1
|
Wu Q, Fecchio A, Han Y, Liu J, Jin T, Huang ZYX, Ding P. Scaling up to understand disease risk: distinct roles of host functional traits in shaping infection risk of avian malaria across different scales. Proc Biol Sci 2025; 292:20242175. [PMID: 39809309 PMCID: PMC11732416 DOI: 10.1098/rspb.2024.2175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/09/2024] [Accepted: 11/22/2024] [Indexed: 01/16/2025] Open
Abstract
Understanding the impacts of diversity on pathogen transmission is essential for public health and biological conservation. However, how the outcome and mechanisms of the diversity-disease relationship vary across biological scales in natural systems remains elusive. In addition, although the role of host functional traits has long been established in disease ecology, its integration into the diversity-disease relationship largely falls behind. By examining avian haemosporidians of 1101 birds from 86 species, we investigated how host functional traits and diversity may shape infection risk across individual and community levels. We found that host traits affect individual-level infection risk but fail to scale up the effect to the community level when testing community-weighted means. Moreover, functional divergence reduced community-level infection risk, indicating the dilution effect of functional diversity. Host richness also showed dilution effect at the community level, but not individual level for one parasite genus, suggesting that the dilution mechanism results from the aggregation of non-competent hosts into richer communities. These results demonstrate that the outcome and mechanism of diversity-disease relationship depend on biological scale, and aggregating observations may cause biased evidence and misattributed mechanisms. Overall, our work suppports the integration of trait-based ecology to further understand the diversity-disease relationship across biological scales.
Collapse
Affiliation(s)
- Qiang Wu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Alan Fecchio
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, USA
| | - Yuxiao Han
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Juan Liu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Tinghao Jin
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Zheng Y. X. Huang
- College of Life Sciences, Nanjing Forestry University, Nanjing, People’s Republic of China
| | - Ping Ding
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
2
|
Galen SC, Ostrow E, Ray S, Henry M, Dispoto J, Fetterman A, Kiziuk L, Weckstein JD. Migratory birds have a distinct haemosporidian community and are temporally decoupled from vector abundance at a stopover site. Parasitology 2024:1-10. [PMID: 39523650 DOI: 10.1017/s0031182024001239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Migratory animals likely play an important role in the geographic spread of parasites. In fact, a common assumption is that parasites are potentially transmitted by migratory animals at temporary stopover sites along migratory routes, yet very few studies have assessed whether transmission at stopover sites can or does occur. We investigated the potential for a group of vector-transmitted parasites, the avian haemosporidians, to be transmitted during migratory stopover periods at Rushton Woods Preserve in Pennsylvania, USA. Using an analysis of 1454 sampled avian hosts, we found that while a core group of abundant haemosporidians was shared between local breeding birds and passing migrants, the parasite community of migratory birds at Rushton was distinct from that of local breeding birds and showed similarity to a previously sampled boreal forest haemosporidian community. Haemosporidians that were unique to passing migratory birds were associated with sampling sites in North America with cooler summer temperatures than haemosporidians that are transmitted at Rushton, suggesting that the transmission of these parasites may be restricted to high-latitude regions outside of our temperate stopover site. We also found that the abundance of mosquitoes in our study region is offset from that of migratory bird abundance during avian migratory periods, with the peak period of bird migration occurring during periods of low mosquito activity. Collectively, these findings suggest that although abundant haemosporidians are possibly transmitted between local and passing migratory birds, a combination of biotic and abiotic factors may constrain haemosporidian transmission during avian stopover at our study site.
Collapse
Affiliation(s)
- Spencer C Galen
- Biology Department, University of Scranton, Loyola Science Center, Scranton, PA, USA
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, USA
| | - Emily Ostrow
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, USA
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, PA, USA
- Southwestern Native Aquatic Resource and Recovery Center, United States Fish and Wildlife Service, Dexter, NM, USA
| | - Suravi Ray
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, USA
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, PA, USA
| | - Marissa Henry
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, USA
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, PA, USA
| | - Janice Dispoto
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, USA
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, PA, USA
| | | | - Lisa Kiziuk
- Willistown Conservation Trust, Newtown Square, PA, USA
| | - Jason D Weckstein
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, USA
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
3
|
Ndlovu M, Wardjomto MB, Pori T, Nangammbi TC. Diversity and Host Specificity of Avian Haemosporidians in an Afrotropical Conservation Region. Animals (Basel) 2024; 14:2906. [PMID: 39409855 PMCID: PMC11475415 DOI: 10.3390/ani14192906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Afrotropical regions have high bird diversity, yet few studies have attempted to unravel the prevalence of avian haemosporidia in conservation areas. The diversity and host specificity of parasites in biodiversity hotspots is crucial to understanding parasite distribution and potential disease emergence. We test the hypothesis that biodiverse regions are associated with highly diverse parasites. By targeting the cytochrome b (Cytb) gene, we molecularly screened 1035 blood samples from 55 bird species for avian haemosporidia infections to determine its prevalence and diversity on sites inside and adjacent to the Kruger National Park. Overall infection prevalence was 28.41%. Haemoproteus, Leucocytozoon, and Plasmodium presented prevalences of 17.39%, 9.24%, and 4.64%, respectively. One hundred distinct parasite lineages were detected, of which 56 were new lineages. Haemoproteus also presented the highest diversity compared to Leucocytozoon and Plasmodium with varying levels of specificity. Haemoproteus lineages were found to be specialists while Plasmodium and Leucocytozoon lineages were generalists. We also found a positive relationship between avian host diversity and parasite diversity, supporting an amplification effect. These findings provide insight data for host-parasite and co-evolutionary relationship models.
Collapse
Affiliation(s)
- Mduduzi Ndlovu
- School of Biology and Environmental Sciences, University of Mpumalanga, Mbombela 1201, South Africa
| | - Maliki B. Wardjomto
- School of Biology and Environmental Sciences, University of Mpumalanga, Mbombela 1201, South Africa
| | - Tinotendashe Pori
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Tshifhiwa C. Nangammbi
- Department of Nature Conservation, Tshwane University of Technology, Pretoria 0001, South Africa
| |
Collapse
|
4
|
Musa S, Altenburger C, Vázquez RM, Woog F, Mackenstedt U. Parasite airlines: mapping the distribution and transmission of avian blood parasites in migratory birds. Int J Parasitol 2024; 54:635-648. [PMID: 38942166 DOI: 10.1016/j.ijpara.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/30/2024] [Accepted: 06/22/2024] [Indexed: 06/30/2024]
Abstract
During their journeys, migratory birds encounter a wider range of parasites than residents, transporting them over vast distances. While some parasites are widely distributed, transmission is not inevitable and depends on the presence of competent arthropod vectors as well as parasite compatibility with native bird species. Distinguishing between parasite distribution and transmission areas is crucial for monitoring and assessing risks to native bird species, as distribution areas, with the appropriate conditions, could become potential transmission areas. In this study, blood samples from 455 reed-living birds of the genera Acrocephalus, Locustella, and Emberiza, collected in the nature reserve "Die Reit" in Hamburg, Germany were screened, targeting haemosporidian parasites, trypanosomes, and filarioid nematodes. Determination of migratory bird age was employed to ascertain the transmission area of the detected parasites. Transmission areas were determined, based on information provided by resident and juvenile birds as well as findings in competent vectors. Long-distance migratory birds of the genus Acrocephalus showed a higher prevalence and diversity of blood parasites compared with partially migratory birds such as Emberiza schoeniclus. Notably, an age-dependent difference in parasite prevalence was observed in Acrocephalus spp., but not in E. schoeniclus. Nematodes were absent in all examined bird species. Proposed transmission areas were identified for nine haemosporidian lineages, showing three different types of transmission area, either with limited transmission in Europe or Africa, or active transmission in both regions.
Collapse
Affiliation(s)
- Sandrine Musa
- University of Hohenheim, Emil-Wolff-Str. 34, 70599 Stuttgart, Germany.
| | | | | | - Friederike Woog
- State Museum of Natural History, Rosenstein 1, 70191 Stuttgart, Germany
| | - Ute Mackenstedt
- University of Hohenheim, Emil-Wolff-Str. 34, 70599 Stuttgart, Germany
| |
Collapse
|
5
|
Elshahawy IS, Mohammed ES, Mawas AS, Shibat El Hamd DMW, Ali E, Alghamdi AM, Alzaylaee H, Elmahallawy EK. First microscopic, pathological, epidemiological, and molecular investigation of Leucocytozoon (Apicomplexa: Haemosporida) parasites in Egyptian pigeons. Front Vet Sci 2024; 11:1434627. [PMID: 39170633 PMCID: PMC11335660 DOI: 10.3389/fvets.2024.1434627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction Leucocytozoon is an intracellular blood parasite that affects various bird species globally and is transmitted by blackfly vectors. This parasite is responsible for leucocytozoonosis, a disease that results in significant economic losses due to reduced meat and egg production. There is limited knowledge about the epidemiological pattern of leucocytozoonosis and its causative species in Egypt, particularly in pigeons. Methods The current study involved the collection of 203 blood samples from domestic pigeons from various household breeders and local markets across Qena Province, Upper Egypt. Samples were initially examined for potential Leucocytozoon infection using blood smears, followed by an evaluation of associated risk factors. Molecular identification of the parasite in selected samples (n = 11), which had initially tested positive via blood smears, was further refined through nested PCR and sequence analysis of the mitochondrial cytochrome b gene to ascertain the Leucocytozoon species present. Additionally, histopathological examination of the liver, spleen, and pancreas was conducted on animals that tested positive by blood smears. Results Interestingly, 26 out of 203 samples (12.08%) had confirmed Leucocytozoon infections based on microscopic analysis. Additionally, all 11 samples that initially tested positive via blood smears were confirmed positive through nested PCR analysis, and their sequencing revealed the presence of Leucocytozoon sabrazesi, marking the first report of this parasite in Egypt. The study into potential risk factors unveiled the prevalence of Leucocytozoon spp. seems host gender-dependent, with males exhibiting a significantly higher infection rate (33.33%). Additionally, adult birds demonstrated a significantly higher infection prevalence than squabs, suggesting an age-dependent trend in prevalence. Seasonality played a significant role, with the highest occurrence observed during summer (37.25%). Histopathological examination revealed the presence of numerous megaloschizonts accompanied by lymphocytic infiltration and multiple focal areas of ischemic necrosis. Conclusion To our knowledge, this is the first study to shed light on the epidemiological characteristics and molecular characterization of leucocytozoonosis in pigeons in Egypt. Further research endeavors are warranted to curb the resurgence of Leucocytozoon parasites in other avian species across Egypt, thereby refining the epidemiological understanding of the disease for more effective control and prevention measures.
