1
|
Reassortment and Persistence of Influenza A Viruses from Diverse Geographic Origins within Australian Wild Birds: Evidence from a Small, Isolated Population of Ruddy Turnstones. J Virol 2021; 95:JVI.02193-20. [PMID: 33627387 DOI: 10.1128/jvi.02193-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/10/2021] [Indexed: 12/28/2022] Open
Abstract
Australian lineages of avian influenza A viruses (AIVs) are thought to be phylogenetically distinct from those circulating in Eurasia and the Americas, suggesting the circulation of endemic viruses seeded by occasional introductions from other regions. However, processes underlying the introduction, evolution and maintenance of AIVs in Australia remain poorly understood. Waders (order Charadriiformes, family Scolopacidae) may play a unique role in the ecology and evolution of AIVs, particularly in Australia, where ducks, geese, and swans (order Anseriformes, family Anatidae) rarely undertake intercontinental migrations. Across a 5-year surveillance period (2011 to 2015), ruddy turnstones (Arenaria interpres) that "overwinter" during the Austral summer in southeastern Australia showed generally low levels of AIV prevalence (0 to 2%). However, in March 2014, we detected AIVs in 32% (95% confidence interval [CI], 25 to 39%) of individuals in a small, low-density, island population 90 km from the Australian mainland. This epizootic comprised three distinct AIV genotypes, each of which represent a unique reassortment of Australian-, recently introduced Eurasian-, and recently introduced American-lineage gene segments. Strikingly, the Australian-lineage gene segments showed high similarity to those of H10N7 viruses isolated in 2010 and 2012 from poultry outbreaks 900 to 1,500 km to the north. Together with the diverse geographic origins of the American and Eurasian gene segments, these findings suggest extensive circulation and reassortment of AIVs within Australian wild birds over vast geographic distances. Our findings indicate that long-term surveillance in waders may yield unique insights into AIV gene flow, especially in geographic regions like Oceania, where Anatidae species do not display regular inter- or intracontinental migration.IMPORTANCE High prevalence of avian influenza viruses (AIVs) was detected in a small, low-density, isolated population of ruddy turnstones in Australia. Analysis of these viruses revealed relatively recent introductions of viral gene segments from both Eurasia and North America, as well as long-term persistence of introduced gene segments in Australian wild birds. These data demonstrate that the flow of viruses into Australia may be more common than initially thought and that, once introduced, these AIVs have the potential to be maintained within the continent. These findings add to a growing body of evidence suggesting that Australian wild birds are unlikely to be ecologically isolated from the highly pathogenic H5Nx viruses circulating among wild birds throughout the Northern Hemisphere.
Collapse
|
2
|
Influenza A Viruses in Ruddy Turnstones ( Arenaria interpres); Connecting Wintering and Migratory Sites with an Ecological Hotspot at Delaware Bay. Viruses 2020; 12:v12111205. [PMID: 33105913 PMCID: PMC7690596 DOI: 10.3390/v12111205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 01/11/2023] Open
Abstract
Each May for over three decades, avian influenza A viruses (IAVs) have been isolated from shorebirds and gulls (order Charadriiformes) at Delaware Bay (DE Bay), USA, which is a critical stopover site for shorebirds on their spring migration to arctic breeding grounds. At DE Bay, most isolates have been recovered from ruddy turnstones (Arenaria interpres), but it is unknown if this species is involved in either the maintenance or movement of these viruses outside of this site. We collected and tested fecal samples from 2823 ruddy turnstones in Florida and Georgia in the southeastern United States during four winter/spring sample periods—2010, 2011, 2012, and 2013—and during the winters of 2014/2015 and 2015/2016. Twenty-five low pathogenicity IAVs were recovered representing five subtypes (H3N4, H3N8, H5N9, H6N1, and H12N2). Many of these subtypes matched those recovered at DE Bay during the previous year or that year’s migratory cycle, suggesting that IAVs present on these southern wintering areas represent a source of virus introduction to DE Bay via migrating ruddy turnstones. Analyses of all IAV gene segments of H5N9 and H6N1 viruses recovered from ruddy turnstones at DE Bay during May 2012 and from the southeast during the spring of 2012 revealed a high level of genetic relatedness at the nucleotide level, suggesting that migrating ruddy turnstones move IAVs from wintering grounds to the DE Bay ecosystem.
