1
|
Dedman S, Moxley JH, Papastamatiou YP, Braccini M, Caselle JE, Chapman DD, Cinner JE, Dillon EM, Dulvy NK, Dunn RE, Espinoza M, Harborne AR, Harvey ES, Heupel MR, Huveneers C, Graham NAJ, Ketchum JT, Klinard NV, Kock AA, Lowe CG, MacNeil MA, Madin EMP, McCauley DJ, Meekan MG, Meier AC, Simpfendorfer CA, Tinker MT, Winton M, Wirsing AJ, Heithaus MR. Ecological roles and importance of sharks in the Anthropocene Ocean. Science 2024; 385:adl2362. [PMID: 39088608 DOI: 10.1126/science.adl2362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/17/2024] [Indexed: 08/03/2024]
Abstract
In ecosystems, sharks can be predators, competitors, facilitators, nutrient transporters, and food. However, overfishing and other threats have greatly reduced shark populations, altering their roles and effects on ecosystems. We review these changes and implications for ecosystem function and management. Macropredatory sharks are often disproportionately affected by humans but can influence prey and coastal ecosystems, including facilitating carbon sequestration. Like terrestrial predators, sharks may be crucial to ecosystem functioning under climate change. However, large ecosystem effects of sharks are not ubiquitous. Increasing human uses of oceans are changing shark roles, necessitating management consideration. Rebuilding key populations and incorporating shark ecological roles, including less obvious ones, into management efforts are critical for retaining sharks' functional value. Coupled social-ecological frameworks can facilitate these efforts.
Collapse
Affiliation(s)
- Simon Dedman
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Jerry H Moxley
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Yannis P Papastamatiou
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Matias Braccini
- Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, North Beach, WA 6920, Australia
| | - Jennifer E Caselle
- Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
| | - Demian D Chapman
- Sharks and Rays Conservation Research Program, Mote Marine Laboratory, Sarasota, FL 34236, USA
| | - Joshua Eli Cinner
- Thriving Oceans Research Hub, School of Geosciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Erin M Dillon
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| | - Nicholas K Dulvy
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Ruth Elizabeth Dunn
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
- The Lyell Centre, Heriot-Watt University, Edinburgh EH14 4BA, UK
| | - Mario Espinoza
- Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, San Pedro de Montes de Oca, San José 2060-11501, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San Pedro de Montes de Oca, San José 2060-11501, Costa Rica
- MigraMar, Bodega Bay, CA 94923, USA
| | - Alastair R Harborne
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Euan S Harvey
- School of Molecular and Life Sciences, Curtin University, WA, Australia
| | - Michelle R Heupel
- Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7000, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
- Integrated Marine Observing System, University of Tasmania, Hobart, TAS, Australia
| | - Charlie Huveneers
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | | | - James T Ketchum
- MigraMar, Bodega Bay, CA 94923, USA
- Pelagios Kakunjá, La Paz, Baja California Sur, Mexico
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, Baja California Sur, Mexico
| | - Natalie V Klinard
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, NS B3H 4R2, Canada
| | - Alison A Kock
- Cape Research Centre, South African National Parks, Cape Town, South Africa
- South African Institute for Aquatic Biodiversity (SAIAB), Makhanda (Grahamstown), South Africa
| | - Christopher G Lowe
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - M Aaron MacNeil
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, NS B3H 4R2, Canada
| | - Elizabeth M P Madin
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Douglas J McCauley
- Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Mark G Meekan
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, WA, Australia
| | - Amelia C Meier
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Colin A Simpfendorfer
- Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7000, Australia
- College of Science and Engineering, James Cook University, 1 James Cook Drive, Townsville, QLD 4811, Australia
| | - M Tim Tinker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
- US Geological Survey, Western Ecological Research Center, Santa Cruz, CA, USA
| | - Megan Winton
- Atlantic White Shark Conservancy, North Chatham, MA 02650, USA
| | - Aaron J Wirsing
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
| | - Michael R Heithaus
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| |
Collapse
|
2
|
Coblentz KE, Treidel LA, Biagioli FP, Fragel CG, Johnson AE, Thilakarathne DD, Yang L, DeLong JP. A framework for understanding climate change impacts through non-compensatory intra- and interspecific climate change responses. GLOBAL CHANGE BIOLOGY 2024; 30:e17378. [PMID: 38923246 DOI: 10.1111/gcb.17378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/16/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024]
Abstract
Understanding and predicting population responses to climate change is a crucial challenge. A key component of population responses to climate change are cases in which focal biological rates (e.g., population growth rates) change in response to climate change due to non-compensatory effects of changes in the underlying components (e.g., birth and death rates) determining the focal rates. We refer to these responses as non-compensatory climate change effects. As differential responses of biological rates to climate change have been documented in a variety of systems and arise at multiple levels of organization within and across species, non-compensatory effects may be nearly ubiquitous. Yet, how non-compensatory climate change responses combine and scale to influence the demographics of populations is often unclear and requires mapping them to the birth and death rates underlying population change. We provide a flexible framework for incorporating non-compensatory changes in upstream rates within and among species and mapping their consequences for additional downstream rates across scales to their eventual effects on population growth rates. Throughout, we provide specific examples and potential applications of the framework. We hope this framework helps to enhance our understanding of and unify research on population responses to climate change.
