1
|
Juarez BH, Quintanilla-Salinas I, Lacey MP, O'Connell LA. Water Availability and Temperature as Modifiers of Evaporative Water Loss in Tropical Frogs. Integr Comp Biol 2024; 64:354-365. [PMID: 38839599 PMCID: PMC11406161 DOI: 10.1093/icb/icae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Water plays a notable role in the ecology of most terrestrial organisms due to the risks associated with water loss. Specifically, water loss in terrestrial animals happens through evaporation across respiratory tissues or the epidermis. Amphibians are ideal systems for studying how abiotic factors impact water loss since their bodies often respond quickly to environmental changes. While the effect of temperature on water loss is well known across many taxa, we are still learning how temperature in combination with humidity or water availability affects water loss. Here, we tested how standing water sources (availability) and temperature (26 and 36°C) together affect water loss in anuran amphibians using a Bayesian framework. We also present a conceptual model for considering how water availability and temperature may interact, resulting in body mass changes. After accounting for phylogenetic and time autocorrelation, we determined how different variables (water loss and uptake rates, temperature, and body size) affect body mass in three species of tropical frogs (Rhinella marina, Phyllobates terribilis, and Xenopus tropicalis). We found that all variables impacted body mass changes, with greater similarities between P. terribilis and X. tropicalis, but temperature only showed a notable effect in P. terribilis. Furthermore, we describe how the behavior of P. terribilis might affect its water budget. This study shows how organisms might manage water budgets across different environments and is important for developing models of evaporative water loss and species distributions.
Collapse
Affiliation(s)
- Bryan H Juarez
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Earth System Science Department, Stanford University, Stanford, CA 94305, USA
| | | | - Madison P Lacey
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
2
|
Head A, Vaughn PL, Livingston EH, Colwell C, Muñoz MM, Gangloff EJ. Include the females: morphology-performance relationships vary between sexes in lizards. J Exp Biol 2024; 227:jeb248014. [PMID: 39155657 DOI: 10.1242/jeb.248014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024]
Abstract
An animal's morphology influences its ability to perform essential tasks, such as locomoting to obtain prey or escape predators. While morphology-performance relationships are well-studied in lizards, most conclusions have been based only on male study subjects, leaving unanswered questions about females. Sex-specific differences are important to understand because females carry the bulk of the physiological demands of reproduction. Consequently, their health and survival can determine the fate of the population as a whole. To address this knowledge gap, we sampled introduced populations of common wall lizards (Podarcis muralis) in Ohio, USA. We measured a complete suite of limb and body dimensions of both males and females, and we measured sprint speeds while following straight and curved paths on different substrates. Using a multivariate statistical approach, we identified that body dimensions relative to snout-to-vent length in males were much larger compared with females and that body dimensions of P. muralis have changed over time in both sexes. We found that sprint speed along curved paths increased with relative limb size in both males and females. When following straight paths, male speed similarly increased as body dimensions increased; conversely, female speed decreased as body dimensions increased. Female sprint speed was also found to have less variation than that of males and was less affected by changes in body size and hindfoot length compared with males. This study thus provides insights into how selective pressures might shape males and females differently and the functional implications of sexual dimorphism.
Collapse
Affiliation(s)
- Alyssa Head
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH 43015, USA
- Department of Evolutionary Biology, San Diego State University, San Diego, CA 92182, USA
| | - Princeton L Vaughn
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ethan H Livingston
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH 43015, USA
| | - Cece Colwell
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH 43015, USA
| | - Martha M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Eric J Gangloff
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH 43015, USA
| |
Collapse
|
3
|
Amer A, Spears S, Vaughn PL, Colwell C, Livingston EH, McQueen W, Schill A, Reichard DG, Gangloff EJ, Brock KM. Physiological phenotypes differ among color morphs in introduced common wall lizards (Podarcis muralis). Integr Zool 2024; 19:505-523. [PMID: 37884464 DOI: 10.1111/1749-4877.12775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Many species exhibit color polymorphisms which have distinct physiological and behavioral characteristics. However, the consistency of morph trait covariation patterns across species, time, and ecological contexts remains unclear. This trait covariation is especially relevant in the context of invasion biology and urban adaptation. Specifically, physiological traits pertaining to energy maintenance are crucial to fitness, given their immediate ties to individual reproduction, growth, and population establishment. We investigated the physiological traits of Podarcis muralis, a versatile color polymorphic species that thrives in urban environments (including invasive populations in Ohio, USA). We measured five physiological traits (plasma corticosterone and triglycerides, hematocrit, body condition, and field body temperature), which compose an integrated multivariate phenotype. We then tested variation among co-occurring color morphs in the context of establishment in an urban environment. We found that the traits describing physiological status and strategy shifted across the active season in a morph-dependent manner-the white and yellow morphs exhibited clearly different multivariate physiological phenotypes, characterized primarily by differences in plasma corticosterone. This suggests that morphs have different strategies in physiological regulation, the flexibility of which is crucial to urban adaptation. The white-yellow morph exhibited an intermediate phenotype, suggesting an intermediary energy maintenance strategy. Orange morphs also exhibited distinct phenotypes, but the low prevalence of this morph in our study populations precludes clear interpretation. Our work provides insight into how differences among stable polymorphisms exist across axes of the phenotype and how this variation may aid in establishment within novel environments.