Collapse
|
3
|
Lee YJ, Kil EJ, Kwak HR, Kim M, Seo JK, Lee S, Choi HS. Phylogenetic Characterization of Tomato chlorosis virus Population in Korea: Evidence of Reassortment between Isolates from Different Origins. THE PLANT PATHOLOGY JOURNAL 2018; 34:199-207. [PMID: 29887776 PMCID: PMC5985646 DOI: 10.5423/ppj.oa.10.2017.0220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/22/2018] [Accepted: 02/16/2018] [Indexed: 05/29/2023]
Abstract
Tomato chlorosis virus (ToCV) is a whitefly-transmitted and phloem-limited crinivirus. In 2013, severe interveinal chlorosis and bronzing on tomato leaves, known symptoms of ToCV infection, were observed in greenhouses in Korea. To identify ToCV infection in symptomatic tomato plants, RT-PCR with ToCV-specific primers was performed on leaf samples collected from 11 tomato cultivating areas where ToCV-like symptoms were observed in 2013 and 2014. About half of samples (45.18%) were confirmed as ToCV-infected, and the complete genome of 10 different isolates were characterized. This is the first report of ToCV occurring in Korea. The phylogenetic relationship and genetic variation among ToCV isolates from Korea and other countries were also analysed. When RNA1 and RNA2 are analysed separately, ToCV isolates were clustered into three groups in phylogenetic trees, and ToCV Korean isolates were confirmed to belong to two groups, which were geographically separated. These results suggested that Korean ToCV isolates originated from two independent origins. However, the RNA1 and RNA2 sequences of the Yeonggwang isolate were confirmed to belong to different groups, which indicated that ToCV RNA1 and RNA2 originated from two different origins and were reassorted in Yeonggwang, which is the intermediate point of two geographically separated groups.
Collapse
Affiliation(s)
- Ye-Ji Lee
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419,
Korea
- Dapartment of Seed Services, Foundation of Agricultural Technology Commercialization and Transfer, Iksan 54667,
Korea
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Wanju 55365,
Korea
| | - Eui-Joon Kil
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419,
Korea
| | - Hae-Ryun Kwak
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Wanju 55365,
Korea
| | - Mikyeong Kim
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Wanju 55365,
Korea
| | - Jang-Kyun Seo
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Wanju 55365,
Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354,
Korea
| | - Sukchan Lee
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419,
Korea
| | - Hong-Soo Choi
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Wanju 55365,
Korea
| |
Collapse
|
4
|
Emergence and multiple reassortments of French 2015-2016 highly pathogenic H5 avian influenza viruses. INFECTION GENETICS AND EVOLUTION 2018; 61:208-214. [PMID: 29649578 DOI: 10.1016/j.meegid.2018.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/26/2018] [Accepted: 04/04/2018] [Indexed: 11/23/2022]
Abstract
From November 2015 to August 2016, 81 outbreaks of highly pathogenic (HP) H5 avian influenza virus were detected in poultry farms from South-Western France. These viruses were mainly detected in farms raising waterfowl, but also in chicken or guinea fowl flocks, and did not induce severe signs in waterfowl although they did meet the HP criteria. Three different types of neuraminidases (N1, N2 and N9) were associated with the HP H5 gene. Full genomes sequences of 24 H5HP and 6 LP viruses that circulated in the same period were obtained by next generation sequencing, from direct field samples or after virus isolation in SPF embryonated eggs. Phylogenetic analyses of the eight viral segments confirmed that they were all related to the avian Eurasian lineage. In addition, analyses of the "Time of the Most Recent Common Ancestor" showed that the common ancestor of the H5HP sequences from South-Western France could date back to early 2014 (±1 year). This pre-dated the first detection of H5 HP in poultry farms and was consistent with a silent circulation of these viruses for several months. Finally, the phylogenetic study of the different segments showed that several phylogenetic groups could be established. Twelve genotypes of H5HP were detected implying that at least eleven reassortment events did occur after the H5HP cleavage site emerged. This indicates that a large number of co-infections with both highly pathogenic H5 and other avian influenza viruses must have occurred, a finding that lends further support to prolonged silent circulation.