Collapse
Affiliation(s)
- Ismail Saad Elshahawy
- Department of Parasitology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Eman Sayed Mohammed
- Department of Parasitology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Amany Sayed Mawas
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Dina M. W. Shibat El Hamd
- Department of Poultry Diseases, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Qena, Egypt
| | - Esraa Ali
- Department of Parasitology, Animal Health Research Institute, (AHRI), Agricultural Research Center (ARC), Qena, Egypt
| | - Abeer M. Alghamdi
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia
| | - Hind Alzaylaee
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ehab Kotb Elmahallawy
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Universidad de Córdoba, Córdoba, Spain
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
6
|
Darío Hernandes Córdoba O, Torres-Romero EJ, Villalobos F, Chapa-Vargas L, Santiago-Alarcon D. Energy input, habitat heterogeneity and host specificity drive avian haemosporidian diversity at continental scales. Proc Biol Sci 2024; 291:20232705. [PMID: 38444334 PMCID: PMC10915542 DOI: 10.1098/rspb.2023.2705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 03/07/2024] Open
Abstract
The correct identification of variables affecting parasite diversity and assemblage composition at different spatial scales is crucial for understanding how pathogen distribution responds to anthropogenic disturbance and climate change. Here, we used a database of avian haemosporidian parasites to test how the taxonomic and phylogenetic diversity and phylogenetic structure of the genera Plasmodium, Haemoproteus and Leucocytozoon from three zoogeographic regions are related to surrogate variables of Earth's energy input, habitat heterogeneity (climatic diversity, landscape heterogeneity, host richness and human disturbance) and ecological interactions (resource use), which was measured by a novel assemblage-level metric related to parasite niche overlap (degree of generalism). We found that different components of energy input explained variation in richness for each genus. We found that human disturbance influences the phylogenetic structure of Haemoproteus while the degree of generalism explained richness and phylogenetic structure of Plasmodium and Leucocytozoon genera. Furthermore, landscape attributes related to human disturbance (human footprint) can filter Haemoproteus assemblages by their phylogenetic relatedness. Finally, assembly processes related to resource use within parasite assemblages modify species richness and phylogenetic structure of Plasmodium and Leucocytozoon assemblages. Overall, our study highlighted the genus-specific patterns with the different components of Earth's energy budget, human disturbances and degree of generalism.
Collapse
Affiliation(s)
| | - Erik Joaquín Torres-Romero
- Laboratorio de Ecología y Conservación de Fauna Silvestre, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, DF, Mexico
- División de Biología, Tecnológico Nacional de México Campus Zacapoaxtla, Subdirección de Investigación y Posgrado, Puebla, Mexico
| | - Fabricio Villalobos
- Red de Biología Evolutiva, Instituto de Ecología, AC Xalapa, Veracruz, Mexico
| | - Leonardo Chapa-Vargas
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, AC, San Luis Potosí, Mexico
| | - Diego Santiago-Alarcon
- Department of Integrative Biology, University of South Florida, 12037 USF Beard Drive, SCA 110, Tampa, FL, USA
| |
Collapse
|
7
|
La Chapelle M, Ruta M, Dunn JC. Bird species with wider geographical ranges have higher blood parasite diversity but not prevalence across the African-Eurasian flyway. Int J Parasitol 2023; 53:787-796. [PMID: 37467874 DOI: 10.1016/j.ijpara.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 07/21/2023]
Abstract
Avian blood parasites, from the genera Plasmodium, Haemoproteus and Leucocytozoon, are predicted to alter their range and prevalence as global temperatures change, and host and vector ranges shift. Understanding large-scale patterns in the prevalence and diversity of avian malaria and malaria-like parasites is important due to an incomplete understanding of their effects in the wild, where studies suggest even light parasitaemia can potentially cause rapid mortality, especially in naïve populations. We conducted phylogenetically controlled analyses to test for differences in prevalence and lineage diversity of haemoparasite infection (for Plasmodium, Haemoproteus and Leucocytozoon) in and between resident and migratory species along the African-Eurasian flyway. To test whether migratory strategy or range size drives differences in parasite prevalence and diversity between resident and migrant species, we included three categories of resident species: Eurasian only (n = 36 species), African only (n = 41), and species resident on both continents (n = 17), alongside intercontinental migrants (n = 64), using a subset of data from the MalAvi database comprising 27,861 individual birds. We found that species resident on both continents had a higher overall parasite diversity than all other categories. Eurasian residents had lower Plasmodium diversity than all other groups, and both migrants and species resident on both continents had higher Haemoproteus diversity than both African and Eurasian residents. Leucocytozoon diversity did not differ between groups. Prevalence patterns were less clear, with marked differences between genera. Both Plasmodium and Leucocytozoon prevalence was higher in species resident on both continents and African residents than in migrants and Eurasian residents. Haemoproteus prevalence was lower in Eurasian residents than species resident on both continents. Our findings contrast with previous findings in the North-South American flyway, where long-distance migrants had higher parasite diversity than residents and short-distance migrants, although we found contrasting patterns for parasite diversity to those seen for parasite prevalence. Crucially, our results suggest that geographic range may be more important than migratory strategy in driving parasite diversity within species along the African-Palaearctic flyway. Our findings differ between the three parasite genera included in our analysis, suggesting that vector ecology may be important in determining these large-scale patterns. Our results add to our understanding of global patterns in parasite diversity and abundance, and highlight the need to better understand the influence of vector ecology to understand the drivers of infection risk and predict responses to environmental change.
Collapse
Affiliation(s)
- Mary La Chapelle
- School of Life and Environmental Sciences, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln LN6 7DL, UK
| | - Marcello Ruta
- School of Life and Environmental Sciences, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln LN6 7DL, UK
| | - Jenny C Dunn
- School of Life and Environmental Sciences, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln LN6 7DL, UK.
| |
Collapse
|
8
|
Vieira LMDC, Pereira PHO, Vilela DADR, Landau I, Pacheco MA, Escalante AA, Ferreira FC, Braga ÉM. Leucocytozoon cariamae n. sp. and Haemoproteus pulcher coinfection in Cariama cristata (Aves: Cariamiformes): first mitochondrial genome analysis and morphological description of a leucocytozoid in Brazil. Parasitology 2023; 150:1296-1306. [PMID: 37655743 PMCID: PMC10941214 DOI: 10.1017/s0031182023000811] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
The distribution of avian haemosporidians of the genus Leucocytozoon in the Neotropics remains poorly understood. Recent studies confirmed their presence in the region using molecular techniques alone, but evidence for gametocytes and data on putative competent hosts for Leucocytozoon are still lacking outside highland areas. We combined morphological and molecular data to characterize a new Leucocytozoon species infecting a non-migratory red-legged seriema (Cariama cristata), the first report of a competent host for Leucocytozoon in Brazil. Leucocytozoon cariamae n. sp. is distinguished from the Leucocytozoon fringillinarum group by its microgametocytes that are not strongly appressed to the host cell nucleus. The bird studied was coinfected with Haemoproteus pulcher, and we present a Bayesian phylogenetic analysis based on nearly complete mitochondrial genomes of these 2 parasites. Leucocytozoon cariamae n. sp. morphology is consistent with our phylogenetic analysis indicating that it does not share a recent common ancestor with the L. fringillinarum group. Haemoproteus pulcher and Haemoproteus catharti form a monophyletic group with Haemocystidium parasites of Reptilia, supporting the polyphyly of the genus Haemoproteus. We also discussed the hypothesis that H. pulcher and H. catharti may be avian Haemocystidium, highlighting the need to study non-passerine parasites to untangle the systematics of Haemosporida.
Collapse
Affiliation(s)
- Lis Marques de C Vieira
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro Henrique O Pereira
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Daniel Ambrózio da Rocha Vilela
- Centro de Triagem de Animais Silvestres, Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais não Renováveis, Belo Horizonte, MG, Brazil
| | - Irène Landau
- Muséum Nation d'Histoire Naturelle, UMR7245, Molécules de Communication et Adaptation des Microorganismes, Paris, France
| | - M Andreína Pacheco
- Biology Department, Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA, USA
| | - Ananias A Escalante
- Biology Department, Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA, USA
| | - Francisco C Ferreira
- Department of Entomology, Texas A&M University, College Station, TX, USA
- Schubot Center for Avian Health, Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Érika Martins Braga
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
9
|
de Angeli Dutra D, Khan AU, Ferreira FC, Beirão MV, Pichorim M, Moreira PA, Braga ÉM. Host phylogeny and seasonality shapes avian haemosporidian prevalence in a Brazilian biodiverse and dry forest: the Caatinga. Parasitology 2023; 150:1277-1285. [PMID: 37246557 PMCID: PMC10941212 DOI: 10.1017/s0031182023000549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023]
Abstract
The relationships between host phylogenetics, functional traits and parasites in wildlife remain poorly understood in the Neotropics, especially in habitats with marked seasonal variation. Here, we examined the effect of seasonality and host functional traits on the prevalence of avian haemosporidians (Plasmodium and Haemoproteus) in the Brazilian Caatinga, a seasonally dry tropical forest. 933 birds were evaluated for haemosporidian infections. We found a high parasitism prevalence (51.2%), which was correlated with phylogenetic relatedness among avian species. Prevalence varied drastically among the 20 well-sampled species, ranging from 0 to 70%. Seasonality was the main factor associated with infections, but how this abiotic condition influenced parasite prevalence varied according to the host-parasite system. Plasmodium prevalence increased during the rainy season and, after excluding the large sample size of Columbiformes (n = 462/933), Plasmodium infection rate was maintained high in the wet season and showed a negative association with host body mass. No association was found between non-Columbiform bird prevalence and seasonality or body mass when evaluating both Plasmodium and Haemoproteus or only Haemoproteus infections. Parasite community was composed of 32 lineages including 7 new lineages. We evidenced that even dry domains can harbour a high prevalence and diversity of vector-borne parasites and pointed out seasonality as a ruling factor.
