1
|
The 30-year impact of post-windthrow management on the forest regeneration process in northern Japan. LANDSCAPE AND ECOLOGICAL ENGINEERING 2023. [DOI: 10.1007/s11355-023-00539-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
AbstractThe frequency and intensity of typhoons are expected to increase over time due to climate change. These changes may expose forests to more windthrow in the future, and increasing the resilience of hemiboreal forests through forest management after windthrow is important. Here, we quantified forest structure recovery using aerial photos and light detection and ranging (LiDAR) data after catastrophic windthrow events. Our aims are to test the following three hypotheses: (1) forest structure will not recover within 30 years after windthrow, (2) forest recovery will be affected not only by salvaging but also pre-windthrow attributes and geographical features, and (3) various post-windthrow management including salvaging will drastically alter tree species composition and delay forest recovery. Our results revealed that hypothesis (1) and (2) were supported and (3) was partially supported. The ordination results suggested that more than 30 years were needed to recover canopy tree height after windthrow in hemiboreal forests in Hokkaido, Japan. Salvage logging did not delay natural succession, but it significantly decreased the cover ratio of conifer species sites (0.107 ± 0.023) compared with natural succession sites (0.310 ± 0.091). The higher the elevation, the steeper the site, and the higher the average canopy height before windthrow, the slower the recovery of forest stands after windthrow and salvaging. Scarification and planting after salvage logging significantly increased the number of canopy trees, but those sites differed completely in species composition from the old growth forests. Our study thus determined that the choice and intensity of post-disturbance management in hemiboreal forests should be carefully considered based on the management purpose and local characteristics.
Collapse
|
2
|
Nwaogu CJ, Amar A, Nebel C, Isaksson C, Hegemann A, Sumasgutner P. Innate immune function and antioxidant capacity of nestlings of an African raptor covary with the level of urbanisation around breeding territories. J Anim Ecol 2023; 92:124-141. [PMID: 36353782 PMCID: PMC10107107 DOI: 10.1111/1365-2656.13837] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/13/2022] [Indexed: 11/11/2022]
Abstract
Urban areas provide breeding habitats for many species. However, animals raised in urban environments face challenges such as altered food availability and quality, pollution and pathogen assemblages. These challenges can affect physiological processes such as immune function and antioxidant defences which are important for fitness. Here, we explore how levels of urbanisation influence innate immune function, immune response to a mimicked bacterial infection and antioxidant capacity of nestling Black Sparrowhawks Accipiter melanoleucus in South Africa. We also explore the effect of timing of breeding and rainfall on physiology since both can influence the environmental condition under which nestlings are raised. Finally, because urbanisation can influence immune function indirectly, we use path analyses to explore direct and indirect associations between urbanisation, immune function and oxidative stress. We obtained measures of innate immunity (haptoglobin, lysis, agglutination, bactericidal capacity), indices of antioxidant capacity (total non-enzymatic antioxidant capacity (tAOX) and total glutathione from nestlings from 2015 to 2019. In addition, in 2018 and 2019, we mimicked a bacterial infection by injecting nestlings with lipopolysaccharide and quantified their immune response. Increased urban cover was associated with an increase in lysis and a decrease in tAOX, but not with any of the other physiological parameters. Furthermore, except for agglutination, no physiological parameters were associated with the timing of breeding. Lysis and bactericidal capacity, however, varied consistently with the annual rainfall pattern. Immune response to a mimicked a bacterial infection decreased with urban cover but not with the timing of breeding nor rainfall. Our path analyses suggested indirect associations between urban cover and some immune indices via tAOX but not via the timing of breeding. Our results show that early-life development in an urban environment is associated with variation in immune and antioxidant functions. The direct association between urbanisation and antioxidant capacity and their impact on immune function is likely an important factor mediating the impact of urbanisation on urban-dwelling animals. Future studies should explore how these results are linked to fitness and whether the responses are adaptive for urban-dwelling species.