Collapse
|
5
|
Fountain-Jones NM, Pearse WD, Escobar LE, Alba-Casals A, Carver S, Davies TJ, Kraberger S, Papeş M, Vandegrift K, Worsley-Tonks K, Craft ME. Towards an eco-phylogenetic framework for infectious disease ecology. Biol Rev Camb Philos Soc 2017; 93:950-970. [PMID: 29114986 DOI: 10.1111/brv.12380] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/22/2017] [Accepted: 09/28/2017] [Indexed: 12/12/2022]
Abstract
Identifying patterns and drivers of infectious disease dynamics across multiple scales is a fundamental challenge for modern science. There is growing awareness that it is necessary to incorporate multi-host and/or multi-parasite interactions to understand and predict current and future disease threats better, and new tools are needed to help address this task. Eco-phylogenetics (phylogenetic community ecology) provides one avenue for exploring multi-host multi-parasite systems, yet the incorporation of eco-phylogenetic concepts and methods into studies of host pathogen dynamics has lagged behind. Eco-phylogenetics is a transformative approach that uses evolutionary history to infer present-day dynamics. Here, we present an eco-phylogenetic framework to reveal insights into parasite communities and infectious disease dynamics across spatial and temporal scales. We illustrate how eco-phylogenetic methods can help untangle the mechanisms of host-parasite dynamics from individual (e.g. co-infection) to landscape scales (e.g. parasite/host community structure). An improved ecological understanding of multi-host and multi-pathogen dynamics across scales will increase our ability to predict disease threats.
Collapse
Affiliation(s)
| | - William D Pearse
- Ecology Center and Department of Biology, Utah State University, Logan, UT, 84321, U.S.A
| | - Luis E Escobar
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, 55108, U.S.A.,Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061, U.S.A
| | - Ana Alba-Casals
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, 55108, U.S.A
| | - Scott Carver
- School of Biological Sciences, University of Tasmania, Hobart, 7001, Australia
| | | | - Simona Kraberger
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, U.S.A
| | - Monica Papeş
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, U.S.A
| | - Kurt Vandegrift
- Department of Biology, The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, U.S.A
| | - Katherine Worsley-Tonks
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, 55108, U.S.A
| | - Meggan E Craft
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, 55108, U.S.A
| |
Collapse
|
6
|
Chang CF, King CC, Wan CH, Chang YC, Chan TC, David Lee CC, Chou PHB, Li ZRT, Li YT, Tseng TJ, Lee PF, Chang CH. Lessons from the Largest Epidemic of Avian Influenza Viruses in Taiwan, 2015. Avian Dis 2016; 60:156-71. [DOI: 10.1637/11168-051915-reg] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Savory FR, Varma V, Ramakrishnan U. Identifying geographic hot spots of reassortment in a multipartite plant virus. Evol Appl 2014; 7:569-79. [PMID: 24944570 PMCID: PMC4055178 DOI: 10.1111/eva.12156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/05/2014] [Indexed: 11/26/2022] Open
Abstract
Reassortment between different species or strains plays a key role in the evolution of multipartite plant viruses and can have important epidemiological implications. Identifying geographic locations where reassortant lineages are most likely to emerge could be a valuable strategy for informing disease management and surveillance efforts. We developed a predictive framework to identify potential geographic hot spots of reassortment based upon spatially explicit analyses of genome constellation diversity. To demonstrate the utility of this approach, we examined spatial variation in the potential for reassortment among Cardamom bushy dwarf virus (CBDV; Nanoviridae, Babuvirus) isolates in Northeast India. Using sequence data corresponding to six discrete genome components for 163 CBDV isolates, a quantitative measure of genome constellation diversity was obtained for locations across the sampling region. Two key areas were identified where viruses with highly distinct genome constellations cocirculate, and these locations were designated as possible geographic hot spots of reassortment, where novel reassortant lineages could emerge. Our study demonstrates that the potential for reassortment can be spatially dependent in multipartite plant viruses and highlights the use of evolutionary analyses to identify locations which could be actively managed to facilitate the prevention of outbreaks involving novel reassortant strains.
Collapse
Affiliation(s)
- Fiona R Savory
- National Centre for Biological Sciences, TATA Institute of Fundamental Research Bangalore, India
| | - Varun Varma
- National Centre for Biological Sciences, TATA Institute of Fundamental Research Bangalore, India
| | - Uma Ramakrishnan
- National Centre for Biological Sciences, TATA Institute of Fundamental Research Bangalore, India
| |
Collapse
|