1
|
Sepúlveda Y, Nicholls E, Schuett W, Goulson D. Heatwave-like events affect drone production and brood-care behaviour in bumblebees. PeerJ 2024; 12:e17135. [PMID: 38529302 PMCID: PMC10962346 DOI: 10.7717/peerj.17135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Climate change is currently considered one of the major threats to biodiversity and is associated with an increase in the frequency and intensity of extreme weather events, such as heatwaves. Heatwaves create acutely stressful conditions that may lead to disruption in the performance and survival of ecologically and economically important organisms, such as insect pollinators. In this study, we investigated the impact of simulated heatwaves on the performance of queenless microcolonies of Bombus terrestris audax under laboratory conditions. Our results indicate that heatwaves can have significant impacts on bumblebee performance. However, contrary to our expectations, exposure to heatwaves did not affect survival. Exposure to a mild 5-day heatwave (30-32 °C) resulted in increased offspring production compared to those exposed to an extreme heatwave (34-36 °C) and to the control group (24 °C). We also found that brood-care behaviours were impacted by the magnitude of the heatwave. Wing fanning occurred occasionally at temperatures of 30-32 °C, whereas at 34-36 °C the proportion of workers engaged in this thermoregulatory behaviour increased significantly. Our results provide insights into the effects of heatwaves on bumblebee colony performance and underscore the use of microcolonies as a valuable tool for studying the effects of extreme weather events. Future research, especially field-based studies replicating natural foraging conditions, is crucial to complement laboratory-based studies to comprehend how heatwaves compromise the performance of pollinators. Such studies may potentially help to identify those species more resilient to climate change, as well as those that are most vulnerable.
Collapse
Affiliation(s)
- Yanet Sepúlveda
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Elizabeth Nicholls
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Wiebke Schuett
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Dave Goulson
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| |
Collapse
|
2
|
Li Y, Wilson D, Grundel R, Campbell S, Knight J, Perry J, Hellmann JJ. Extinction risk modeling predicts range-wide differences of climate change impact on Karner blue butterfly (Lycaeides melissa samuelis). PLoS One 2023; 18:e0262382. [PMID: 37934780 PMCID: PMC10629659 DOI: 10.1371/journal.pone.0262382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 10/02/2023] [Indexed: 11/09/2023] Open
Abstract
The Karner blue butterfly (Lycaeides melissa samuelis, or Kbb), a federally endangered species under the U.S. Endangered Species Act in decline due to habitat loss, can be further threatened by climate change. Evaluating how climate shapes the population trend of the Kbb can help in the development of adaptive management plans. Current demographic models for the Kbb incorporate in either a density-dependent or density-independent manner. We instead created mixed density-dependent and -independent (hereafter "endo-exogenous") models for Kbbs based on long-term count data of five isolated populations in the upper Midwest, United States during two flight periods (May to June and July to August) to understand how the growth rates were related to previous population densities and abiotic environmental conditions, including various macro- and micro-climatic variables. Our endo-exogenous extinction risk models showed that both density-dependent and -independent components were vital drivers of the historical population trends. However, climate change impacts were not always detrimental to Kbbs. Despite the decrease of population growth rate with higher overwinter temperatures and spring precipitations in the first generation, the growth rate increased with higher summer temperatures and precipitations in the second generation. We concluded that finer spatiotemporally scaled models could be more rewarding in guiding the decision-making process of Kbb restoration under climate change.