Collapse
Affiliation(s)
- Chima Josiah Nwaogu
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Cape Town, South Africa
| | - Arjun Amar
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Cape Town, South Africa
| | - Carina Nebel
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Cape Town, South Africa.,Department of Biology, University of Turku, Turku, Finland
| | | | - Arne Hegemann
- Department of Biology, Lund University, Lund, Sweden
| | - Petra Sumasgutner
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Cape Town, South Africa.,Konrad Lorenz Research Centre, Core Facility for Behaviour and Cognition, University of Vienna, Grünau/Almtal, Austria.,Department of Behavioural & Cognitive Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Morosinotto C, Bensch S, Tarka M, Karell P. Heritability and parental effects in telomere length in a color polymorphic long-lived bird. Physiol Biochem Zool 2022; 95:350-364. [DOI: 10.1086/720161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Catto S, Sumasgutner P, Amar A, Thomson RL, Cunningham SJ. Pulses of anthropogenic food availability appear to benefit parents, but compromise nestling growth in urban red-winged starlings. Oecologia 2021; 197:565-576. [PMID: 34536140 PMCID: PMC8585795 DOI: 10.1007/s00442-021-05033-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/30/2021] [Indexed: 11/28/2022]
Abstract
The provision of anthropogenic food undoubtedly influences urban bird fitness. However, the nature of the impact is unclear, with both benefits and costs of urban diets documented. Moreover, the influence of short-term fluctuations in food availability, linked to urban weekday/weekend cycles of human presence, is largely unknown. We explored whether breeding red-winged starlings Onychognathus morio in Cape Town, South Africa, altered foraging and provisioning behaviour between days with high human presence (HHP) and days with low human presence (LHP)—i.e. weekdays versus weekends and vacation days. We investigated the relationship between starling diet, adult body mass and nestling development. Breeding adults consumed and provisioned the same quantity of food, but a significantly greater proportion of anthropogenic food on HHP compared to LHP days. Adults apparently benefited from the anthropogenic diet, experiencing significantly greater mass gain on HHP days. However, nestlings experienced a cost, with the number of HHP days during the nestling period associated negatively with nestling size. Adults may, therefore, benefit from the high calorie content of anthropogenic food, while nestlings may be negatively affected by nutrient limitation. The quantity of food available in urban environments may, therefore, benefit adult survival, while its quality imposes a cost to nestling growth.
Collapse
Affiliation(s)
- Sarah Catto
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| | - Petra Sumasgutner
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa. .,Konrad Lorenz Research Center, Core Facility for Behaviour and Cognition, Department of Behavioral and Cognitive Biology, University of Vienna, Grünau/Almtal, 4645, Austria.
| | - Arjun Amar
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| | - Robert L Thomson
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| | - Susan J Cunningham
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| |
Collapse
|
5
|
Exogenous corticosterone and melanin-based coloration explain variation in juvenile dispersal behaviour in the barn owl (Tyto alba). PLoS One 2021; 16:e0256038. [PMID: 34492014 PMCID: PMC8423310 DOI: 10.1371/journal.pone.0256038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/28/2021] [Indexed: 11/19/2022] Open
Abstract
Natal dispersal affects many processes such as population dynamics. So far, most studies have examined the intrinsic and extrinsic factors that determine the distance between the place of birth and of first breeding. In contrast, few researchers followed the first steps of dispersal soon after fledging. To study this gap, we radio-tracked 95 barn owl nestlings (Tyto alba) to locate their diurnal roost sites from the fledging stage until December. This was used to test whether the age of nest departure, post-fledging movements and dispersal distance were related to melanin-based coloration, which is correlated to fitness-related traits, as well as to corticosterone, a hormone that mediates a number of life history trade-offs and the physiological and behavioural responses to stressful situations. We found that the artificial administration of corticosterone delayed the age when juveniles left their parental home-range in females but not in males. During the first few months after fledging, longer dispersal distances were reached by females compared to males, by individuals marked with larger black feather spots compared to individuals with smaller spots, by larger individuals and by those experimentally treated with corticosterone. We conclude that the onset and magnitude of dispersal is sensitive to the stress hormone corticosterone, melanin-based coloration and body size.
