snakes: Targeted surveillance on military lands and detection in the western US and Puerto Rico. PLoS One 2020; 15:e0240415. [PMID: 33031451 PMCID: PMC7544097 DOI: 10.1371/journal.pone.0240415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/27/2020] [Indexed: 11/22/2022] Open
Abstract
Wildlife disease surveillance and pathogen detection are fundamental for conservation, population sustainability, and public health. Detection of pathogens in snakes is often overlooked despite their essential roles as both predators and prey within their communities. Ophidiomycosis (formerly referred to as Snake Fungal Disease, SFD), an emergent disease on the North American landscape caused by the fungus Ophidiomyces ophiodiicola, poses a threat to snake population health and stability. We tested 657 individual snakes representing 58 species in 31 states from 56 military bases in the continental US and Puerto Rico for O. ophiodiicola. Ophidiomyces ophiodiicola DNA was detected in samples from 113 snakes for a prevalence of 17.2% (95% CI: 14.4–20.3%), representing 25 species from 19 states/territories, including the first reports of the pathogen in snakes in Idaho, Oklahoma, and Puerto Rico. Most animals were ophidiomycosis negative (n = 462), with Ophidiomyces detected by qPCR (n = 64), possible ophidiomycosis (n = 82), and apparent ophidiomycosis (n = 49) occurring less frequently. Adults had 2.38 times greater odds than juveniles of being diagnosed with ophidiomycosis. Snakes from Georgia, Massachusetts, Pennsylvania, and Virginia all had greater odds of ophidiomycosis diagnosis, while snakes from Idaho were less likely to be diagnosed with ophidiomycosis. The results of this survey indicate that this pathogen is endemic in the eastern US and identified new sites that could represent emergence or improved detection of endemic sites. The direct mortality of snakes with ophidiomycosis is unknown from this study, but the presence of numerous individuals with clinical disease warrants further investigation and possible conservation action.
Collapse
|
19
|
Lind CM, Agugliaro J, Farrell TM. The metabolic response to an immune challenge in a viviparous snake, Sistrurus miliarius. J Exp Biol 2020; 223:jeb225185. [PMID: 32321747 DOI: 10.1242/jeb.225185] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/15/2020] [Indexed: 08/26/2023]
Abstract
Mounting an immune response may be energetically costly and require the diversion of resources away from other physiological processes. Yet, both the metabolic cost of immune responses and the factors that impact investment priorities remain poorly described in many vertebrate groups. For example, although viviparity has evolved many times in vertebrates, the relationship between immune function and pregnancy has been disproportionately studied in placental mammals. To examine the energetic costs of immune activation and the modulation of immune function during pregnancy in a non-mammalian vertebrate, we elicited an immune response in pregnant and non-pregnant pygmy rattlesnakes, Sistrurus miliarius, using lipopolysaccharide (LPS). Resting metabolic rate (RMR) was measured using flow-through respirometry. Immune function was examined using bactericidal assays and leukocyte counts. The RMR of pygmy rattlesnakes increased significantly in response to LPS injection. There was no statistically significant difference in the metabolic response of non-reproductive and pregnant snakes to LPS. Mean metabolic increments for pregnant females, non-reproductive females, and males were 13%, 18% and 26%, respectively. The ratio of heterophils to lymphocytes was elevated in response to LPS across reproductive categories; however, LPS did not impact plasma bactericidal ability in non-reproductive snakes. Although pregnant females had significantly higher plasma bactericidal ability compared with non-reproductive snakes prior to manipulation, their bactericidal ability declined in response to LPS. LPS administration also significantly reduced several litter characteristics, particularly when administrated relatively early in pregnancy. Our results indicate that immune performance is energetically costly and is altered during pregnancy, and that immune activation during pregnancy may result in tradeoffs that affect offspring in a viviparous reptile.
Collapse
Affiliation(s)
- Craig M Lind
- School of Natural Science and Mathematics, Stockton University, Galloway, NJ 08205, USA
| | - Joseph Agugliaro
- Department of Biological Sciences, Fairleigh Dickinson University, Madison, NJ 07940, USA
| | | |
Collapse
|