Collapse
Affiliation(s)
| | - Asmat U Khan
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Zoology, Shaheed Benazir Bhutto University, Sheringal Dir Upper Khyber Pakhtunkhwa, Pakistan
| | - Francisco C Ferreira
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Entomology, Texas A&M University, College Station, TX, USA
- Department of Veterinary Pathobiology, Schubot Centre for Avian Health, Texas A&M University, College Station, TX, USA
| | - Marina V Beirão
- Departamento de Biodiversidade, Evolução e Meio Ambiente, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Mauro Pichorim
- Departamento de Botânica e Zoologia, Ciências de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Patrícia A Moreira
- Departamento de Biodiversidade, Evolução e Meio Ambiente, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Érika M Braga
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
10
|
Fecchio A, Bell JA, Williams EJ, Dispoto JH, Weckstein JD, de Angeli Dutra D. Co-infection with Leucocytozoon and Other Haemosporidian Parasites Increases with Latitude and Altitude in New World Bird Communities. MICROBIAL ECOLOGY 2023; 86:2838-2846. [PMID: 37608162 DOI: 10.1007/s00248-023-02283-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023]
Abstract
Establishing how environmental gradients and host ecology drive spatial variation in infection rates and diversity of pathogenic organisms is one of the central goals in disease ecology. Here, we identified the predictors of concomitant infection and lineage richness of blood parasites in New Word bird communities. Our multi-level Bayesian models revealed that higher latitudes and elevations played a determinant role in increasing the probability of a bird being co-infected with Leucocytozoon and other haemosporidian parasites. The heterogeneity in both single and co-infection rates was similarly driven by host attributes and temperature, with higher probabilities of infection in heavier migratory host species and at cooler localities. Latitude, elevation, host body mass, migratory behavior, and climate were also predictors of Leucocytozoon lineage richness across the New World avian communities, with decreasing parasite richness at higher elevations, rainy and warmer localities, and in heavier and resident host species. Increased parasite richness was found farther from the equator, confirming a reverse Latitudinal Diversity Gradient pattern for this parasite group. The increased rates of Leucocytozoon co-infection and lineage richness with increased latitude are in opposition with the pervasive assumption that pathogen infection rates and diversity are higher in tropical host communities.
Collapse
Affiliation(s)
- Alan Fecchio
- Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP), CONICET - Universidad Nacional de la Patagonia San Juan Bosco, Esquel, Chubut, Argentina.
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, USA.
| | - Jeffrey A Bell
- Department of Biology, University of North Dakota, Grand Forks, ND, USA
| | - Emily J Williams
- Department of Biology, Georgetown University, Washington, DC, USA
- Denali National Park and Preserve, Denali Park, AK, USA
| | - Janice H Dispoto
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, USA
| | - Jason D Weckstein
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, USA
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, PA, USA
| | | |
Collapse
|
11
|
Jackson JA, Bajer A, Behnke-Borowczyk J, Gilbert FS, Grzybek M, Alsarraf M, Behnke JM. Remotely sensed localised primary production anomalies predict the burden and community structure of infection in long-term rodent datasets. GLOBAL CHANGE BIOLOGY 2023; 29:5568-5581. [PMID: 37548403 DOI: 10.1111/gcb.16898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023]
Abstract
The increasing frequency and cost of zoonotic disease emergence due to global change have led to calls for the primary surveillance of wildlife. This should be facilitated by the ready availability of remotely sensed environmental data, given the importance of the environment in determining infectious disease dynamics. However, there has been little evaluation of the temporal predictiveness of remotely sensed environmental data for infection reservoirs in vertebrate hosts due to a deficit of corresponding high-quality long-term infection datasets. Here we employ two unique decade-spanning datasets for assemblages of infectious agents, including zoonotic agents, in rodents in stable habitats. Such stable habitats are important, as they provide the baseline sets of pathogens for the interactions within degrading habitats that have been identified as hotspots for zoonotic emergence. We focus on the enhanced vegetation index (EVI), a measure of vegetation greening that equates to primary productivity, reasoning that this would modulate infectious agent populations via trophic cascades determining host population density or immunocompetence. We found that EVI, in analyses with data standardised by site, inversely predicted more than one-third of the variation in an index of infectious agent total abundance. Moreover, in bipartite host occupancy networks, weighted network statistics (connectance and modularity) were linked to total abundance and were also predicted by EVI. Infectious agent abundance and, perhaps, community structure are likely to influence infection risk and, in turn, the probability of transboundary emergence. Thus, the present results, which were consistent in disparate forest and desert systems, provide proof-of-principle that within-site fluctuations in satellite-derived greenness indices can furnish useful forecasting that could focus primary surveillance. In relation to the well-documented global greening trend of recent decades, the present results predict declining infection burden in wild vertebrates in stable habitats; but if greening trends were to be reversed, this might magnify the already upwards trend in zoonotic emergence.
Collapse
Affiliation(s)
- Joseph A Jackson
- School of Science, Engineering and Environment, University of Salford, Manchester, UK
| | - Anna Bajer
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jolanta Behnke-Borowczyk
- Department of Forest Pathology, Faculty of Forestry, Poznań University of Life Sciences, Poznań, Poland
| | - Francis S Gilbert
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK
| | - Maciej Grzybek
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdynia, Poland
| | - Mohammed Alsarraf
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jerzy M Behnke
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK
| |
Collapse
|
12
|
Anjos CC, Bicudo T, Fecchio A, Anciães M, Mathias BS, Chagas CRF, Bell JA, Guimarães LO, Monteiro EF, Kirchgatter K. Prevalence and genetic diversity of avian haemosporidian parasites in islands within a mega hydroelectric dam in the Brazilian Amazon. Parasitol Res 2023; 122:2065-2077. [PMID: 37391644 DOI: 10.1007/s00436-023-07906-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023]
Abstract
The Brazilian Amazon supports an extremely diverse avifauna and serves as the diversification center for avian malaria parasites in South America. Construction of hydroelectric dams can drive biodiversity loss by creating islands incapable of sustaining the bird communities found in intact forest sites. Besides anthropogenic actions, the presence of parasites can also influence the dynamics and structure of bird communities. Avian malaria (Plasmodium) and related haemosporidian parasites (Haemoproteus and Leucocytozoon) are a globally distributed group of protozoan parasites recovered from all major bird groups. However, no study to date has analyzed the presence of avian haemosporidian parasites in fragmented areas such as land bridge islands formed during artificial flooding following the construction of hydroelectric dams. The aim of this study is to assess the prevalence and molecular diversity of haemosporidians in bird communities inhabiting artificial islands in the area of the Balbina Hydroelectric Dam. The reservoir area covers 443,700 ha with 3546 islands on the left bank of the Uatumã River known to contain more than 400 bird species. We surveyed haemosporidian infections in blood samples collected from 445 understory birds, belonging to 53 species, 24 families, and 8 orders. Passeriformes represented 95.5% of all analyzed samples. We found a low overall Plasmodium prevalence (2.9%), with 13 positive samples (two Plasmodium elongatum and 11 Plasmodium sp.) belonging to eight lineages. Six of these lineages were previously recorded in the Amazon, whereas two of them are new. Hypocnemis cantator, the Guianan Warbling Antbird, represented 38.5% of all infected individuals, even though it represents only 5.6% of the sampled individuals. Since comparison with Plasmodium prevalence data prior to construction of Balbina is not possible, other studies in artificially flooded areas are imperative to test if anthropogenic flooding may disrupt vector-parasite relationships leading to low Plasmodium prevalence.
Collapse
Affiliation(s)
- Carolina C Anjos
- Programa de Pós-Graduação em Medicina Tropical, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, 05403-000, Brazil
| | - Thiago Bicudo
- Instituto de Desenvolvimento Sustentável Mamirauá, Tefé, AM, 69553-225, Brazil
| | - Alan Fecchio
- Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP), CONICET - Universidad Nacional de la Patagonia San Juan Bosco, Esquel, Chubut, Argentina
| | - Marina Anciães
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Manaus, AM, 69081-000, Brazil
| | - Bruno S Mathias
- Programa de Pós-Graduação em Medicina Tropical, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, 05403-000, Brazil
| | | | - Jeffrey A Bell
- Department of Biology, University of North Dakota, 10 Cornell Street, Grand Forks, ND, 58202, USA
| | - Lilian O Guimarães
- Laboratório de Bioquímica e Biologia Molecular, Instituto Pasteur, São Paulo, SP, 01027-000, Brazil
| | - Eliana F Monteiro
- Laboratório de Bioquímica e Biologia Molecular, Instituto Pasteur, São Paulo, SP, 01027-000, Brazil
| | - Karin Kirchgatter
- Programa de Pós-Graduação em Medicina Tropical, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, 05403-000, Brazil.
- Laboratório de Bioquímica e Biologia Molecular, Instituto Pasteur, São Paulo, SP, 01027-000, Brazil.
| |
Collapse
|
13
|
Starkloff NC, Galen SC. Coinfection rates of avian blood parasites increase with latitude in parapatric host species. Parasitology 2023; 150:329-336. [PMID: 36597832 PMCID: PMC10090641 DOI: 10.1017/s0031182022001792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023]
Abstract
Animals are frequently coinfected with multiple parasites concurrently, and advances in our sampling of these complex intra-host parasite communities have revealed important ecological impacts on their hosts. However, the spatial distributions and environmental determinants of parasite coinfection remain infrequently studied. Here, we investigated the drivers of haemosporidian blood parasite coinfection in the Bicknell's thrush (Catharus bicknelli) and grey-cheeked thrush (Catharus minimus), parapatric sister species that occur across a broad latitudinal range in northern North America. Using 298 samples from across the distributions of these species, we found high overall infection (86%) and coinfection (41%) rates within host populations. Coinfection rates within populations were highly variable across sampling sites, ranging from 7 to 75%. Latitude was a more important predictor of coinfection frequency than host species identity, with coinfections becoming more abundant at higher latitudes. The 2 host species exhibited similar parasite faunas, and an analysis of the co-occurrence patterns among haemosporidians showed that host species identity was largely not a factor in structuring which parasites were found within coinfections. To our knowledge, this is the first study to illustrate a reverse latitudinal gradient in coinfection frequency in a eukaryotic parasite system. Further work is necessary to determine whether vector ecology or some other factor is the primary proximate driver of this pattern.