Collapse
|
6
|
Frigerio D, Sumasgutner P, Kotrschal K, Kleindorfer S, Hemetsberger J. From individual to population level: Temperature and snow cover modulate fledging success through breeding phenology in greylag geese (Anser anser). Sci Rep 2021; 11:16100. [PMID: 34373490 PMCID: PMC8352867 DOI: 10.1038/s41598-021-95011-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/19/2021] [Indexed: 11/15/2022] Open
Abstract
Local weather conditions may be used as environmental cues by animals to optimize their breeding behaviour, and could be affected by climate change. We measured associations between climate, breeding phenology, and reproductive output in greylag geese (Anser anser) across 29 years (1990-2018). The birds are individually marked, which allows accurate long-term monitoring of life-history parameters for all pairs within the flock. We had three aims: (1) identify climate patterns at a local scale in Upper Austria, (2) measure the association between climate and greylag goose breeding phenology, and (3) measure the relationship between climate and both clutch size and fledging success. Ambient temperature increased 2 °C across the 29-years study period, and higher winter temperature was associated with earlier onset of egg-laying. Using the hatch-fledge ratio, average annual temperature was the strongest predictor for the proportion of fledged goslings per season. There is evidence for an optimum time window for egg-laying (the earliest and latest eggs laid had the lowest fledging success). These findings broaden our understanding of environmental effects and population-level shifts which could be associated with increased ambient temperature and can thus inform future research about the ecological consequences of climate changes and reproductive output in avian systems.
Collapse
Affiliation(s)
- Didone Frigerio
- Konrad Lorenz Research Center, Core Facility for Behavior and Cognition, University of Vienna, Fischerau 11, 4645, Grünau im Almtal, Austria
- Department of Behavioral and Cognitive Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Petra Sumasgutner
- Konrad Lorenz Research Center, Core Facility for Behavior and Cognition, University of Vienna, Fischerau 11, 4645, Grünau im Almtal, Austria
- Department of Behavioral and Cognitive Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Kurt Kotrschal
- Konrad Lorenz Research Center, Core Facility for Behavior and Cognition, University of Vienna, Fischerau 11, 4645, Grünau im Almtal, Austria
- Department of Behavioral and Cognitive Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Sonia Kleindorfer
- Konrad Lorenz Research Center, Core Facility for Behavior and Cognition, University of Vienna, Fischerau 11, 4645, Grünau im Almtal, Austria.
- Department of Behavioral and Cognitive Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia.
| | - Josef Hemetsberger
- Konrad Lorenz Research Center, Core Facility for Behavior and Cognition, University of Vienna, Fischerau 11, 4645, Grünau im Almtal, Austria
- Department of Behavioral and Cognitive Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| |
Collapse
|
7
|
Nebel C, Sumasgutner P, Rodseth E, Ingle RA, Childs DZ, Curtis‐Scott O, Amar A. Multigenerational pedigree analysis of wild individually marked black sparrowhawks suggests that dark plumage coloration is a dominant autosomal trait. J Zool (1987) 2021. [DOI: 10.1111/jzo.12913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- C. Nebel
- FitzPatrick Institute of African Ornithology DSI‐NRF Centre of Excellence University of Cape Town Cape Town South Africa
- Department of Biology University of Turku Turku Finland
| | - P. Sumasgutner
- FitzPatrick Institute of African Ornithology DSI‐NRF Centre of Excellence University of Cape Town Cape Town South Africa
- Department of Behavioral & Cognitive Biology Konrad Lorenz Research Centre (KLF) Core Facility for Behaviour and Cognition University of Vienna Vienna Austria
| | - E. Rodseth
- Department of Molecular and Cell Biology University of Cape Town Cape Town South Africa
| | - R. A. Ingle
- Department of Molecular and Cell Biology University of Cape Town Cape Town South Africa
| | - D. Z. Childs
- School of Biosciences University of Sheffield Sheffield UK
| | - O. Curtis‐Scott
- Department of Biological Sciences University of Cape Town Cape Town South Africa
| | - A. Amar
- FitzPatrick Institute of African Ornithology DSI‐NRF Centre of Excellence University of Cape Town Cape Town South Africa
| |
Collapse
|
8
|
Nebel C, Amar A, Hegemann A, Isaksson C, Sumasgutner P. Parental morph combination does not influence innate immune function in nestlings of a colour-polymorphic African raptor. Sci Rep 2021; 11:11053. [PMID: 34040034 PMCID: PMC8155141 DOI: 10.1038/s41598-021-90291-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/04/2021] [Indexed: 12/16/2022] Open
Abstract