Collapse
Affiliation(s)
- Yudi Li
- Energy Graduate Group, University of California Davis, Davis, CA, United States of America
| | - David Wilson
- Minnesota Department of Natural Resources, Grand Rapids, MN, United States of America
| | - Ralph Grundel
- US Geological Survey, Lake Michigan Ecological Research Station, Chesterton, IN, United States of America
| | - Steven Campbell
- Albany Pine Bush Preserve Commission, Albany Pine Bush, NY, United States of America
| | - Joseph Knight
- Department of Forest Resources, University of Minnesota, St. Paul, MN, United States of America
| | - Jim Perry
- Department of Fisheries, Wildlife and Conservation Biology University of Minnesota, St. Paul, MN, United States of America
| | - Jessica J. Hellmann
- Conservation Sciences Graduate Program, University of Minnesota, St. Paul, MN, United States of America
| |
Collapse
|
3
|
Franzén M, Francioli Y, Askling J, Kindvall O, Johansson V, Forsman A. Yearly weather variation and surface temperature drives the spatiotemporal dynamics of a threatened butterfly and its host plant. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.917991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It remains unclear to what extent yearly weather variation and spatial variation in microclimate influences the outcome of interacting plant-animal species and whether responses differ between life stages. We collected data over several years on 46 ha on File Hajdar, Gotland, Sweden, and executed a complete mapping of larva nests (n = 776) and imago (n = 5,952) of the marsh fritillary butterfly Euphydryas aurinia and its host plant Succisa pratensis. The phenology of the butterflies and the major nectar plants visited varied among years. The duration of the adult flight period decreased with increasing ambient air temperatures. The density of butterflies, host plants, and host plant leaf size increased between years with increasing precipitation in the preceding year, and decreased with increasing average ambient air temperature in the preceding year. In 2021–2022 we deployed a unmanned aerial vehicle (UAV) with a high-resolution thermal sensor to measure spatial variation in surface temperatures in the study area. We found that survival from the egg to the larva stage increased with increasing surface temperature and host plant density. Host plants and larva nests generally occupied warmer microhabitats compared to imago butterflies. The results further suggested that the relationships linking surface temperature to the densities of imago, larva, host plants, and leaf size differed qualitatively between years. In 2017, larva nests and host plant density increased with increasing surface temperatures, and butterflies showed a non-linear response with a density peak at intermediate temperatures. As a result of the extreme drought in 2018 there was a reduction in maximum leaf size, and in the densities of plants, larvae, and butterflies. Moreover, the slopes of the relationships linking the density of larvae, butterflies, and plants to temperature shifted from linear positive to negative or curvilinear. Our findings demonstrate how yearly weather variation and heterogeneous surface temperatures can drive the spatiotemporal distribution and dynamics of butterflies and their host plants. The context specificity of the responses indicated by our results makes it challenging to project how climate change will affect the dynamics of ecological communities.
Collapse
|
4
|
Wilson RJ, Siqueira AF, Brooks SJ, Price BW, Simon LM, Walt SJ, Fenberg PB. Applying computer vision to digitised natural history collections for climate change research: Temperature‐size responses in British butterflies. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rebecca J. Wilson
- School of Ocean and Earth Sciences University of Southampton Southampton UK
- Department of Life Sciences Natural History Museum London UK
| | | | | | | | - Lea M. Simon
- School of Ocean and Earth Sciences University of Southampton Southampton UK
| | - Stéfan J. Walt
- Berkeley Institute for Data Science University of California Berkeley CA USA
| | - Phillip B. Fenberg
- School of Ocean and Earth Sciences University of Southampton Southampton UK
- Department of Life Sciences Natural History Museum London UK
| |
Collapse
|
5
|
Hill GM, Kawahara AY, Daniels JC, Bateman CC, Scheffers BR. Climate change effects on animal ecology: butterflies and moths as a case study. Biol Rev Camb Philos Soc 2021; 96:2113-2126. [PMID: 34056827 PMCID: PMC8518917 DOI: 10.1111/brv.12746] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 01/10/2023]
Abstract
Butterflies and moths (Lepidoptera) are one of the most studied, diverse, and widespread animal groups, making them an ideal model for climate change research. They are a particularly informative model for studying the effects of climate change on species ecology because they are ectotherms that thermoregulate with a suite of physiological, behavioural, and phenotypic traits. While some species have been negatively impacted by climatic disturbances, others have prospered, largely in accordance with their diversity in life-history traits. Here we take advantage of a large repertoire of studies on butterflies and moths to provide a review of the many ways in which climate change is impacting insects, animals, and ecosystems. By studying these climate-based impacts on ecological processes of Lepidoptera, we propose appropriate strategies for species conservation and habitat management broadly across animals.
Collapse
Affiliation(s)
- Geena M. Hill
- Florida Natural Areas InventoryFlorida State University1018 Thomasville Rd., #200‐CTallahasseeFL323303U.S.A.
| | - Akito Y. Kawahara
- Florida Museum of Natural HistoryUniversity of Florida3215 Hull RdGainesvilleFL32611U.S.A.
- Department of BiologyUniversity of Florida876 Newell Dr.GainesvilleFL32611U.S.A.
| | - Jaret C. Daniels
- Florida Museum of Natural HistoryUniversity of Florida3215 Hull RdGainesvilleFL32611U.S.A.