Collapse
Affiliation(s)
- Naima C. Starkloff
- Department of Biology, Emory University, Atlanta, GA 30322, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- New York State Museum, Albany, NY 12230, USA
| | - Spencer C. Galen
- Biology Department, Loyola Science Center, University of Scranton, Scranton, PA 18510, USA
| |
Collapse
|
14
|
Rodríguez‐Hernández K, Álvarez‐Mendizábal P, Chapa‐Vargas L, Escobar F, Dáttilo W, Santiago‐Alarcon D. Infection intensity shapes specialization and beta diversity of haemosporidian–bird networks across elevations. Ecosphere 2023. [DOI: 10.1002/ecs2.4481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
15
|
Ortega-Guzmán L, Rojas-Soto O, Santiago-Alarcon D, Huber-Sannwald E, Chapa-Vargas L. Climate predictors and climate change projections for avian haemosporidian prevalence in Mexico. Parasitology 2022; 149:1129-1144. [PMID: 35535473 PMCID: PMC11010484 DOI: 10.1017/s0031182022000683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/19/2022] [Accepted: 04/30/2022] [Indexed: 11/07/2022]
Abstract
Long-term, inter-annual and seasonal variation in temperature and precipitation influence the distribution and prevalence of intraerythrocytic haemosporidian parasites. We characterized the climatic niche behind the prevalence of the three main haemosporidian genera (Haemoproteus, Plasmodium and Leucocytozoon) in central-eastern Mexico, to understand their main climate drivers. Then, we projected the influence of climate change over prevalence distribution in the region. Using the MaxEnt modelling algorithm, we assessed the relative contribution of bioclimatic predictor variables to identify those most influential to haemosporidian prevalence in different avian communities within the region. Two contrasting climate change scenarios for 2070 were used to create distribution models to explain spatial turnover in prevalence caused by climate change. We assigned our study sites into polygonal operational climatic units (OCUs) and used the general haemosporidian prevalence for each OCU to indirectly measure environmental suitability for these parasites. A high statistical association between global prevalence and the bioclimatic variables ‘mean diurnal temperature range’ and ‘annual temperature range’ was found. Climate change projections for 2070 showed a significant modification of the current distribution of suitable climate areas for haemosporidians in the study region.
Collapse
Affiliation(s)
- Larissa Ortega-Guzmán
- Instituto Potosino de Investigación Científica y Tecnológica A.C., División de Ciencias Ambientales, Camino a la Presa San José 2055, Lomas 4a Sección, C.P., 78216, San Luis Potosí, México
| | - Octavio Rojas-Soto
- Red de Biología Evolutiva, Instituto de Ecología A. C., Xalapa, Veracruz, México
| | | | - Elisabeth Huber-Sannwald
- Instituto Potosino de Investigación Científica y Tecnológica A.C., División de Ciencias Ambientales, Camino a la Presa San José 2055, Lomas 4a Sección, C.P., 78216, San Luis Potosí, México
| | - Leonardo Chapa-Vargas
- Instituto Potosino de Investigación Científica y Tecnológica A.C., División de Ciencias Ambientales, Camino a la Presa San José 2055, Lomas 4a Sección, C.P., 78216, San Luis Potosí, México
| |
Collapse
|
16
|
Carvalho AM, Ferreira FC, Araújo AC, Hirano LQL, Paludo GR, Braga ÉM. Molecular detection of Leucocytozoon in red-legged seriemas (Cariama cristata), a non-migratory bird species in the Brazilian Cerrado. Vet Parasitol Reg Stud Reports 2022; 31:100652. [PMID: 35569906 DOI: 10.1016/j.vprsr.2021.100652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/23/2021] [Accepted: 09/30/2021] [Indexed: 06/15/2023]
Abstract
Avian Haemosporidian parasites - Plasmodium, Haemoproteus, Leucocytozoon and Fallisia - have a wide distribution except for Antarctica. Leucocytozoon sp. has been poorly described in Brazil, and few studies have indicated infections in birds from the Atlantic Forest, Pantanal, Pampa and Amazon biomes. This study describes, for the first time, the occurrence of Leucocytozoon infection in red-legged seriemas (Cariama cristata) in the Brazilian savanna (Cerrado biome) using molecular diagnosis. Leucocytozoon spp. lineage CARCRI01 was detected in three C. cristata, a non-migratory bird, confirming transmission in mid-elevation areas in central Brazil. Further studies are needed to certify whether infections in red-legged seriemas were not abortive and to elucidate Leucocytozoon infection at low altitudes in the Brazilian lands.
Collapse
Affiliation(s)
- Andréa M Carvalho
- Laboratório de Patologia Clínica Veterinária e Diagnóstico Molecular, Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília, Brasília, DF, Brazil
| | - Francisco C Ferreira
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, NW, Washington, USA; Center for Vector Biology, Rutgers University, New Brunswick, NJ, USA
| | - Andreina C Araújo
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Líria Queiroz Luz Hirano
- Setor de Animais Silvestres, Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília, Brasília, DF, Brazil
| | - Giane Regina Paludo
- Laboratório de Patologia Clínica Veterinária e Diagnóstico Molecular, Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília, Brasília, DF, Brazil
| | - Érika Martins Braga
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
17
|
Vinagre‐Izquierdo C, Bodawatta KH, Chmel K, Renelies‐Hamilton J, Paul L, Munclinger P, Poulsen M, Jønsson KA. The drivers of avian-haemosporidian prevalence in tropical lowland forests of New Guinea in three dimensions. Ecol Evol 2022; 12:e8497. [PMID: 35222943 PMCID: PMC8844478 DOI: 10.1002/ece3.8497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/21/2021] [Accepted: 12/02/2021] [Indexed: 12/02/2022] Open
Abstract
Haemosporidians are among the most common parasites of birds and often negatively impact host fitness. A multitude of biotic and abiotic factors influence these associations, but the magnitude of these factors can differ by spatial scales (i.e., local, regional and global). Consequently, to better understand global and regional drivers of avian-haemosporidian associations, it is key to investigate these associations at smaller (local) spatial scales. Thus, here, we explore the effect of abiotic variables (e.g., temperature, forest structure, and anthropogenic disturbances) on haemosporidian prevalence and host-parasite networks on a horizontal spatial scale, comparing four fragmented forests and five localities within a continuous forest in Papua New Guinea. Additionally, we investigate if prevalence and host-parasite networks differ between the canopy and the understory (vertical stratification) in one forest patch. We found that the majority of Haemosporidian infections were caused by the genus Haemoproteus and that avian-haemosporidian networks were more specialized in continuous forests. At the community level, only forest greenness was negatively associated with Haemoproteus infections, while the effects of abiotic variables on parasite prevalence differed between bird species. Haemoproteus prevalence levels were significantly higher in the canopy, and an opposite trend was observed for Plasmodium. This implies that birds experience distinct parasite pressures depending on the stratum they inhabit, likely driven by vector community differences. These three-dimensional spatial analyses of avian-haemosporidians at horizontal and vertical scales suggest that the effect of abiotic variables on haemosporidian infections are species specific, so that factors influencing community-level infections are primarily driven by host community composition.
Collapse
Affiliation(s)
- Celia Vinagre‐Izquierdo
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
- Section for Ecology and EvolutionDepartment of BiologyUniversity of CopenhagenCopenhagenDenmark
- Conservation and Evolutionary Genetics GroupEstación Biológica de Doñana – CSICSevillaSpain
| | - Kasun H. Bodawatta
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
| | - Kryštof Chmel
- Department of ZoologyFaculty of SciencesUniversity of South BohemiaČeské BudějoviceCzech Republic
- Biology CentreCzech Academy of SciencesČeské BudějoviceCzech Republic
| | | | - Luda Paul
- New Guinea Binatang Research CentreMadangPapua New Guinea
| | - Pavel Munclinger
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Michael Poulsen
- Section for Ecology and EvolutionDepartment of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Knud A. Jønsson
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
18
|
Harl J, Himmel T, Valkiūnas G, Ilgūnas M, Nedorost N, Matt J, Kübber-Heiss A, Alic A, Konicek C, Weissenböck H. Avian haemosporidian parasites of accipitriform raptors. Malar J 2022; 21:14. [PMID: 34986864 PMCID: PMC8729155 DOI: 10.1186/s12936-021-04019-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022] Open
Abstract
Background The order Accipitriformes comprises the largest group of birds of prey with 260 species in four families. So far, 21 haemosporidian parasite species have been described from or reported to occur in accipitriform birds. Only five of these parasite species have been characterized molecular genetically. The first part of this study involved molecular genetic screening of accipitriform raptors from Austria and Bosnia-Herzegovina and the first chromogenic in situ hybridization approach targeting parasites in this host group. The aim of the second part of this study was to summarize the CytB sequence data of haemosporidian parasites from accipitriform raptors and to visualize the geographic and host distribution of the lineages. Methods Blood and tissue samples of 183 accipitriform raptors from Austria and Bosnia-Herzegovina were screened for Plasmodium, Haemoproteus and Leucocytozoon parasites by nested PCR, and tissue samples of 23 PCR-positive birds were subjected to chromogenic in situ hybridization using genus-specific probes targeting the parasites’ 18S rRNAs. All published CytB sequence data from accipitriform raptors were analysed, phylogenetic trees were calculated, and DNA haplotype network analyses were performed with sequences from clades featuring multiple lineages detected in this host group. Results Of the 183 raptors from Austria and Bosnia-Herzegovina screened by PCR and sequencing, 80 individuals (44%) were infected with haemosporidian parasites. Among the 39 CytB lineages detected, 18 were found for the first time in the present study. The chromogenic in situ hybridization revealed exo-erythrocytic tissue stages of Leucocytozoon parasites belonging to the Leucocytozoon toddi species group in the kidneys of 14 infected birds. The total number of CytB lineages recorded in accipitriform birds worldwide was 57 for Leucocytozoon, 25 for Plasmodium, and 21 for Haemoproteus. Conclusion The analysis of the DNA haplotype networks allowed identifying numerous distinct groups of lineages, which have not yet been linked to morphospecies, and many of them likely belong to yet undescribed parasite species. Tissue stages of Leucocytozoon parasites developing in accipitriform raptors were discovered and described. The majority of Leucocytozoon and Haemoproteus lineages are specific to this host group, but most Plasmodium lineages were found in birds of other orders. This might indicate local transmission from birds kept at the same facilities (raptor rescue centres and zoos), likely resulting in abortive infections. To clarify the taxonomic and systematic problems, combined morphological and molecular genetic analyses on a wider range of accipitriform host species are needed. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-04019-z.