Conditions experienced during early life can have long-term individual consequences by influencing dispersal, survival, recruitment and productivity. Resource allocation during development can have strong carry-over effects onto these key parameters and is directly determined by the quality of parental care. In the black sparrowhawk (Accipiter melanoleucus), a colour-polymorphic raptor, parental morphs influence nestling somatic growth and survival, with pairs consisting of different colour morphs ('mixed-morph pairs') producing offspring with lower body mass indices, but higher local apparent survival rates. Resource allocation theory could explain this relationship, with nestlings of mixed-morph pairs trading off a more effective innate immune system against somatic growth. We quantified several innate immune parameters of nestlings (hemagglutination, hemolysis, bacteria-killing capacity and haptoglobin concentration) and triggered an immune response by injecting lipopolysaccharides. Although we found that nestlings with lower body mass index had higher local survival rates, we found no support for the proposed hypothesis: neither baseline immune function nor the induced immune response of nestlings was associated with parental morph combination. Our results suggest that these immune parameters are unlikely to be involved in providing a selective advantage for the different colour morphs' offspring, and thus innate immunity does not appear to be traded off against a greater allocation of resources to somatic growth. Alternative hypotheses explaining the mechanism of a low nestling body mass index leading to subsequent higher local survival could be related to the post-fledgling dependency period or differences in dispersal patterns for the offspring from different morph combinations.
Collapse
Affiliation(s)
- Carina Nebel
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, University of Cape Town, Cape Town, South Africa.
- Department of Biology, University of Turku, Turku, Finland.
| | - Arjun Amar
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, University of Cape Town, Cape Town, South Africa
| | - Arne Hegemann
- Department of Biology, Lund University, Lund, Sweden
| | | | - Petra Sumasgutner
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, University of Cape Town, Cape Town, South Africa
- Konrad Lorenz Research Centre (KLF), Core Facility for Behaviour and Cognition, Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Morosinotto C, Brommer JE, Lindqvist A, Ahola K, Aaltonen E, Karstinen T, Karell P. Fledging Mass Is Color Morph Specific and Affects Local Recruitment in a Wild Bird. Am Nat 2020; 196:609-619. [DOI: 10.1086/710708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Huchler K, Schulze CH, Gamauf A, Sumasgutner P. Shifting Breeding Phenology in Eurasian Kestrels Falco tinnunculus: Effects of Weather and Urbanization. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
11
|
Nebel C, Sumasgutner P, McPherson SC, Tate GJ, Amar A. Contrasting parental color morphs increase regularity of prey deliveries in an African raptor. Behav Ecol 2020. [DOI: 10.1093/beheco/araa063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Disassortative mating in color-polymorphic raptors is a proposed mechanism for the maintenance of color polymorphism in populations. Selection for such a mating system may occur if there are fitness advantages of mating with a contrasting morph. In the black sparrowhawk (Accipiter melanoleucus), mixed-morph pairs may have a selective advantage because they produce offspring that have higher survival rates. Two hypotheses, which may explain the mechanism, are the “avoidance-image” and “complementarity” hypotheses. The first suggests that, within a predator’s territory, prey develop a search image for the more commonly encountered parental morph, for example, the male morph during incubation and brooding. Females of a contrasting morph to their partner would then have higher capture rates once they commence hunting in the later nestling phase. Thus, the “avoidance-image” hypothesis predicts higher provisioning rates for mixed-morph pairs. Alternatively, the “complementarity” hypothesis posits that different color morphs exploit different environmental conditions, allowing mixed-morph pairs to hunt under a wider range of conditions and predicts that food is delivered more consistently. We test these hypotheses using nest cameras to record prey delivery rates during the late nestling phase when both parents are hunting. We found support for the “complementarity” hypothesis, with mixed-morph pairs delivering food more consistently but not at a higher rate. This higher consistency in prey deliveries may explain the improved survival of the offspring of mixed-morph pairs and could, therefore, play a role in maintaining the stability of color polymorphism in this system.