- Department of Entomology and NematologyUniversity of Florida1881 Natural Area Dr.GainesvilleFL32608U.S.A.
| | - Craig C. Bateman
- Florida Museum of Natural HistoryUniversity of Florida3215 Hull RdGainesvilleFL32611U.S.A.
| | - Brett R. Scheffers
- Department of Wildlife Ecology and ConservationUniversity of Florida110 Newins‐Ziegler Hall, P.O. Box 110430GainesvilleFL32611U.S.A.
| |
Collapse
|
6
|
Abstract
Temperature variation-through time and across climatic gradients-affects individuals, populations, and communities. Yet how the thermal response of biological systems is altered by environmental stressors is poorly understood. Here, we quantify two key features-optimal temperature and temperature breadth-to investigate how temperature responses vary in the presence of antibiotics. We use high-throughput screening to measure growth of Escherichia coli under single and pairwise combinations of 12 antibiotics across seven temperatures that range from 22°C to 46°C. We find that antibiotic stress often results in considerable changes in the optimal temperature for growth and a narrower temperature breadth. The direction of the optimal temperature shifts can be explained by the similarities between antibiotic-induced and temperature-induced damage to the physiology of the bacterium. We also find that the effects of pairs of stressors in the temperature response can often be explained by just one antibiotic out of the pair. Our study has implications for a general understanding of how ecological systems adapt and evolve to environmental changes. IMPORTANCE The growth of living organisms varies with temperature. This dependence is described by a temperature response curve that is described by an optimal temperature where growth is maximized and a temperature range (termed breadth) across which the organism can grow. Because an organism's temperature response evolves or acclimates to its environment, it is often assumed to change over only evolutionary or developmental timescales. Counter to this, we show here that antibiotics can quickly (over hours) change the optimal growth temperature and temperature breadth for the bacterium Escherichia coli. Moreover, our results suggest a shared-damage hypothesis: when an antibiotic damages similar cellular components as hot (or cold) temperatures do, this shared damage will combine and compound to more greatly reduce growth when that antibiotic is administered at hot (or cold) temperatures. This hypothesis could potentially also explain how temperature responses are modified by stressors other than antibiotics.
Collapse
|
7
|
Lundblad CG, Conway CJ. Nest microclimate and limits to egg viability explain avian life-history variation across latitudinal gradients. Ecology 2021; 102:e03338. [PMID: 33710621 DOI: 10.1002/ecy.3338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/24/2020] [Accepted: 01/13/2021] [Indexed: 12/28/2022]
Abstract
Variation in life-history strategies is central to our understanding of population dynamics and how organisms adapt to their environments. Yet we lack consensus regarding the ecological processes that drive variation in traits related to reproduction and survival. For example, we still do not understand the cause of two widespread inter- and intraspecific patterns: (1) the ubiquitous positive association between avian clutch size and latitude; and (2) variation in the extent of asynchronous hatching of eggs within a single clutch. Well-known hypotheses to explain each pattern have largely focused on biotic processes related to food availability and predation risk. However, local adaptation to maintain egg viability could explain both patterns with a single abiotic mechanism. The egg viability hypothesis was initially proposed to explain the cause of asynchronous hatching and suggests that asynchronous hatching results from early incubation onset in response to unfavorable nest microclimatic conditions, which otherwise reduce egg viability. However, allocation of resources to early incubation, prior to clutch completion, may energetically constrain clutch size and help explain the positive association between clutch size and latitude. We measured intraspecific variation in five functionally linked life-history traits of burrowing owls at five study sites spanning a 1,400-km latitudinal transect in western North America: clutch size, the timing of incubation onset, the degree of hatching asynchrony, the probability of hatching failure, and nestling survival. We found that most traits varied clinally with latitude, but all the traits were more strongly associated with individual nest microclimates than with latitude, and all varied with nest microclimate in the directions predicted by the egg viability hypothesis. Furthermore, incubation began earlier, hatching asynchrony increased, and clutch size declined across the breeding season. These results suggest that nest microclimate drives an important life-history trade-off and that thermal gradients are often sufficient to account for observed biogeographic and seasonal patterns in life-history strategies. Furthermore, our results reveal a potentially important indirect mechanism by which reproductive success and recruitment could be affected by climate change.