Collapse
Affiliation(s)
- Josef Harl
- Institute of Pathology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria.
| | - Tanja Himmel
- Institute of Pathology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | | | - Mikas Ilgūnas
- Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania
| | - Nora Nedorost
- Institute of Pathology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Julia Matt
- Institute of Pathology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Anna Kübber-Heiss
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine Vienna, Savoyenstraße 1, 1160, Vienna, Austria
| | - Amer Alic
- Department of Pathology, Faculty of Veterinary Medicine, University of Sarajevo, Zmaja od Bosne 90, 71000, Sarajevo, Bosnia and Herzegovina
| | - Cornelia Konicek
- Service for Birds and Reptiles, Clinic for Small Animal Internal Medicine, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Herbert Weissenböck
- Institute of Pathology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| |
Collapse
|
19
|
ASSESSMENT OF VARIATION IN THE DETECTION AND PREVALENCE OF BLOOD PARASITES AMONG SYMPATRICALLY BREEDING GEESE IN WESTERN ALASKA, USA. J Wildl Dis 2021; 57:799-807. [PMID: 34516650 DOI: 10.7589/jwd-d-20-00159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/26/2021] [Indexed: 11/20/2022]
Abstract
Haemosporidian parasites may impact avian health and are subject to shifts in distribution and abundance with changing ecologic conditions. Therefore, understanding variation in parasite prevalence is important for evaluating biologically meaningful changes in infection patterns and associated population level impacts. Previous research in western Alaska, US, indicated a possible increase in Leucocytozoon spp. infection between Emperor Geese (Anser canagicus) sampled in 1996 (<1%, n=134) and during 2011-12 (19.9%, 95% confidence interval [CI]: 3.0-36.8%, n=77); however, different detection methods were used for these estimates. Prior research in this same region identified a lack of Leucocytozoon spp. parasites (0%, n=117) in sympatrically breeding Cackling Geese (Branta hutchinsii minima) in 2011. We molecularly screened blood samples collected from sympatrically breeding Emperor and Cackling Geese in western Alaska during additional breeding seasons to better assess temporal and species-specific variation in the prevalence of blood parasites. We found similar prevalence estimates for Leucocytozoon spp. parasites in Emperor Goose blood samples collected in 1998 and 2014, suggesting consistent infection of Emperor Geese with blood parasites at these time points. Using samples from sympatric geese sampled during 2014, we found evidence for a higher incidence of parasites among Emperor Geese (20.3%, 95% CI: 11.8-32.7%) compared to Cackling Geese (3.6%, 95% CI: 1.1-11.0%), reinforcing the previous finding of species-specific differences in infection. Furthermore, we detected Leucocytozoon, Haemoproteus, and Plasmodium spp. blood parasites in unflighted goslings of both species, supporting the possible transmission of these parasites at western Alaska breeding grounds. Our results help to clarify that prevalence of Leucocytozoon spp. parasites have probably remained consistent among Emperor Geese breeding in western Alaska since the late 1990s and that this species may disproportionally harbor Leucocytozoon spp. compared to sympatrically breeding Cackling Geese.
Collapse
|
20
|
de Angeli Dutra D, Fecchio A, Braga ÉM, Poulin R. Haemosporidian taxonomic composition, network centrality and partner fidelity between resident and migratory avian hosts. Oecologia 2021; 197:501-509. [PMID: 34482439 DOI: 10.1007/s00442-021-05031-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/29/2021] [Indexed: 10/20/2022]
Abstract
Migration can modify interaction dynamics between parasites and their hosts with migrant hosts able to disperse parasites and impact local community transmission. Thus, studying the relationships among migratory hosts and their parasites is fundamental to elucidate how migration shapes host-parasite interactions. Avian haemosporidians are some of the most prevalent and diverse group of wildlife parasites and are also widely studied as models in ecological and evolutionary research. Here, we contrast partner fidelity, network centrality and parasite taxonomic composition among resident and non-resident avian hosts using presence/absence data on haemosporidians parasitic in South American birds as study model. We ran multilevel Bayesian models to assess the role of migration in determining partner fidelity (i.e., normalized degree) and centrality (i.e., weighted closeness) in host-parasite networks of avian hosts and their respective haemosporidian parasites. In addition, to evaluate parasite taxonomic composition, we performed permutational multivariate analyses of variance to quantify dissimilarity in haemosporidian lineages infecting different host migratory categories. We observed similar partner fidelity and parasite taxonomic composition among resident and migratory hosts. Conversely, we demonstrate that migratory hosts play a more central role in host-parasite networks than residents. However, when evaluating partially and fully migratory hosts separately, we observed that only partially migratory species presented higher network centrality when compared to resident birds. Therefore, migration does not lead to differences in both partner fidelity and parasite taxonomic composition. However, migratory behavior is positively associated with network centrality, indicating migratory hosts play more important roles in shaping host-parasite interactions and influence local transmission.
Collapse
Affiliation(s)
| | - Alan Fecchio
- Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, MT, 78060-900, Brazil
| | - Érika Martins Braga
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
21
|
Abstract
Abstract
The causes and consequences of interspecific variation in sex-specific contributions to animal parental care are relatively well understood during pregnancy or incubation and during offspring provisioning, but comparative patterns of sex-biased investment during nest-, den-, or other shelter-building have been almost completely overlooked. This is surprising because birthing shelters’ protective properties have important fitness consequences for both parents and offspring. Here, we address this gap in our knowledge by testing predictions concerning sex-specific contributions to avian nest building in more than 500 species of Western Palearctic birds in relation to the time available to breed and sex-specific reproductive effort, while also examining correlates with nesting site and nest structure. Using multivariate phylogenetic comparative and path analysis approaches, we found that, opposite to what had been predicted, species in which females build nests alone have shorter breeding seasons and breed at higher latitudes. In addition, species in which females lay larger clutch sizes and incubate eggs alone are more likely to have nests built by females alone, again countering predictions that reproductive contributions are not traded-off between the sexes. Finally, however, sex-specific nest building contributions were predictably related to nest site and structure, as species in which females built nests alone were more likely to have open cup nests relative to enclosed, domed nests of species in which both parents build. Our study provides important new insights, and generates several new questions for experimental research into the adaptive dynamics of sex-specific contributions prior or at the onset of parental care.
Collapse
Affiliation(s)
- Mark C Mainwaring
- Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, Missoula, MTUSA
| | - Jenő Nagy
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
| | - Mark E Hauber
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
22
|
Ishtiaq F. Ecology and Evolution of Avian Malaria: Implications of Land Use Changes and Climate Change on Disease Dynamics. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-021-00235-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Starkloff NC, Turner WC, FitzGerald AM, Oftedal MC, Martinsen ES, Kirchman JJ. Disentangling the effects of host relatedness and elevation on haemosporidian parasite turnover in a clade of songbirds. Ecosphere 2021. [DOI: 10.1002/ecs2.3497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Naima C. Starkloff
- Department of Biological Sciences University at Albany, State University of New York Albany New York12222USA
- New York State Museum Albany New York12230USA
| | - Wendy C. Turner
- Department of Biological Sciences University at Albany, State University of New York Albany New York12222USA
| | - Alyssa M. FitzGerald
- Department of Biological Sciences University at Albany, State University of New York Albany New York12222USA
- New York State Museum Albany New York12230USA
- Institute of Marine Sciences University of California Santa Cruz Santa Cruz California95064USA
| | - Michelle C. Oftedal
- Department of Biological Sciences University at Albany, State University of New York Albany New York12222USA
- New York State Museum Albany New York12230USA
| | | | | |
Collapse
|
24
|
de Angeli Dutra D, Filion A, Fecchio A, Braga ÉM, Poulin R. Migrant birds disperse haemosporidian parasites and affect their transmission in avian communities. OIKOS 2021. [DOI: 10.1111/oik.08199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | | | - Alan Fecchio
- Programa de Pós‐graduação em Ecologia e Conservação da Biodiversidade, Univ. Federal de Mato Grosso Cuiabá Brazil
| | - Érika Martins Braga
- Depto de Parasitologia, Inst. de Ciências Biológicas, Univ. Federal de Minas Gerais Brazil
| | | |
Collapse
|
25
|
Do latitudinal and bioclimatic gradients drive parasitism in Odonata? Int J Parasitol 2021; 51:463-470. [PMID: 33610523 DOI: 10.1016/j.ijpara.2020.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 11/24/2022]
Abstract
Prevalence of parasites in wild animals may follow ecogeographic patterns, under the influence of climatic factors and macroecological features. One of the largest scale biological patterns on Earth is the latitudinal diversity gradient; however, latitudinal gradients may also exist regarding the frequency of interspecific interactions such as the prevalence of parasitism in host populations. Dragonflies and damselflies (order Odonata) are hosts of a wide range of ecto- and endoparasites, interactions that can be affected by environmental factors that shape their occurrence and distribution, such as climatic variation, ultraviolet radiation and vegetation structure. Here, we retrieved data from the literature on parasites of Odonata, represented by 90 populations infected by ectoparasites (water mites) and 117 populations infected by endoparasites (intestinal gregarines). To test whether there is a latitudinal and bioclimatic gradient in the prevalence of water mites and gregarines parasitizing Odonata, we applied Bayesian phylogenetic comparative models. We found that prevalence of ectoparasites was partially associated with latitude, showing the opposite pattern from our expectations - prevalence was reduced at lower latitudes. Prevalence of endoparasites was not affected by latitude. While prevalence of water mites was also positively associated with vegetation biomass and climatic stability, we found no evidence of the effect of bioclimatic variables on the prevalence of gregarines. Our study suggests that infection by ectoparasites of dragonflies and damselflies is driven by latitudinal and bioclimatic variables. We add evidence of the role of global-scale biological patterns in shaping biodiversity, suggesting that parasitic organisms may prove reliable sources of information about climate change and its impact on ecological interactions.
Collapse
|
26
|
Barrow LN, Bauernfeind SM, Cruz PA, Williamson JL, Wiley DL, Ford JE, Baumann MJ, Brady SS, Chavez AN, Gadek CR, Galen SC, Johnson AB, Mapel XM, Marroquin-Flores RA, Martinez TE, McCullough JM, McLaughlin JE, Witt CC. Detecting turnover among complex communities using null models: a case study with sky-island haemosporidian parasites. Oecologia 2021; 195:435-451. [PMID: 33484348 DOI: 10.1007/s00442-021-04854-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 01/08/2021] [Indexed: 11/26/2022]
Abstract
Turnover in species composition between sites, or beta diversity, is a critical component of species diversity that is typically influenced by geography, environment, and biotic interactions. Quantifying turnover is particularly challenging, however, in multi-host, multi-parasite assemblages where undersampling is unavoidable, resulting in inflated estimates of turnover and uncertainty about its spatial scale. We developed and implemented a framework using null models to test for community turnover in avian haemosporidian communities of three sky islands in the southwestern United States. We screened 776 birds for haemosporidian parasites from three genera (Parahaemoproteus, Plasmodium, and Leucocytozoon) by amplifying and sequencing a mitochondrial DNA barcode. We detected infections in 280 birds (36.1%), sequenced 357 infections, and found a total of 99 parasite haplotypes. When compared to communities simulated from a regional pool, we observed more unique, single-mountain haplotypes and fewer haplotypes shared among three mountain ranges than expected, indicating that haemosporidian communities differ to some degree among adjacent mountain ranges. These results were robust even after pruning datasets to include only identical sets of host species, and they were consistent for two of the three haemosporidian genera. The two more distant mountain ranges were more similar to each other than the one located centrally, suggesting that the differences we detected were due to stochastic colonization-extirpation dynamics. These results demonstrate that avian haemosporidian communities of temperate-zone forests differ on relatively fine spatial scales between adjacent sky islands. Null models are essential tools for testing the spatial scale of turnover in complex, undersampled, and poorly known systems.