Collapse
Affiliation(s)
- Carina Nebel
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Private Bag X3, John Day Building, 7700 Rondebosch, Cape Town, Western Cape, South Africa
| | - Petra Sumasgutner
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Private Bag X3, John Day Building, 7700 Rondebosch, Cape Town, Western Cape, South Africa
- Konrad Lorenz Research Centre, Core Facility for Behaviour and Cognition, University of Vienna, Fischerau 11, 4645 Grünau/Almtal, Austria
| | - Shane C McPherson
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Private Bag X3, John Day Building, 7700 Rondebosch, Cape Town, Western Cape, South Africa
- Konrad Lorenz Research Centre, Core Facility for Behaviour and Cognition, University of Vienna, Fischerau 11, 4645 Grünau/Almtal, Austria
| | - Gareth J Tate
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Private Bag X3, John Day Building, 7700 Rondebosch, Cape Town, Western Cape, South Africa
- Endangered Wildlife Trust, Birds of Prey Programme, Glen Austin AH, Midrand, 1685 Gauteng, South Africa
| | - Arjun Amar
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Private Bag X3, John Day Building, 7700 Rondebosch, Cape Town, Western Cape, South Africa
| |
Collapse
|
12
|
Sumasgutner P, Jenkins A, Amar A, Altwegg R. Nest boxes buffer the effects of climate on breeding performance in an African urban raptor. PLoS One 2020; 15:e0234503. [PMID: 32579609 PMCID: PMC7313736 DOI: 10.1371/journal.pone.0234503] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/26/2020] [Indexed: 11/18/2022] Open
Abstract
As the world’s human population increases, transformation of natural landscapes into urban habitats continues to increase. In Africa, rates of human population growth and urbanisation are among the highest in the world, but the impacts of these processes on the continent’s biodiversity remain largely unexplored. Furthermore, the effects of ongoing anthropogenic climate change are likely to be severe and to interact with urbanisation. Some organisms appear resilient to urbanisation, and even proliferate in human-modified environments. One such species is the peregrine falcon Falco peregrinus in Cape Town, South Africa. Using a long-term data set (1989–2014), we investigate the relationship between breeding attempts, timing of breeding and breeding performance under varying weather conditions. Exploring these issues along an urbanisation gradient, we focus on the role of artificially provided nest boxes, and their capacity to buffer against extreme weather events. Pairs in more urbanised areas, and particularly those in nest boxes, were more likely to breed and to commence breeding earlier. Additionally, pairs using nest boxes were more likely to breed in years with higher rainfall. Warm and dry weather conditions generally advanced the timing of breeding, although this relationship with weather was not seen for urban pairs using nest boxes. Furthermore, weather did not impact breeding performance directly (breeding success and fledged brood size), but timing of breeding did, with earlier breeders producing more fledglings. Our study shows that falcons breeding in specially provided nest boxes were less sensitive to local weather dynamics than pairs using more natural nest sites. This has important implications as it suggests that the managed provision of such nesting sites can help this key urban species to cope with extreme weather events, which are predicted to increase with climate change.