Collapse
Affiliation(s)
- Carl G Lundblad
- Idaho Cooperative Fish and Wildlife Research Unit, Department of Fish and Wildlife Sciences, University of Idaho, 875 Perimeter Drive, MS 1141, Moscow, Idaho, 83844, USA
| | - Courtney J Conway
- U.S. Geological Survey, Idaho Cooperative Fish and Wildlife Research Unit, Department of Fish and Wildlife Sciences, University of Idaho, 875 Perimeter Drive MS 1141, Moscow, Idaho, 83844, USA
| |
Collapse
|
8
|
Elahi R, Miller LP, Litvin SY. Historical comparisons of body size are sensitive to data availability and ecological context. Ecology 2020; 101:e03101. [PMID: 32455494 DOI: 10.1002/ecy.3101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/01/2020] [Accepted: 04/14/2020] [Indexed: 11/07/2022]
Abstract
Historical comparisons of body size often lack pertinent details, including information on the sampling protocol and relevant ecological covariates that influence body size. Moreover, historical estimates of body size that rely on museum specimens may be biased towards larger size classes because of collector preferences, and thus size thresholds have been used to focus attention on maximum body size. We tested the consequences of sampling design, ecological covariates, and size thresholds on inferences of body-size change using field-contextualized historical records, rather than museum specimens. In 2014-2015, we revisited historical (1947-1963) size-frequency distributions of three gastropods (Tegula funebralis, Lottia digitalis/L. austrodigitalis, Littorina keenae) in the context of population density and tidal height. In general, gastropods declined in size. However, our inferences regarding body-size decline were tempered when the variation between sampling units was taken into consideration, resulting in greater uncertainty around the estimate of proportional change in body size. Gastropod size was correlated with population density and tidal height, and these relationships varied over time. Finally, the magnitude and direction of body-size change varied with the amount of data available for analysis, demonstrating that the use of size thresholds can lead to incomplete conclusions.
Collapse
Affiliation(s)
- Robin Elahi
- Hopkins Marine Station, Stanford University, 120 Ocean View Boulevard, Pacific Grove, California, 93940, USA
| | - Luke P Miller
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, California, 92182, USA
| | - Steven Y Litvin
- Hopkins Marine Station, Stanford University, 120 Ocean View Boulevard, Pacific Grove, California, 93940, USA.,Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, California, 95039, USA
| |
Collapse
|
9
|
Wu CH, Holloway JD, Hill JK, Thomas CD, Chen IC, Ho CK. Reduced body sizes in climate-impacted Borneo moth assemblages are primarily explained by range shifts. Nat Commun 2019; 10:4612. [PMID: 31601806 PMCID: PMC6787050 DOI: 10.1038/s41467-019-12655-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 09/16/2019] [Indexed: 12/20/2022] Open
Abstract
Both community composition changes due to species redistribution and within-species size shifts may alter body-size structures under climate warming. Here we assess the relative contribution of these processes in community-level body-size changes in tropical moth assemblages that moved uphill during a period of warming. Based on resurvey data for seven assemblages of geometrid moths (>8000 individuals) on Mt. Kinabalu, Borneo, in 1965 and 2007, we show significant wing-length reduction (mean shrinkage of 1.3% per species). Range shifts explain most size restructuring, due to uphill shifts of relatively small species, especially at high elevations. Overall, mean forewing length shrank by ca. 5%, much of which is accounted for by species range boundary shifts (3.9%), followed by within-boundary distribution changes (0.5%), and within-species size shrinkage (0.6%). We conclude that the effects of range shifting predominate, but considering species physiological responses is also important for understanding community size reorganization under climate warming. Body size shifts under climate change may arise from species range shifts, intraspecific size shifts, or both. Here the authors show that body size reduction in moth assemblages on Mt. Kinabalu, Borneo, over 42 years are driven more by species range shifts than by within-species shrinkage.