Collapse
Affiliation(s)
- Lisa N Barrow
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Selina M Bauernfeind
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Paxton A Cruz
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Jessie L Williamson
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Daniele L Wiley
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - John E Ford
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Matthew J Baumann
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Serina S Brady
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Andrea N Chavez
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
- Bureau of Land Management, Rio Puerco District Office, Albuquerque, NM, USA
- Cibola National Forest and National Grasslands, Albuquerque, NM, USA
| | - Chauncey R Gadek
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Spencer C Galen
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, USA
- Biology Department, University of Scranton, Scranton, PA, USA
| | - Andrew B Johnson
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Xena M Mapel
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Rosario A Marroquin-Flores
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Taylor E Martinez
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
- Department of Molecular Medicine and Pharmacology, University of South Florida, Tampa, FL, USA
| | - Jenna M McCullough
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Jade E McLaughlin
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Christopher C Witt
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
27
|
DE LA Torre GM, Campião KM. Bird habitat preferences drive hemoparasite infection in the Neotropical region. Integr Zool 2021; 16:755-768. [PMID: 33452842 DOI: 10.1111/1749-4877.12515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role that the environment plays in vector-borne parasite infection is one of the central factors for understanding disease dynamics. We assessed how Neotropical bird foraging strata and habitat preferences determine infection by parasites of the genera Haemoproteus, Plasmodium, Leucocytozoon, and Trypanosoma and filarioids, and tested for phylogenetic signal in these host-parasite associations. We performed extensive searches of the scientific literature and created a database of hemoparasite surveys. We collected data on host body mass, foraging strata, habitat preference, and migratory status, and tested if host ecological traits predict each hemoparasite occurrence and prevalence using a phylogenetic Bayesian framework. Species of Plasmodium tend to infect birds from tropical forests while birds from altitudinal environments are likely to be infected by species of Leucocytozoon. The probability of a bird being infected by filarioid or Trypanosoma is higher in lowland forests. Bird species that occur in anthropic environments and dry habitats of tropical latitudes are more susceptible to infection by species of Haemoproteus. Host foraging strata is also influential and bird species that forage in the mid-high and canopy strata are more prone to infection by species of Haemoproteus and filarioids. We also identified phylogenetic signal for host-parasite associations with the probability of infection of Neotropical birds by any hemoparasite being more similar among more closely related species. We provided a useful framework to identify environments that correlate with hemoparasite infection, which is also helpful for detecting areas with potential suitability for hemoparasite infection due to land conversion and climate change.
Collapse
Affiliation(s)
- Gabriel Massaccesi DE LA Torre
- Biological Interactions, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Brazil.,Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, Brazil
| | - Karla Magalhães Campião
- Biological Interactions, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
28
|
Anjos CC, Chagas CRF, Fecchio A, Schunck F, Costa-Nascimento MJ, Monteiro EF, Mathias BS, Bell JA, Guimarães LO, Comiche KJM, Valkiūnas G, Kirchgatter K. Avian Malaria and Related Parasites from Resident and Migratory Birds in the Brazilian Atlantic Forest, with Description of a New Haemoproteus Species. Pathogens 2021; 10:103. [PMID: 33494428 PMCID: PMC7912314 DOI: 10.3390/pathogens10020103] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/16/2022] Open
Abstract
Determining the prevalence and local transmission dynamics of parasitic organisms are necessary to understand the ability of parasites to persist in host populations and disperse across regions, yet local transmission dynamics, diversity, and distribution of haemosporidian parasites remain poorly understood. We studied the prevalence, diversity, and distributions of avian haemosporidian parasites of the genera Plasmodium, Haemoproteus, and Leucocytozoon among resident and migratory birds in Serra do Mar, Brazil. Using 399 blood samples from 66 Atlantic Forest bird species, we determined the prevalence and molecular diversity of these pathogens across avian host species and described a new species of Haemoproteus. Our molecular and morphological study also revealed that migratory species were infected more than residents. However, vector infective stages (gametocytes) of Leucocytozoon spp., the most prevalent parasites found in the most abundant migrating host species in Serra do Mar (Elaenia albiceps), were not seen in blood films of local birds suggesting that this long-distance Austral migrant can disperse Leucocytozoon parasite lineages from Patagonia to the Atlantic Forest, but lineage sharing among resident species and local transmission cannot occur in this part of Brazil. Our study demonstrates that migratory species may harbor a higher diversity and prevalence of parasites than resident species, but transportation of some parasites by migratory hosts may not always affect local transmission.
Collapse
Affiliation(s)
- Carolina C. Anjos
- Programa de Pós-Graduação em Medicina Tropical, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, SP, Brazil; (C.C.A.); (E.F.M.); (B.S.M.); (K.J.M.C.)
| | | | - Alan Fecchio
- Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá 78060-900, Brazil;
| | - Fabio Schunck
- Comitê Brasileiro de Registros Ornitológicos—CBRO, São Paulo 04785-040, SP, Brazil;
| | - Maria J. Costa-Nascimento
- Núcleo de Estudos em Malária, Superintendência de Controle de Endemias, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, SP, Brazil;
| | - Eliana F. Monteiro
- Programa de Pós-Graduação em Medicina Tropical, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, SP, Brazil; (C.C.A.); (E.F.M.); (B.S.M.); (K.J.M.C.)
| | - Bruno S. Mathias
- Programa de Pós-Graduação em Medicina Tropical, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, SP, Brazil; (C.C.A.); (E.F.M.); (B.S.M.); (K.J.M.C.)
| | - Jeffrey A. Bell
- Department of Biology, University of North Dakota, 10 Cornell Street, Grand Forks, ND 58202, USA;
| | - Lilian O. Guimarães
- Laboratório de Bioquímica e Biologia Molecular, Superintendência de Controle de Endemias, São Paulo 01027-000, SP, Brazil;
| | - Kiba J. M. Comiche
- Programa de Pós-Graduação em Medicina Tropical, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, SP, Brazil; (C.C.A.); (E.F.M.); (B.S.M.); (K.J.M.C.)
| | | | - Karin Kirchgatter
- Programa de Pós-Graduação em Medicina Tropical, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, SP, Brazil; (C.C.A.); (E.F.M.); (B.S.M.); (K.J.M.C.)
- Laboratório de Bioquímica e Biologia Molecular, Superintendência de Controle de Endemias, São Paulo 01027-000, SP, Brazil;
| |
Collapse
|
29
|
Mahmoud NM, Mahmoud MH, Alamery S, Fouad H. Structural modeling and phylogenetic analysis for infectious disease transmission pattern based on maximum likelihood tree approach. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING 2021; 12:3479-3492. [PMID: 33425052 PMCID: PMC7778505 DOI: 10.1007/s12652-020-02702-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
The contagious disease transmission pattern outbreak caused a massive human casualty and became a pandemic, as confirmed by the World Health Organization (WHO). The present research aims to understand the infectious disease transmission pattern outbreak due to molecular epidemiology. Hence, infected patients over time can spread infectious disease. The virus may develop further mutations, and that there might be a more toxic virulent strain, which leads to several environmental risk factors. Therefore, it is essential to monitor and characterize patient profiles, variants, symptoms, geographic locations, and treatment responses to analyze and evaluate infectious disease patterns among humans. This research proposes the Evolutionary tree analysis (ETA) for the molecular evolutionary genetic analysis to reduce medical risk factors. Furthermore, The Maximum likelihood tree method (MLTM) has been used to analyze the selective pressure, which is examined to identify a mutation that may influence the infectious disease transmission pattern's clinical progress. This study also utilizes ETA with Markov Chain Bayesian Statistics (MCBS) approach to reconstruct transmission trees with sequence information. The experimental shows that the proposed ETA-MCBS method achieves a 97.55% accuracy, prediction of 99.56%, and 98.55% performance compared to other existing methods.
Collapse
Affiliation(s)
- Nourelhoda M. Mahmoud
- Biomedical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt
| | - Mohamed H. Mahmoud
- Department of Biochemistry, College of Science, King Saud University, PO Box 22452, Riyadh, 11451 Saudi Arabia
| | - Salman Alamery
- Department of Biochemistry, College of Science, King Saud University, PO Box 22452, Riyadh, 11451 Saudi Arabia
| | - Hassan Fouad
- Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt
| |
Collapse
|
30
|
Villalobos-Segura MDC, García-Prieto L, Rico-Chávez O. Effects of latitude, host body size, and host trophic guild on patterns of diversity of helminths associated with humans, wild and domestic mammals of Mexico. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2020; 13:221-230. [PMID: 33224727 PMCID: PMC7666364 DOI: 10.1016/j.ijppaw.2020.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 11/29/2022]
Abstract
Parasites are strictly associated with their hosts and present a great diversity of life histories, often resulting in different diversity patterns than those observed in free-living species. However, ecological approaches have detected that, in some cases, mammal-associated helminths respond similarly to non-parasitic species in terms of diversity patterns. Using 2200 recorded interactions, we analysed the diversity patterns of helminths (Acanthocephala, Nematoda and Platyhelminthes) harbored by humans, wild and domestic mammals of Mexico, depending on latitude, host body mass and trophic guild (carnivore, herbivore, insectivore, omnivore), considering helminth richness and average taxonomic distinctness, and host phylogenetic diversity and phylogenetic clustering. Latitude was positively correlated with the average taxonomic distinctness encompassing the three parasite phyla and nematodes. Northern latitudes had less taxonomically related parasite assemblages. Host body mass had a significant negative relationship with the average taxonomic distinctness of acanthocephalans and the richness of helminths associated to wild hosts. The omnivore hosts had greater parasite richness, while insectivores had a less taxonomically related parasite assemblage and herbivores had a more heterogeneous parasite assemblage. Our results highlight the importance of incorporating different dimensions of diversity, such as average taxonomic distinctness and to consider the composition of parasite assemblages to better understand their diversity patterns. Four diversity measures were used to describe diversity patterns of helminths. Latitude was positively correlated with helminth average taxonomic distinctness. Host body mass was negatively related with the helminth richness of wildlife hosts. Helminth sets of omnivore hosts were richer in parasite species. Helminth sets of insectivore hosts had a wider taxonomic breadth.
