1
|
Jiang ZW, Ma L, Tao SA, Wenda C, Cheng C, Wu DY, Du WG. Analysis of resting status reveals distinct elevational variation in metabolisms of lizards. Ecology 2024; 105:e4414. [PMID: 39256909 DOI: 10.1002/ecy.4414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/10/2024] [Accepted: 07/10/2024] [Indexed: 09/12/2024]
Abstract
Animals spend a considerable proportion of their life span at rest. However, resting status has often been overlooked when investigating how species respond to environmental conditions. This may induce a large bias in understanding the local adaptation of species across environmental gradients and their vulnerability to potential environmental change. Here, we conducted an empirical study on montane agamid lizards, combined with mechanistic modeling, to compare elevational variations in body temperature and metabolisms (cumulative digestion and maintenance cost) between resting and active status. Our study on three populations of an agamid lizard along an elevational gradient revealed a trend of decreasing body temperature toward higher elevations, the main contributor of which was resting status of the lizards. Using population-specific reaction norms, we predicted greater elevational variation in hourly and cumulative digestion for resting lizards than for active lizards. Climate-change impacts, estimated as the change in cumulative digestion, also show greater elevational variation when resting status is factored into the analysis. Further, our global analysis of 98 agamid species revealed that in about half of their combined distributional range, the contribution of resting status in determining the elevational variation in cumulative digestion and maintenance cost of lizards was greater than the contribution made by a lizard's active status. Our study highlights the importance of considering resting status when investigating how species respond to environmental conditions, especially for those distributed over tropical and subtropical mountain areas.
Collapse
Affiliation(s)
- Zhong-Wen Jiang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Liang Ma
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Shi-Ang Tao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Cheng Wenda
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Chuyu Cheng
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, Shanghai, People's Republic of China
| | - Dan-Yang Wu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
2
|
Megía-Palma R, Cuervo JJ, Fitze PS, Martínez J, Jiménez-Robles O, De la Riva I, Reguera S, Moreno-Rueda G, Blaimont P, Kopena R, Barrientos R, Martín J, Merino S. Do sexual differences in life strategies make male lizards more susceptible to parasite infection? J Anim Ecol 2024; 93:1338-1350. [PMID: 39044387 DOI: 10.1111/1365-2656.14154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/05/2024] [Indexed: 07/25/2024]
Abstract
Female and male hosts may maximise their fitness by evolving different strategies to compensate for the costs of parasite infections. The resulting sexual dimorphism might be apparent in differential relationships between parasite load and body condition, potentially reflecting differences in energy allocation to anti-parasitic defences. For example, male lacertids with high body condition may produce many offspring while being intensely parasitised. In contrast, female lacertids may show a different outcome of the trade-offs between body condition and immunity, aiming to better protect themselves from the harm of parasites. We predicted that females would have fewer parasites than males and a lower body condition across parasitaemia levels because they would invest resources in parasite defence to mitigate the costs of infection. In contrast, the male strategy to maximise access to females would imply some level of parasite tolerance and, thus, higher parasitaemia. We analysed the relationship between the body condition of lizards and the parasitemias of Karyolysus and Schellackia, two genera of blood parasites with different phylogenetic origins, in 565 females and 899 males belonging to 10 species of the Lacertidae (Squamata). These lizards were sampled over a period of 12 years across 34 sampling sites in southwestern Europe. The results concerning the Karyolysus infections were consistent with the predictions, with males having similar body condition across parasitaemia levels even though they had higher infection intensities than females. On the other hand, females with higher levels of Karyolysus parasitaemia had lower body condition. This is consistent with the prediction that different life strategies of male and female lacertids can explain the infection patterns of Karyolysus. In contrast, the parasitaemia of Schellackia was consistently low in both male and female hosts, with no significant effect on the body condition of lizards. This suggests that lizards of both sexes maintain this parasite below a pathogenic threshold.