Collapse
Affiliation(s)
- Chung-Huey Wu
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei City, Taiwan
| | - Jeremy D Holloway
- Department of Life Sciences, The Natural History Museum, London, SW7 5BD, UK
| | - Jane K Hill
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Chris D Thomas
- Department of Biology, University of York, York, YO10 5DD, UK
| | - I-Ching Chen
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan.
| | - Chuan-Kai Ho
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei City, Taiwan. .,Department of Life Science, National Taiwan University, Taipei City, Taiwan.
| |
Collapse
|
10
|
Wilson RJ, Brooks SJ, Fenberg PB. The influence of ecological and life history factors on ectothermic temperature-size responses: Analysis of three Lycaenidae butterflies (Lepidoptera). Ecol Evol 2019; 9:10305-10316. [PMID: 31632644 PMCID: PMC6787867 DOI: 10.1002/ece3.5550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 12/25/2022] Open
Abstract
Body size has been shown to decrease with increasing temperature in many species, prompting the suggestion that it is a universal ecological response. However, species with complex life cycles, such as holometabolous insects, may have correspondingly complicated temperature-size responses. Recent research suggests that life history and ecological traits may be important for determining the direction and strength of temperature-size responses. Yet, these factors are rarely included in analyses. Here, we aim to determine whether the size of the bivoltine butterfly, Polyommatus bellargus, and the univoltine butterflies, Plebejus argus and Polyommatus coridon, change in response to temperature and whether these responses differ between the sexes, and for P. bellargus, between generations. Forewing length was measured using digital specimens from the Natural History Museum, London (NHM), from one locality in the UK per species. The data were initially compared to annual and seasonal temperature values, without consideration of life history factors. Sex and generation of the individuals and mean monthly temperatures, which cover the growing period for each species, were then included in analyses. When compared to annual or seasonal temperatures only, size was not related to temperature for P. bellargus and P. argus, but there was a negative relationship between size and temperature for P. coridon. When sex, generation, and monthly temperatures were included, male adult size decreased as temperature increased in the early larval stages, and increased as temperature increased during the late larval stages. Results were similar but less consistent for females, while second generation P. bellargus showed no temperature-size response. In P. coridon, size decreased as temperature increased during the pupal stage. These results highlight the importance of including life history factors, sex, and monthly temperature data when studying temperature-size responses for species with complex life cycles.
Collapse
Affiliation(s)
- Rebecca J. Wilson
- Ocean and Earth Science, National Oceanography Centre SouthamptonUniversity of SouthamptonSouthamptonUK
- Department of Life SciencesNatural History MuseumLondonUK
| | | | - Phillip B. Fenberg
- Ocean and Earth Science, National Oceanography Centre SouthamptonUniversity of SouthamptonSouthamptonUK
- Department of Life SciencesNatural History MuseumLondonUK
| |
Collapse
|
11
|
Davies WJ. Multiple temperature effects on phenology and body size in wild butterflies predict a complex response to climate change. Ecology 2019; 100:e02612. [DOI: 10.1002/ecy.2612] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/19/2018] [Accepted: 12/20/2018] [Indexed: 11/07/2022]
Affiliation(s)
- W. James Davies
- Institute of Integrative Biology University of Liverpool Biosciences Building, Crown Street Liverpool L69 7ZB UK
| |
Collapse
|
12
|
Kharouba HM, Lewthwaite JMM, Guralnick R, Kerr JT, Vellend M. Using insect natural history collections to study global change impacts: challenges and opportunities. Philos Trans R Soc Lond B Biol Sci 2018; 374:20170405. [PMID: 30455219 PMCID: PMC6282079 DOI: 10.1098/rstb.2017.0405] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2018] [Indexed: 11/12/2022] Open
Abstract
Over the past two decades, natural history collections (NHCs) have played an increasingly prominent role in global change research, but they have still greater potential, especially for the most diverse group of animals on Earth: insects. Here, we review the role of NHCs in advancing our understanding of the ecological and evolutionary responses of insects to recent global changes. Insect NHCs have helped document changes in insects' geographical distributions, phenology, phenotypic and genotypic traits over time periods up to a century. Recent work demonstrates the enormous potential of NHCs data for examining insect responses at multiple temporal, spatial and phylogenetic scales. Moving forward, insect NHCs offer unique opportunities to examine the morphological, chemical and genomic information in each specimen, thus advancing our understanding of the processes underlying species' ecological and evolutionary responses to rapid, widespread global changes.This article is part of the theme issue 'Biological collections for understanding biodiversity in the anthropocene'.