Collapse
Affiliation(s)
- Petra Sumasgutner
- FitzPatrick Institute of African Ornithology (FIAO), DST-NRF Centre of Excellence, University of Cape Town, Cape Town, South Africa
- Statistics in Ecology, Evolution and Conservation (SEEC), Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
- Konrad Lorenz Research Centre (KLF), Core Facility for Behaviour and Cognition, University of Vienna, Grünau/Almtal, Austria
- * E-mail:
| | - Andrew Jenkins
- FitzPatrick Institute of African Ornithology (FIAO), DST-NRF Centre of Excellence, University of Cape Town, Cape Town, South Africa
- Statistics in Ecology, Evolution and Conservation (SEEC), Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
| | - Arjun Amar
- FitzPatrick Institute of African Ornithology (FIAO), DST-NRF Centre of Excellence, University of Cape Town, Cape Town, South Africa
| | - Res Altwegg
- Statistics in Ecology, Evolution and Conservation (SEEC), Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
13
|
Morph specific foraging behavior by a polymorphic raptor under variable light conditions. Sci Rep 2017; 7:9161. [PMID: 28831050 PMCID: PMC5567351 DOI: 10.1038/s41598-017-07829-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/04/2017] [Indexed: 11/08/2022] Open
Abstract
Colour polymorphism may be maintained within a population by disruptive-selection. One hypothesis proposes that different morphs are adapted to different ambient light conditions, with lighter morphs having a selective advantage in bright conditions and darker morphs having advantages in darker conditions. The mechanism for this advantage is proposed to be through enhanced crypsis via background-matching. We explore this hypothesis in a polymorphic raptor, the black sparrowhawk Accipiter melanoleucus, which exhibits a discrete dark and white-morph. We use GPS-tracking data to contrast the foraging behaviour and habitat selection of morphs. As predicted, we found that light-levels influenced foraging behaviour in different ways for morphs: Dark-morphs showed a decrease in foraging with increasing light-levels; whereas no relationship was found for white-morphs. Furthermore, we found differential-degrees of habitat selection, with dark-morphs selecting more enclosed habitats compared to white-morphs. This suggests that different morphs may be better adapted to foraging under different light-conditions, potentially playing a role in maintaining colour polymorphism in this species. Our results may also help explain why dark-morphs predominate in this study region, which experiences high rainfall and lower light-levels during the breeding-period. This study suggests that avian morphs may allocate/partition foraging activity by weather conditions/habitat, which maximise their concealment from prey.
Collapse
|
14
|
Sumasgutner P, Millán J, Curtis O, Koelsag A, Amar A. Is multiple nest building an adequate strategy to cope with inter-species nest usurpation? BMC Evol Biol 2016; 16:97. [PMID: 27150363 PMCID: PMC4858914 DOI: 10.1186/s12862-016-0671-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Black sparrowhawks (Accipiter melanoleucus) recently colonised the Cape Peninsula, South Africa, where the species faces competition for their nest sites from Egyptian geese (Alopochen aegyptiaca) which frequently usurp black sparrowhawk nests. In this paper, we test the hypothesis that multiple nest building by black sparrowhawks is a strategy to cope with this competitor, based on a 14-year long term data set. RESULTS Two main results support the hypothesis: first, the numbers of intact nests per breeding season in black sparrowhawk territories increased as levels of geese interactions increased, specifically when usurpation occurred. Usurpation occurred significantly more often at nests later in the season, and may provide a further explanation for the advancement of the black sparrowhawk breeding season towards earlier breeding attempts which results in an overall extension of the breeding period (over 9 months) that has been found in our study population. Second, nest usurpation had a negative impact on black sparrowhawks' reproductive performance at the 'nest' level, but not at the 'territory' level when multiple nests were available within the same breeding season, suggesting that this strategy was effective for dealing with this competitor. However, our results do not rule out long term negative consequences of these interactions, for example, reduced adult survival rates or reduced lifetime reproductive success, due to the higher energy demand required to build several nests each breeding season. CONCLUSIONS Our results suggest that black sparrowhawks avoid direct conflict with this large and aggressive competitor and instead choose the passive strategy in allocating more resources to multiple nest building. Our research further highlights the importance of behavioural plasticity, which might be especially important for city-dwelling species in the face of global urbanisation.
Collapse
Affiliation(s)
- Petra Sumasgutner
- Percy FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa.
| | - Juan Millán
- Percy FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
| | - Odette Curtis
- Biological Sciences, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
| | - Ann Koelsag
- Percy FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
| | - Arjun Amar
- Percy FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
| |
Collapse
|