Collapse
Affiliation(s)
- Rodrigo Megía-Palma
- Department of Biomedicine and Biotechnology, School of Pharmacy, Universidad de Alcalá (UAH), Madrid, Spain
- CIBIO, Centro de Investigação Em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - José J Cuervo
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Patrick S Fitze
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Javier Martínez
- Department of Biomedicine and Biotechnology, School of Pharmacy, Universidad de Alcalá (UAH), Madrid, Spain
| | - Octavio Jiménez-Robles
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- Institut de Biologie, École Normale Supérieure, Paris, France
| | | | - Senda Reguera
- Department of Biology and Geology, IES don Pelayo, Madrid, Spain
| | - Gregorio Moreno-Rueda
- Facultad de Ciencias, Departamento de Zoología, Universidad de Granada (UGR), Granada, Spain
| | - Pauline Blaimont
- Department of Biology, University of Houston Downtown, Houston, Texas, USA
| | - Renata Kopena
- ELKH Centre for Ecological Research, Evolutionary Ecology Research Group, Institute of Ecology and Botany, Vácrátót, Hungary
| | - Rafael Barrientos
- Universidad Complutense de Madrid, School of Biology, Department of Biodiversity Ecology and Evolution, Road Ecology Lab, Madrid, Spain
| | - José Martín
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Santiago Merino
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| |
Collapse
|
3
|
Rutschmann A, Perry C, Le Galliard JF, Dupoué A, Lourdais O, Guillon M, Brusch G, Cote J, Richard M, Clobert J, Miles DB. Ecological responses of squamate reptiles to nocturnal warming. Biol Rev Camb Philos Soc 2024; 99:598-621. [PMID: 38062628 DOI: 10.1111/brv.13037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 03/06/2024]
Abstract
Nocturnal temperatures are increasing at a pace exceeding diurnal temperatures in most parts of the world. The role of warmer nocturnal temperatures in animal ecology has received scant attention and most studies focus on diurnal or daily descriptors of thermal environments' temporal trends. Yet, available evidence from plant and insect studies suggests that organisms can exhibit contrasting physiological responses to diurnal and nocturnal warming. Limiting studies to diurnal trends can thus result in incomplete and misleading interpretations of the ability of species to cope with global warming. Although they are expected to be impacted by warmer nocturnal temperatures, insufficient data are available regarding the night-time ecology of vertebrate ectotherms. Here, we illustrate the complex effects of nocturnal warming on squamate reptiles, a keystone group of vertebrate ectotherms. Our review includes discussion of diurnal and nocturnal ectotherms, but we mainly focus on diurnal species for which nocturnal warming affects a period dedicated to physiological recovery, and thus may perturb activity patterns and energy balance. We first summarise the physical consequences of nocturnal warming on habitats used by squamate reptiles. Second, we describe how such changes can alter the energy balance of diurnal species. We illustrate this with empirical data from the asp viper (Vipera aspis) and common wall lizard (Podarcis muralis), two diurnal species found throughout western Europe. Third, we make use of a mechanistic approach based on an energy-balance model to draw general conclusions about the effects of nocturnal temperatures. Fourth, we examine how warmer nights may affect squamates over their lifetime, with potential consequences on individual fitness and population dynamics. We review quantitative evidence for such lifetime effects using recent data derived from a range of studies on the European common lizard (Zootoca vivipara). Finally, we consider the broader eco-evolutionary ramifications of nocturnal warming and highlight several research questions that require future attention. Our work emphasises the importance of considering the joint influence of diurnal and nocturnal warming on the responses of vertebrate ectotherms to climate warming.