Collapse
Affiliation(s)
- Heather M Kharouba
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 9B4
| | - Jayme M M Lewthwaite
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Rob Guralnick
- Department of Natural History and the Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Jeremy T Kerr
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 9B4
| | - Mark Vellend
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1 K 2R1
| |
Collapse
|
13
|
Tseng M, Kaur KM, Soleimani Pari S, Sarai K, Chan D, Yao CH, Porto P, Toor A, Toor HS, Fograscher K. Decreases in beetle body size linked to climate change and warming temperatures. J Anim Ecol 2018; 87:647-659. [DOI: 10.1111/1365-2656.12789] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/12/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Michelle Tseng
- Department of Zoology; University of British Columbia; Vancouver Canada
| | - Katrina M. Kaur
- Department of Zoology; University of British Columbia; Vancouver Canada
| | | | - Karnjit Sarai
- Department of Zoology; University of British Columbia; Vancouver Canada
| | - Denessa Chan
- Department of Zoology; University of British Columbia; Vancouver Canada
| | - Christine H. Yao
- Department of Zoology; University of British Columbia; Vancouver Canada
| | - Paula Porto
- Department of Zoology; University of British Columbia; Vancouver Canada
| | - Anmol Toor
- Department of Zoology; University of British Columbia; Vancouver Canada
| | | | | |
Collapse
|
14
|
Horne CR, Hirst AG, Atkinson D. Seasonal body size reductions with warming covary with major body size gradients in arthropod species. Proc Biol Sci 2018; 284:rspb.2017.0238. [PMID: 28356455 DOI: 10.1098/rspb.2017.0238] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/02/2017] [Indexed: 11/12/2022] Open
Abstract
Major biological and biogeographical rules link body size variation with latitude or environmental temperature, and these rules are often studied in isolation. Within multivoltine species, seasonal temperature variation can cause substantial changes in adult body size, as subsequent generations experience different developmental conditions. Yet, unlike other size patterns, these common seasonal temperature-size gradients have never been collectively analysed. We undertake the largest analysis to date of seasonal temperature-size gradients in multivoltine arthropods, including 102 aquatic and terrestrial species from 71 global locations. Adult size declines in warmer seasons in 86% of the species examined. Aquatic species show approximately 2.5-fold greater reduction in size per °C of warming than terrestrial species, supporting the hypothesis that greater oxygen limitation in water than in air forces aquatic species to exhibit greater plasticity in body size with temperature. Total percentage change in size over the annual cycle appears relatively constant with annual temperature range but varies between environments, such that the overall size reduction in aquatic-developing species (approx. 31%) is almost threefold greater than in terrestrial species (approx. 11%). For the first time, we show that strong correlations exist between seasonal temperature-size gradients, laboratory responses and latitudinal-size clines, suggesting that these patterns share common drivers.
Collapse
Affiliation(s)
- Curtis R Horne
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Andrew G Hirst
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK .,Centre for Ocean Life, National Institute for Aquatic Resources, Technical University of Denmark, Kavalergården 6, 2920 Charlottenlund, Denmark
| | - David Atkinson
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
15
|
Blagoderov V, Penn M, Sadka M, Hine A, Brooks S, Siebert DJ, Sleep C, Cafferty S, Cane E, Martin G, Toloni F, Wing P, Chainey J, Duffell L, Huxley R, Ledger S, McLaughlin C, Mazzetta G, Perera J, Crowther R, Douglas L, Durant J, Scialabba E, Honey M, Huertas B, Howard T, Carter V, Albuquerque S, Paterson G, Kitching IJ. iCollections methodology: workflow, results and lessons learned. Biodivers Data J 2017; 5:e21277. [PMID: 29104442 PMCID: PMC5665004 DOI: 10.3897/bdj.5.e21277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Indexed: 11/12/2022] Open
Abstract
The Natural History Museum, London (NHMUK) has embarked on an ambitious programme to digitise its collections. The first phase of this programme was to undertake a series of pilot projects to develop the workflows and infrastructure needed to support mass digitisation of very large scientific collections. This paper presents the results of one of the pilot projects - iCollections. This project digitised all the lepidopteran specimens usually considered as butterflies, 181,545 specimens representing 89 species from the British Isles and Ireland. The data digitised includes, species name, georeferenced location, collector and collection date - the what, where, who and when of specimen data. In addition, a digital image of each specimen was taken. A previous paper explained the way the data were obtained and the background to the collections that made up the project. The present paper describes the technical, logistical, and economic aspects of managing the project.