Collapse
Affiliation(s)
- María Del Carmen Villalobos-Segura
- Laboratorio de Ecología de Enfermedades y Una Salud, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, 04510, México City, Mexico
| | - Luis García-Prieto
- Laboratorio de Helmintología, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-153, 04510, México City, Mexico
| | - Oscar Rico-Chávez
- Laboratorio de Ecología de Enfermedades y Una Salud, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, 04510, México City, Mexico
| |
Collapse
|
31
|
Large-scale disease patterns explained by climatic seasonality and host traits. Oecologia 2020; 194:723-733. [DOI: 10.1007/s00442-020-04782-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022]
|
32
|
Reis S, Melo M, Covas R, Doutrelant C, Pereira H, Lima RD, Loiseau C. Influence of land use and host species on parasite richness, prevalence and co-infection patterns. Int J Parasitol 2020; 51:83-94. [PMID: 33045239 DOI: 10.1016/j.ijpara.2020.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/21/2020] [Accepted: 08/04/2020] [Indexed: 01/23/2023]
Abstract
Tropical forests are experiencing increasing impacts from a multitude of anthropogenic activities such as logging and conversion to agricultural use. These perturbations are expected to have strong impacts on ecological interactions and on the transmission dynamics of infectious diseases. To date, no clear picture of the effects of deforestation on vector-borne disease transmission has emerged. This is associated with the challenge of studying complex systems where many vertebrate hosts and vectors co-exist. To overcome this problem, we focused on an innately simplified system - a small oceanic island (São Tomé, Gulf of Guinea). We analyzed the impacts of human land-use on host-parasite interactions by sampling the bird community (1735 samples from 30 species) in natural and anthropogenic land use at different elevations, and screened individuals for haemosporidian parasites from three genera (Plasmodium, Haemoproteus, Leucocytozoon). Overall, Plasmodium had the highest richness but the lowest prevalence, while Leucocytozoon diversity was the lowest despite having the highest prevalence. Interestingly, co-infections (i.e. intra-host diversity) involved primarily Leucocytozoon lineages (95%). We also found marked differences between bird species and habitats. Some bird species showed low prevalence but harbored high diversity of parasites, while others showed high prevalence but were infected with fewer lineages. These infection dynamics are most likely driven by host specificity of parasites and intrinsic characteristics of hosts. In addition, Plasmodium was more abundant in disturbed habitats and at lower elevations, while Leucocytozoon was more prevalent in forest areas and at higher elevations. These results likely reflect the ecological requirements of their vectors: mosquitoes and black flies, respectively.
Collapse
Affiliation(s)
- S Reis
- CIBIO, Research Center in Biodiversity and Genetic Resources, InBIO Associate Laboratory, Vairão, Portugal
| | - M Melo
- CIBIO, Research Center in Biodiversity and Genetic Resources, InBIO Associate Laboratory, Vairão, Portugal; Natural History and Science Museum, University of Porto, Portugal; Fitzpatrick Institute, DST/NRF Centre of Excellence, University of Cape Town, South Africa
| | - R Covas
- CIBIO, Research Center in Biodiversity and Genetic Resources, InBIO Associate Laboratory, Vairão, Portugal; Fitzpatrick Institute, DST/NRF Centre of Excellence, University of Cape Town, South Africa
| | - C Doutrelant
- CEFE, Université de Montpellier, CNRS, Montpellier, France
| | - H Pereira
- CIBIO, Research Center in Biodiversity and Genetic Resources, InBIO Associate Laboratory, Vairão, Portugal
| | - R de Lima
- Centre for Ecology, Evolution and Environmental Changes, University of Lisbon, Portugal; Department of Animal Biology, Faculty of Sciences, University of Lisbon, Portugal
| | - C Loiseau
- CIBIO, Research Center in Biodiversity and Genetic Resources, InBIO Associate Laboratory, Vairão, Portugal; CEFE, Université de Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
33
|
Oliveira L, Dias RJP, Rossi MF, D'Agosto M, Santos HA. Molecular diversity and coalescent species delimitation of avian haemosporidian parasites in an endemic bird species of South America. Parasitol Res 2020; 119:4033-4047. [PMID: 33030600 DOI: 10.1007/s00436-020-06908-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 09/27/2020] [Indexed: 12/18/2022]
Abstract
Haemoproteus spp. and Plasmodium spp. are blood parasites that occur in birds worldwide. Identifying the species within this group is complex, especially in wild birds that present low parasitemia when captured, making morphological identification very difficult. Thus, the use of alternative tools to identify species may be useful in the elucidation of the distribution of parasites that circulate in bird populations. The objectives of this study were to determine the prevalence and parasitemia of the genera Plasmodium and Haemoproteus in Tachyphonus coronatus in the Atlantic Forest, Brazil, and to evaluate the molecular diversity, geographic distribution, and specificity of these parasites based on coalescent species delimitation methods. Microscopic analysis, PCR, cyt b gene sequencing, phylogenetic analysis and coalescent species delimitation using single-locus algorithms were performed (Poisson tree process (PTP) and multi-rate Poisson tree process (MPTP) methods). The analyses were performed in 117 avian host individuals. The prevalence was 55.5% for Plasmodium and 1.7% for Haemoproteus, with a mean parasitemia of 0.06%. Twenty-five Plasmodium and two Haemoproteus lineages were recovered. The MPTP method recovered seven different evolutionarily significant units (ESUs) of Plasmodium and one of Haemoproteus, whereas PTP presented fourteen ESUs of Plasmodium and one of Haemoproteus. The MPTP was more consistent with current taxonomy, while PTP overestimated the number of lineages. These ESUs are widely distributed and have already been found in 22 orders of birds that, all together, inhabit every continent, except Antarctica. The computational methods of species delimitation proved to be effective in cases where the classification of Haemosporida based just on morphology is insufficient.
Collapse
Affiliation(s)
- Luísa Oliveira
- Department of Animal Parasitology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Roberto Júnio Pedroso Dias
- Department of Zoology (LabProto), Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil.,Laboratory of Protozoology (LabProto), Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Mariana F Rossi
- Department of Zoology (LabProto), Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil. .,Laboratory of Protozoology (LabProto), Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil.
| | - Marta D'Agosto
- Department of Zoology (LabProto), Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Huarrisson A Santos
- Department of Epidemiology and Public Health, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| |
Collapse
|
34
|
Harl J, Himmel T, Valkiūnas G, Ilgūnas M, Bakonyi T, Weissenböck H. Geographic and host distribution of haemosporidian parasite lineages from birds of the family Turdidae. Malar J 2020; 19:335. [PMID: 32933526 PMCID: PMC7491118 DOI: 10.1186/s12936-020-03408-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
Background Haemosporidians (Apicomplexa, Protista) are obligate heteroxenous parasites of vertebrates and blood-sucking dipteran insects. Avian haemosporidians comprise more than 250 species traditionally classified into four genera, Plasmodium, Haemoproteus, Leucocytozoon, and Fallisia. However, analyses of the mitochondrial CytB gene revealed a vast variety of lineages not yet linked to morphospecies. This study aimed to analyse and discuss the data of haemosporidian lineages isolated from birds of the family Turdidae, to visualise host and geographic distribution using DNA haplotype networks and to suggest directions for taxonomy research on parasite species. Methods Haemosporidian CytB sequence data from 350 thrushes were analysed for the present study and complemented with CytB data of avian haemosporidians gathered from Genbank and MalAvi database. Maximum Likelihood trees were calculated to identify clades featuring lineages isolated from Turdidae species. For each clade, DNA haplotype networks were calculated and provided with information on host and geographic distribution. Results In species of the Turdidae, this study identified 82 Plasmodium, 37 Haemoproteus, and 119 Leucocytozoon lineages, 68, 28, and 112 of which are mainly found in this host group. Most of these lineages cluster in the clades, which are shown as DNA haplotype networks. The lineages of the Leucocytozoon clades were almost exclusively isolated from thrushes and usually were restricted to one host genus, whereas the Plasmodium and Haemoproteus networks featured multiple lineages also recovered from other passeriform and non-passeriform birds. Conclusion This study represents the first attempt to summarise information on the haemosporidian parasite lineages of a whole bird family. The analyses allowed the identification of numerous groups of related lineages, which have not been linked to morphologically defined species yet, and they revealed several cases in which CytB lineages were probably assigned to the wrong morphospecies. These taxonomic issues are addressed by comparing distributional patterns of the CytB lineages with data from the original species descriptions and further literature. The authors also discuss the availability of sequence data and emphasise that MalAvi database should be considered an extremely valuable addition to GenBank, but not a replacement.
Collapse
Affiliation(s)
- Josef Harl
- Institute of Pathology, Department for Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria.
| | - Tanja Himmel
- Institute of Pathology, Department for Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | | | - Mikas Ilgūnas
- Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania
| | - Támas Bakonyi
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Herbert Weissenböck
- Institute of Pathology, Department for Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| |
Collapse
|
35
|
Clark NJ, Drovetski SV, Voelker G. Robust geographical determinants of infection prevalence and a contrasting latitudinal diversity gradient for haemosporidian parasites in Western Palearctic birds. Mol Ecol 2020; 29:3131-3143. [PMID: 32652721 DOI: 10.1111/mec.15545] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/01/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
Abstract
Identifying robust environmental predictors of infection probability is central to forecasting and mitigating the ongoing impacts of climate change on vector-borne disease threats. We applied phylogenetic hierarchical models to a data set of 2,171 Western Palearctic individual birds from 47 species to determine how climate and landscape variation influence infection probability for three genera of haemosporidian blood parasites (Haemoproteus, Leucocytozoon, and Plasmodium). Our comparative models found compelling evidence that birds in areas with higher vegetation density (captured by the normalized difference vegetation index [NDVI]) had higher likelihoods of carrying parasite infection. Magnitudes of this relationship were remarkably similar across parasite genera considering that these parasites use different arthropod vectors and are widely presumed to be epidemiologically distinct. However, we also uncovered key differences among genera that highlighted complexities in their climate responses. In particular, prevalences of Haemoproteus and Plasmodium showed strong but contrasting relationships with winter temperatures, supporting mounting evidence that winter warming is a key environmental filter impacting the dynamics of host-parasite interactions. Parasite phylogenetic community diversities demonstrated a clear but contrasting latitudinal gradient, with Haemoproteus diversity increasing towards the equator and Leucocytozoon diversity increasing towards the poles. Haemoproteus diversity also increased in regions with higher vegetation density, supporting our evidence that summer vegetation density is important for structuring the distributions of these parasites. Ongoing variation in winter temperatures and vegetation characteristics will probably have far-reaching consequences for the transmission and spread of vector-borne diseases.