Collapse
Affiliation(s)
- Alexis Rutschmann
- Station d'Ecologie Théorique et Expérimentale de Moulis, CNRS UAR2029, 02 route du CNRS, Moulis, 09200, France
| | - Constant Perry
- Station d'Ecologie Théorique et Expérimentale de Moulis, CNRS UAR2029, 02 route du CNRS, Moulis, 09200, France
| | - Jean-François Le Galliard
- Sorbonne Université, CNRS, UMR 7618, IRD, INRAE, Institut d'écologie et des sciences de l'environnement (iEES Paris), Tours 44-45, 4 Place Jussieu, Paris, 75005, France
- Département de Biologie, Ecole Normale Supérieure, PSL Research University, CNRS, UMS 3194, Centre de Recherche en écologie expérimentale et Prédictive (CEREEP-Ecotron IleDeFrance), 78 rue du château, Saint-Pierre-Lès-Nemours, 77140, France
| | - Andréaz Dupoué
- Ifremer, Univ Brest, CNRS, IRD, UMR 6539, LEMAR, 1625 Rte de Sainte-Anne, Plouzané, 29280, France
| | - Olivier Lourdais
- Centre d'Etudes Biologiques de Chizé, CNRS UMR 7372-Université de La Rochelle, 405 Route de Prissé la Charrière, Villiers-en-Bois, 79630, France
- School of Life Sciences, Arizona State University, Life Sciences Center Building, 427E Tyler Mall, Tempe, AZ, 85281, USA
| | - Michaël Guillon
- Centre d'Etudes Biologiques de Chizé, CNRS UMR 7372-Université de La Rochelle, 405 Route de Prissé la Charrière, Villiers-en-Bois, 79630, France
- Cistude Nature, Chemin du Moulinat-33185, Le Haillan, France
| | - George Brusch
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Rd., San Marcos, CA, 92096, USA
| | - Julien Cote
- Laboratoire Evolution et Diversité Biologique (EDB), UMR5174, Université Toulouse 3 Paul Sabatier, CNRS, IRD, 118 Rte de Narbonne, Toulouse, 31077, France
| | - Murielle Richard
- Station d'Ecologie Théorique et Expérimentale de Moulis, CNRS UAR2029, 02 route du CNRS, Moulis, 09200, France
| | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale de Moulis, CNRS UAR2029, 02 route du CNRS, Moulis, 09200, France
| | - Donald B Miles
- Department of Biological Sciences, 131 Life Science Building, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
4
|
Megía-Palma R, Palomar G, Martínez J, Antunes B, Dudek K, Žagar A, Serén N, Carretero MA, Babik W, Merino S. Lizard host abundances and climatic factors explain phylogenetic diversity and prevalence of blood parasites on an oceanic island. Mol Ecol 2024; 33:e17276. [PMID: 38243603 DOI: 10.1111/mec.17276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
Host abundance might favour the maintenance of a high phylogenetic diversity of some parasites via rapid transmission rates. Blood parasites of insular lizards represent a good model to test this hypothesis because these parasites can be particularly prevalent in islands and host lizards highly abundant. We applied deep amplicon sequencing and analysed environmental predictors of blood parasite prevalence and phylogenetic diversity in the endemic lizard Gallotia galloti across 24 localities on Tenerife, an island in the Canary archipelago that has experienced increasing warming and drought in recent years. Parasite prevalence assessed by microscopy was over 94%, and a higher proportion of infected lizards was found in warmer and drier locations. A total of 33 different 18s rRNA parasite haplotypes were identified, and the phylogenetic analyses indicated that they belong to two genera of Adeleorina (Apicomplexa: Coccidia), with Karyolysus as the dominant genus. The most important predictor of between-locality variation in parasite phylogenetic diversity was the abundance of lizard hosts. We conclude that a combination of climatic and host demographic factors associated with an insular syndrome may be favouring a rapid transmission of blood parasites among lizards on Tenerife, which may favour the maintenance of a high phylogenetic diversity of parasites.
Collapse
Affiliation(s)
- Rodrigo Megía-Palma
- Universidad de Alcalá (UAH), Department of Biomedicine and Biotechnology, Parasitology Unit, Alcalá de Henares, Spain
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Gemma Palomar
- Universidad de Alcalá (UAH), Department of Biomedicine and Biotechnology, Parasitology Unit, Alcalá de Henares, Spain
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Department of Genetics, Physiology, and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
| | - Javier Martínez
- Universidad de Alcalá (UAH), Department of Biomedicine and Biotechnology, Parasitology Unit, Alcalá de Henares, Spain
| | - Bernardo Antunes
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Katarzyna Dudek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Anamarija Žagar
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- NIB, National Institute of Biology, Ljubljana, Slovenia
| | - Nina Serén
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Miguel A Carretero
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Wiesław Babik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Santiago Merino
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain
| |
Collapse
|
5
|
Ding Z, Wang X, Zou T, Hao X, Zhang Q, Sun B, Du W. Climate warming has divergent physiological impacts on sympatric lizards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168992. [PMID: 38052387 DOI: 10.1016/j.scitotenv.2023.168992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
Climate warming is expected to affect the vulnerability of sympatric species differentially due to their divergent traits, but the underlying physiological mechanisms of those impacts are poorly understood. We conducted field warming experiments (present climate vs. warm climate) using open-top chambers to determine the effects of climate warming on active body temperature, oxidative damage, immune competence, growth and survival in two sympatric desert-dwelling lizards, Eremias multiocellata and Eremias argus from May 2019 to September 2020. Our climate warming treatment did not affect survival of the two species, but it did increase active body temperatures and growth rate in E. multiocellata compared to E. argus. Climate warming also induced greater oxidative damage (higher malondialdehyde content and catalase activity) in E. multiocellata, but not in E. argus. Further, climate warming increased immune competence in E. multiocellata, but decreased immune competence in E. argus, with regards to white blood cell counts, bacteria killing ability and relative expression of immunoglobulin M. Our results suggest that climate warming enhances body temperature, and thereby oxidative stress, immune competence and growth in E. multiocellata, but decreases immune competence of E. argus, perhaps as a cost of thermoregulation to maintain body temperatures under climate warming. The divergent physiological effects of climate warming on sympatric species may have profound ecological consequences if it eventually leads to changes in reproductive activities, population dynamics and community structure. Our study highlights the importance of considering interspecific differences in physiological traits when we evaluate the impact of climate warming on organisms, even for those closely-related species coexisting within the same geographical area.