Collapse
Affiliation(s)
- Vladimir Blagoderov
- National Museums Scotland, Edinburgh, United Kingdom
- Natural History Museum, London, United Kingdom
| | | | - Mike Sadka
- Natural History Museum, London, United Kingdom
| | - Adrian Hine
- Natural History Museum, London, United Kingdom
- Science Museum, London, United Kingdom
| | | | | | - Chris Sleep
- Natural History Museum, London, United Kingdom
| | | | - Elisa Cane
- Natural History Museum, London, United Kingdom
| | | | | | - Peter Wing
- Natural History Museum, London, United Kingdom
| | | | - Liz Duffell
- Natural History Museum, London, United Kingdom
| | - Rob Huxley
- Natural History Museum, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Blagoderov V, Penn M, Sadka M, Hine A, Brooks S, Siebert DJ, Sleep C, Cafferty S, Cane E, Martin G, Toloni F, Wing P, Chainey J, Duffell L, Huxley R, Ledger S, McLaughlin C, Mazzetta G, Perera J, Crowther R, Douglas L, Durant J, Honey M, Huertas B, Howard T, Carter V, Albuquerque S, Paterson G, Kitching IJ. iCollections methodology: workflow, results and lessons learned. Biodivers Data J 2017; 5:e19893. [PMID: 29104435 PMCID: PMC5665009 DOI: 10.3897/bdj.5.e19893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/15/2017] [Indexed: 11/16/2022] Open
Abstract
The Natural History Museum, London (NHMUK) has embarked on an ambitious programme to digitise its collections. The first phase of this programme was to undertake a series of pilot projects to develop the workflows and infrastructure needed to support mass digitisation of very large scientific collections. This paper presents the results of one of the pilot projects - iCollections. This project digitised all the lepidopteran specimens usually considered as butterflies, 181,545 specimens representing 89 species from the British Isles and Ireland. The data digitised includes, species name, georeferenced location, collector and collection date - the what, where, who and when of specimen data. In addition, a digital image of each specimen was taken. A previous paper explained the way the data were obtained and the background to the collections that made up the project. The present paper describes the technical, logistical, and economic aspects of managing the project.
Collapse
Affiliation(s)
- Vladimir Blagoderov
- National Museums Scotland, Edinburgh, United Kingdom
- Natural History Museum, London, United Kingdom
| | | | - Mike Sadka
- Natural History Museum, London, United Kingdom
| | - Adrian Hine
- Natural History Museum, London, United Kingdom
- Science Museum, London, United Kingdom
| | | | | | - Chris Sleep
- Natural History Museum, London, United Kingdom
| | | | - Elisa Cane
- Natural History Museum, London, United Kingdom
| | | | | | - Peter Wing
- Natural History Museum, London, United Kingdom
| | | | - Liz Duffell
- Natural History Museum, London, United Kingdom
| | - Rob Huxley
- Natural History Museum, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zipf L, Williams EH, Primack RB, Stichter S. Climate effects on late-season flight times of Massachusetts butterflies. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2017; 61:1667-1673. [PMID: 28382376 DOI: 10.1007/s00484-017-1347-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/10/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
Although the responses of living organisms to climate change are being widely investigated, little attention has been given to such effects late in the growing season. We studied the late-season flight times of 20 species of butterflies in a geographically limited region, the state of Massachusetts in the USA, by examining change in dates of flight over a 22-year period and in response to average monthly temperature and precipitation. By analyzing the last 10% of each year's observations reported by observers of the Massachusetts Butterfly Club, we found that seven species remain in flight significantly later into the fall than they did two decades earlier, while two species show reduced late-season flight. Life history characteristics of the species, particularly voltinism and average fall flight dates, influenced whether warmer fall months led to increases or decreases in fall flight. Warmer Novembers often led to later fall flight, and wetter Augusts usually extended fall flight. These results document the effects of climate on late-season flight times of butterflies, add to an understanding of how warmer autumn conditions alter the phenology of different butterfly species, and show the usefulness of citizen science data.
Collapse
Affiliation(s)
- L Zipf
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - E H Williams
- Department of Biology, Hamilton College, 198 College Hill Rd., Clinton, NY, 13323, USA.
| | - R B Primack
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - S Stichter
- Massachusetts Butterfly Club, 108 Walden St., Cambridge, MA, 02140, USA
| |
Collapse
|
18
|
Dellinger T, Wong V, Marek P. Makelabels: a Bash script for generating data matrix codes for collection management. Biodivers Data J 2016. [DOI: 10.3897/bdj.4.e9583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|