Collapse
Affiliation(s)
- Nicholas J Clark
- UQ Spatial Epidemiology Laboratory, School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Sergei V Drovetski
- US Geological Survey, Patuxent Wildlife Research Center, Beltsville, MD, USA
| | - Gary Voelker
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
36
|
Magallanes S, Møller AP, Luján-Vega C, Fong E, Vecco D, Flores-Saavedra W, García-Longoriaa L, de Lope F, Iannacone JA, Marzal A. Exploring the adjustment to parasite pressure hypothesis: differences in uropygial gland volume and haemosporidian infection in palearctic and neotropical birds. Curr Zool 2020; 67:147-156. [PMID: 33854532 PMCID: PMC8026150 DOI: 10.1093/cz/zoaa037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/02/2020] [Indexed: 11/29/2022] Open
Abstract
Parasites are globally widespread pathogenic organisms, which impose important selective forces upon their hosts. Thus, in accordance with the Adjustment to parasite pressure hypothesis, it is expected that defenses among hosts vary relative to the selective pressure imposed by parasites. According to the latitudinal gradient in diversity, species richness and abundance of parasites peak near the equator. The uropygial gland is an important defensive exocrine gland against pathogens in birds. Size of the uropygial gland has been proposed to vary among species of birds because of divergent selection by pathogens on their hosts. Therefore, we should expect that bird species from the tropics should have relatively larger uropygial glands for their body size than species from higher latitudes. However, this hypothesis has not yet been explored. Here, we analyze the size of the uropygial gland of 1719 individual birds belonging to 36 bird species from 3 Neotropical (Peru) and 3 temperate areas (Spain). Relative uropygial gland volume was 12.52% larger in bird species from the tropics than from temperate areas. This finding is consistent with the relative size of this defensive organ being driven by selective pressures imposed by parasites. We also explored the potential role of this gland as a means of avoiding haemosporidian infection, showing that species with large uropygial glands for their body size tend to have lower mean prevalence of haemosporidian infection, regardless of their geographical origin. This result provides additional support for the assumption that secretions from the uropygial gland reduce the likelihood of becoming infected with haemosporidians.
Collapse
Affiliation(s)
- Sergio Magallanes
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, Avda. de Elvas S/N, Badajoz ES-06006, Spain
| | - Anders Pape Møller
- Ecologie Systématique Evolution, Université Paris-Sud, Orsay 91400, France.,Key Laboratory for Biodiversity Science and Ecological Engineering of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Charlene Luján-Vega
- Pharmacology and Toxicology Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - Esteban Fong
- EverGreen Institute-San Rafael, Distrito de Indiana, Loreto 16200, Perú
| | - Daniel Vecco
- Centro Urku de Estudios Amazónicos, Tarapoto 22202, Perú
| | | | - Luz García-Longoriaa
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund 221 00, Sweden.,Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, Avda. de Elvas S/N, Badajoz ES-06006, Spain
| | - Florentino de Lope
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, Avda. de Elvas S/N, Badajoz ES-06006, Spain
| | - José A Iannacone
- Laboratorio de Ingeniería Ambiental, Universidad Científica del Sur-Villa el Salvador, Lima 15067, Perú.,Laboratorio de Invertebrados, Universidad Ricardo Palma, Santiago de Surco 15039, Perú
| | - Alfonso Marzal
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, Avda. de Elvas S/N, Badajoz ES-06006, Spain
| |
Collapse
|
37
|
Starkloff NC, Kirchman JJ, Jones AW, Winger BM, Huang Y, Pulgarín‐R PC, Turner WC. Drivers of community turnover differ between avian hemoparasite genera along a North American latitudinal gradient. Ecol Evol 2020; 10:5402-5415. [PMID: 32607162 PMCID: PMC7319150 DOI: 10.1002/ece3.6283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/27/2020] [Accepted: 03/21/2020] [Indexed: 11/21/2022] Open
Abstract
The latitudinal diversity gradient (LDG) is an established macroecological pattern, but is poorly studied in microbial organisms, particularly parasites. In this study, we tested whether latitude, elevation, and host species predicted patterns of prevalence, alpha diversity, and community turnover of hemosporidian parasites. We expected parasite diversity to decrease with latitude, alongside the diversity of their hosts and vectors. Similarly, we expected infection prevalence to decrease with latitude as vector abundances decrease. Lastly, we expected parasite community turnover to increase with latitudinal distance and to be higher between rather than within host species. We tested these hypotheses by screening blood and tissue samples of three closely related avian species in a clade of North American songbirds (Turdidae: Catharus, n = 466) across 17.5° of latitude. We used a nested PCR approach to identify parasites in hemosporidian genera that are transmitted by different dipteran vectors. Then, we implemented linear-mixed effects and generalized dissimilarity models to evaluate the effects of latitude, elevation, and host species on parasite metrics. We found high diversity of hemosporidian parasites in Catharus thrushes (n = 44 lineages) but no evidence of latitudinal gradients in alpha diversity or prevalence. Parasites in the genus Leucocytozoon were most prevalent and lineage rich in this study system; however, there was limited turnover with latitude and host species. Contrastingly, Plasmodium parasites were less prevalent and diverse than Leucocytozoon parasites, yet communities turned over at a higher rate with latitude and host species. Leucocytozoon communities were skewed by the dominance of one or two highly prevalent lineages with broad latitudinal distributions. The few studies that evaluate the hemosporidian LDG do not find consistent patterns of prevalence and diversity, which makes it challenging to predict how they will respond to global climate change.
Collapse
Affiliation(s)
- Naima C. Starkloff
- Department of Biological SciencesUniversity at AlbanyState University of New YorkAlbanyNYUSA
- New York State MuseumAlbanyNYUSA
| | | | - Andrew W. Jones
- Department of OrnithologyCleveland Museum of Natural HistoryClevelandOHUSA
| | - Benjamin M. Winger
- Museum of Zoology and Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMIUSA
| | - Yen‐Hua Huang
- Department of Biological SciencesUniversity at AlbanyState University of New YorkAlbanyNYUSA
| | - Paulo C. Pulgarín‐R
- Laboratorio de Biología Evolutiva de VertebradosDepartamento de Ciencias BiológicasUniversidad de Los AndesBogotáColombia
- Facultad de Ciencias & BiotecnologíaUniversidad CESMedellinColombia
| | - Wendy C. Turner
- Department of Biological SciencesUniversity at AlbanyState University of New YorkAlbanyNYUSA
| |
Collapse
|
38
|
Fecchio A, Martins TF, Bell JA, De La Torre GM, Pinho JB, Weckstein JD, Tkach VV, Labruna MB, Dias RI. Low host specificity and lack of parasite avoidance by immature ticks in Brazilian birds. Parasitol Res 2020; 119:2039-2045. [PMID: 32377908 DOI: 10.1007/s00436-020-06698-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/21/2020] [Indexed: 11/28/2022]
Abstract
Ticks are ectoparasites that feed on blood of a broad taxonomic range of terrestrial and flying vertebrates and are distributed across a wide range of environmental conditions. Here, we explore the biotic and abiotic factors on infestation probability of ticks of the genus Amblyomma and assess the degree of host specificity based on analysis of 1028 birds surveyed across Brazil. We show that tick infestation rates exhibited considerable variation across the 235 avian species analyzed and that the probability of an individual bird being parasitized by immature ticks (larvae and nymphs) increased with annual precipitation. Host phylogeny and two host ecological traits known to promote tick exposure (body mass and foraging behavior) did not predict infestation probability. Moreover, immature ticks displayed a low degree of host specificity at the family level. Lastly, tick occurrence in birds carrying infection with avian malaria and related parasites did not differ from those free of these haemosporidian parasites, indicating a lack of parasite avoidance by immature ticks. Our findings demonstrate that tick occurrence in birds across Brazilian biomes responds to environmental factors rather than ecological and evolutionary host attributes.
Collapse
Affiliation(s)
- Alan Fecchio
- Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| | - Thiago F Martins
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Jeffrey A Bell
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Gabriel M De La Torre
- Programa de Pós-graduação em Ecologia e Conservação, Laboratório de Ecologia e Interações Antagonísticas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - João B Pinho
- Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.,Laboratório de Ecologia de Aves, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | - Jason D Weckstein
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, 19103, USA.,Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, PA, 19103, USA
| | - Vasyl V Tkach
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Marcelo B Labruna
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Raphael I Dias
- Faculdade de Ciências da Educação e Saúde, Centro Universitário de Brasília, Brasília, DF, Brazil.,Programa de Pós-graduação em Zoologia, Universidade de Brasília, Brasília, DF, Brazil
| |
Collapse
|
39
|
Evolutionary ecology, taxonomy, and systematics of avian malaria and related parasites. Acta Trop 2020; 204:105364. [PMID: 32007445 DOI: 10.1016/j.actatropica.2020.105364] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/25/2022]
Abstract
Haemosporidian parasites of the genera Plasmodium, Leucocytozoon, and Haemoproteus are one of the most prevalent and widely studied groups of parasites infecting birds. Plasmodium is the most well-known haemosporidian as the avian parasite Plasmodium relictum was the original transmission model for human malaria and was also responsible for catastrophic effects on native avifauna when introduced to Hawaii. The past two decades have seen a dramatic increase in research on avian haemosporidian parasites as a model system to understand evolutionary and ecological parasite-host relationships. Despite haemosporidians being one the best studied groups of avian parasites their specialization among avian hosts and variation in prevalence amongst regions and host taxa are not fully understood. In this review we focus on describing the current phylogenetic and morphological diversity of haemosporidian parasites, their specificity among avian and vector hosts, and identifying the determinants of haemosporidian prevalence among avian species. We also discuss how these parasites might spread across regions due to global climate change and the importance of avian migratory behavior in parasite dispersion and subsequent diversification.
Collapse
|