Collapse
Affiliation(s)
- Zihan Ding
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Xifeng Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tingting Zou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Xin Hao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Qiong Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baojun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiguo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
6
|
Yu S, Nie Y, Wang Z, Zhang L, Liu R, Liu Y, Zhang H, Zhu W, Zheng M, Diao J. Glyphosate-based herbicide (GBH) challenged thermoregulation in lizards (Eremias argus), compensatory warming could mitigate this effect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165287. [PMID: 37419359 DOI: 10.1016/j.scitotenv.2023.165287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/25/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Chemical pollution and global warming are two major threats to reptiles, and these two factors can interact with each other. Glyphosate have attracted worldwide attention due to their ubiquitous occurrence, yet their impact on reptiles remains unknown. We designed a crossover experiment with different external GBH exposures (control/GBH) x different environmental temperatures (current climate treatment/warmer climate treatment) over 60 days to simulate environmental exposure in the Mongolian Racerunner lizard (Eremias argus). Preferred body temperature and active body temperature data were collected to calculate the accuracy of thermoregulation, while liver detoxification metabolic enzymes, oxidative stress system function, and the non-targeted metabolome of the brain tissue were assessed. Warmer-treated lizards adjusted their physiological levels and behavioral strategies in response to increased ambient temperatures and maintained body temperature homeostasis at moderate thermal perturbations. GBH-treated lizards suffered from oxidative damage to the brain tissue and abnormal histidine metabolism, thus their thermoregulatory accuracy reduced. Interestingly, at elevated ambient temperatures, GBH treatment did not affect on their thermoregulatory, possibly through several temperature-dependent detoxification mechanisms. Importantly, this data suggested that the subtle toxicological effects of GBH may threaten increasingly thermoregulation behavior of E. argus with species-wide repercussions, as climate change and exposure time extension.
Collapse
Affiliation(s)
- Simin Yu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Yufan Nie
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Zikang Wang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Luyao Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Rui Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Yuping Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Hongjun Zhang
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs (ICAMA), Beijing 100125, China
| | - Wentao Zhu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Mingqi Zheng
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China.
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China.
| |
Collapse
|
7
|
Bestion E, San-Jose LM, Di Gesu L, Richard M, Sinervo B, Côte J, Calvez O, Guillaume O, Cote J. Plastic responses to warmer climates: a semi-natural experiment on lizard populations. Evolution 2023; 77:1634-1646. [PMID: 37098894 DOI: 10.1093/evolut/qpad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/03/2023] [Accepted: 04/25/2023] [Indexed: 04/27/2023]
Abstract
Facing warming environments, species can exhibit plastic or microevolutionary changes in their thermal physiology to adapt to novel climates. Here, using semi-natural mesocosms, we experimentally investigated over two successive years whether a 2°C-warmer climate produces selective and inter- and intragenerational plastic changes in the thermal traits (preferred temperature and dorsal coloration) of the lizard Zootoca vivipara. In a warmer climate, the dorsal darkness, dorsal contrast, and preferred temperature of adults plastically decreased and covariances between these traits were disrupted. While selection gradients were overall weak, selection gradients for darkness were slightly different between climates and in the opposite direction to plastic changes. Contrary to adults, male juveniles were darker in warmer climates either through plasticity or selection and this effect was strengthened by intergenerational plasticity when juveniles' mothers also experienced warmer climates. While the plastic changes in adult thermal traits alleviate the immediate overheating costs of warming, its opposite direction to selective gradients and to juveniles' phenotypic responses may slow down evolutionary shifts toward phenotypes that are better adapted to future climates. Our study demonstrates the importance of considering inter- and intragenerational plasticity along with selective processes to better understand adaptation and population dynamics in light of climate change.