Collapse
Affiliation(s)
- Ali Amer
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
| | - Sierra Spears
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
| | - Princeton L Vaughn
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Cece Colwell
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
| | - Ethan H Livingston
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
| | - Wyatt McQueen
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
| | - Anna Schill
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
- Department of Biology, Idaho State University, Pocatello, Idaho, USA
| | - Dustin G Reichard
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
| | - Eric J Gangloff
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
| | - Kinsey M Brock
- Department of Environmental Science, Policy, and Management, College of Natural Resources, University of California, Berkeley, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, USA
| |
Collapse
|
4
|
Spears S, Pettit C, Berkowitz S, Collier S, Colwell C, Livingston EH, McQueen W, Vaughn PL, Bodensteiner BL, Leos-Barajas V, Gangloff EJ. Lizards in the wind: The impact of wind on the thermoregulation of the common wall lizard. J Therm Biol 2024; 121:103855. [PMID: 38648702 DOI: 10.1016/j.jtherbio.2024.103855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Sierra Spears
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA.
| | - Ciara Pettit
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA
| | - Sophie Berkowitz
- School of the Environment, University of Toronto, Toronto, Ontario, Canada
| | - Simone Collier
- School of the Environment, University of Toronto, Toronto, Ontario, Canada
| | - Cece Colwell
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA
| | - Ethan H Livingston
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA
| | - Wyatt McQueen
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA
| | - Princeton L Vaughn
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA; Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | | | - Vianey Leos-Barajas
- School of the Environment, University of Toronto, Toronto, Ontario, Canada; Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Eric J Gangloff
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA
| |
Collapse
|
5
|
Verheyen J, Stoks R. Thermal Performance Curves in a Polluted World: Too Cold and Too Hot Temperatures Synergistically Increase Pesticide Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3270-3279. [PMID: 36787409 DOI: 10.1021/acs.est.2c07567] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ecotoxicological studies typically cover only a limited part of the natural thermal range of populations and ignore daily temperature fluctuations (DTFs). Therefore, we may miss important stressor interaction patterns and have poor knowledge on how pollutants affect thermal performance curves (TPCs), which is needed to improve insights into the fate of populations to warming in a polluted world. We tested the single and combined effects of pesticide exposure and DTFs on the TPCs of low- and high-latitude populations of Ischnura elegans damselfly larvae. While chlorpyrifos did not have any effect at the intermediate mean temperatures (20-24 °C), it became toxic (reflecting synergisms) at lower (≤16 °C, reduced growth) and especially at higher (≥28 °C, reduced survival and growth) mean temperatures, resulting in more concave-shaped TPCs. Remarkably, these toxicity patterns were largely consistent at both latitudes and hence across a natural thermal gradient. Moreover, DTFs magnified the pesticide-induced survival reductions at 34 °C. The TPC perspective allowed us to identify different toxicity patterns and interaction types (mainly additive vs synergistic) across the thermal gradient. This highlights the importance of using thermal gradients to make more realistic predictions about the impact of pesticides in a warming world and of warming in a polluted world.
Collapse
Affiliation(s)
- Julie Verheyen
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| |
Collapse
|
6
|
Telemeco RS, Gangloff EJ, Cordero GA, Rodgers EM, Aubret F. From performance curves to performance surfaces: Interactive effects of temperature and oxygen availability on aerobic and anaerobic performance in the common wall lizard. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rory S. Telemeco
- Department of Biology California State University Fresno Fresno CA USA
| | - Eric J. Gangloff
- Department of Biological Sciences Ohio Wesleyan University Delaware OH USA
| | - G. Antonio Cordero
- Centre for Ecology, Evolution and Environmental Changes, Department of Animal Biology University of Lisbon Lisbon Portugal
| | - Essie M. Rodgers
- School of Biological Sciences, University of Canterbury Christchurch New Zealand
| | - Fabien Aubret
- Station d’Ecologie Théorique et Expérimentale du CNRS – UPR 2001 Moulis France
| |
Collapse
|