Collapse
Affiliation(s)
- Kyle E Coblentz
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Lisa A Treidel
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Francis P Biagioli
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Christina G Fragel
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Allison E Johnson
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | | | - Liuqingqing Yang
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - John P DeLong
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
3
|
Affinito F, Kordas RL, Matias MG, Pawar S. Metabolic plasticity drives mismatches in physiological traits between prey and predator. Commun Biol 2024; 7:653. [PMID: 38806643 PMCID: PMC11133466 DOI: 10.1038/s42003-024-06350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
Metabolic rate, the rate of energy use, underpins key ecological traits of organisms, from development and locomotion to interaction rates between individuals. In a warming world, the temperature-dependence of metabolic rate is anticipated to shift predator-prey dynamics. Yet, there is little real-world evidence on the effects of warming on trophic interactions. We measured the respiration rates of aquatic larvae of three insect species from populations experiencing a natural temperature gradient in a large-scale mesocosm experiment. Using a mechanistic model we predicted the effects of warming on these taxa's predator-prey interaction rates. We found that species-specific differences in metabolic plasticity lead to mismatches in the temperature-dependence of their relative velocities, resulting in altered predator-prey interaction rates. This study underscores the role of metabolic plasticity at the species level in modifying trophic interactions and proposes a mechanistic modelling approach that allows an efficient, high-throughput estimation of climate change threats across species pairs.
Collapse
Affiliation(s)
- Flavio Affinito
- Imperial College London Silwood Park, Buckhurst Road, Berks, SL5 7PY, UK.
- McGill University Department of Biology, 1205 Dr Penfield Ave, Montreal, QC, H3A 1B1, Canada.
- Québec Centre for Biodiversity Science, 1205 Dr Penfield Ave, Montreal, QC, H3A 1B1, Canada.
| | - Rebecca L Kordas
- Imperial College London Silwood Park, Buckhurst Road, Berks, SL5 7PY, UK
| | - Miguel G Matias
- Museo Nacional de Ciencias Naturales (CSIC), C. de José Gutiérrez Abascal, 2, Chamartín, 28006, Madrid, Spain
- Rui Nabeiro Biodiversity Chair, MED-Mediterranean Institute for Agriculture, Environment and Development, University of Évora, Pólo da Mitra Apartado 94, 7006-554, Évora, Portugal
| | - Samraat Pawar
- Imperial College London Silwood Park, Buckhurst Road, Berks, SL5 7PY, UK
| |
Collapse
|
4
|
Boldorini GX, Mccary MA, Romero GQ, Mills KL, Sanders NJ, Reich PB, Michalko R, Gonçalves-Souza T. Predators control pests and increase yield across crop types and climates: a meta-analysis. Proc Biol Sci 2024; 291:20232522. [PMID: 38444337 PMCID: PMC10915543 DOI: 10.1098/rspb.2023.2522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024] Open
Abstract
Pesticides have well-documented negative consequences to control crop pests, and natural predators are alternatives and can provide an ecosystem service as biological control agents. However, there remains considerable uncertainty regarding whether such biological control can be a widely applicable solution, especially given ongoing climatic variation and climate change. Here, we performed a meta-analysis focused on field studies with natural predators to explore broadly whether and how predators might control pests and in turn increase yield. We also contrasted across studies pest suppression by a single and multiple predators and how climate influence biological control. Predators reduced pest populations by 73% on average, and increased crop yield by 25% on average. Surprisingly, the impact of predators did not depend on whether there were many or a single predator species. Precipitation seasonality was a key climatic influence on biological control: as seasonality increased, the impact of predators on pest populations increased. Taken together, the positive contribution of predators in controlling pests and increasing yield, and the consistency of such responses in the face of precipitation variability, suggest that biocontrol has the potential to be an important part of pest management and increasing food supplies as the planet precipitation patterns become increasingly variable.
Collapse
Affiliation(s)
- Gabriel X. Boldorini
- Department of Biology, Ecological Synthesis and Biodiversity Conservation Lab, Federal Rural University of Pernambuco, Recife, Brazil
- Graduate Program in Ethnobiology and Nature Conservation, Department of Biology, Federal Rural University of Pernambuco, Recife, Brazil
| | | | - Gustavo Q. Romero
- Department of Animal Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Kirby L. Mills
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Nathan J. Sanders
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Peter B. Reich
- Institute for Global Change Biology, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
- Department of Forest Resources, University of Minnesota, St Paul, MN 55108, USA
| | - Radek Michalko
- Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - Thiago Gonçalves-Souza
- Department of Biology, Ecological Synthesis and Biodiversity Conservation Lab, Federal Rural University of Pernambuco, Recife, Brazil
- Graduate Program in Ethnobiology and Nature Conservation, Department of Biology, Federal Rural University of Pernambuco, Recife, Brazil
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
- Institute for Global Change Biology, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|