Collapse
Affiliation(s)
- Elvire Bestion
- Station d'Ecologie Théorique et Expérimentale, CNRS, UAR 2029, Moulis, France
| | - Luis M San-Jose
- Laboratoire Évolution & Diversité Biologique, CNRS, Université Toulouse III Paul Sabatier, IRD; UMR5174, Toulouse, France
| | - Lucie Di Gesu
- Laboratoire Évolution & Diversité Biologique, CNRS, Université Toulouse III Paul Sabatier, IRD; UMR5174, Toulouse, France
| | - Murielle Richard
- Station d'Ecologie Théorique et Expérimentale, CNRS, UAR 2029, Moulis, France
| | - Barry Sinervo
- Department of Ecology and Evolutionary Biology, Coastal Biology Building, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Jessica Côte
- Laboratoire Évolution & Diversité Biologique, CNRS, Université Toulouse III Paul Sabatier, IRD; UMR5174, Toulouse, France
| | - Olivier Calvez
- Station d'Ecologie Théorique et Expérimentale, CNRS, UAR 2029, Moulis, France
| | - Olivier Guillaume
- Station d'Ecologie Théorique et Expérimentale, CNRS, UAR 2029, Moulis, France
| | - Julien Cote
- Laboratoire Évolution & Diversité Biologique, CNRS, Université Toulouse III Paul Sabatier, IRD; UMR5174, Toulouse, France
| |
Collapse
|
8
|
Gaston KJ, Gardner AS, Cox DTC. Anthropogenic changes to the nighttime environment. Bioscience 2023; 73:280-290. [PMID: 37091747 PMCID: PMC10113933 DOI: 10.1093/biosci/biad017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/16/2022] [Accepted: 02/23/2023] [Indexed: 04/25/2023] Open
Abstract
How the relative impacts of anthropogenic pressures on the natural environment vary between different taxonomic groups, habitats, and geographic regions is increasingly well established. By contrast, the times of day at which those pressures are most forcefully exerted or have greatest influence are not well understood. The impact on the nighttime environment bears particular scrutiny, given that for practical reasons (e.g., researchers themselves belong to a diurnal species), most studies on the impacts of anthropogenic pressures are conducted during the daytime on organisms that are predominantly day active or in ways that do not differentiate between daytime and nighttime. In the present article, we synthesize the current state of knowledge of impacts of anthropogenic pressures on the nighttime environment, highlighting key findings and examples. The evidence available suggests that the nighttime environment is under intense stress across increasing areas of the world, especially from nighttime pollution, climate change, and overexploitation of resources.
Collapse
Affiliation(s)
| | - Alexandra S Gardner
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Daniel T C Cox
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, United Kingdom
| |
Collapse
|
9
|
Genetic diversity, phylogenetic position, and co-phylogenetic relationships of Karyolysus, a common blood parasite of lizards in the western Mediterranean. Int J Parasitol 2023; 53:185-196. [PMID: 36736608 DOI: 10.1016/j.ijpara.2022.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 02/05/2023]
Abstract
The genus Karyolysus was originally proposed to accommodate blood parasites of lacertid lizards in Western Europe. However, recent phylogenetic analyses suggested an inconclusive taxonomic position of these parasites of the order Adeleorina based on the available genetic information. Inconsistencies between molecular phylogeny, morphology, and/or life cycles can reflect lack of enough genetic information of the target group. We therefore surveyed 28 localities and collected blood samples from 828 lizards of 23 species including lacertids, skinks, and geckoes in the western Mediterranean, North Africa, and Macaronesia, where species of Karyolysus and other adeleorine parasites have been described. We combined molecular and microscopic methods to analyze the samples, including those from the host type species and the type locality of Karyolysus bicapsulatus. The phylogenetic relationship of these parasites was analyzed based on the 18S rRNA gene and the co-phylogenetic relationship with their vertebrate hosts was reconstructed. We molecularly detected adeleorine parasites in 37.9% of the blood samples and found 22 new parasite haplotypes. A phylogenetic reconstruction with 132 sequences indicated that 20 of the newly detected haplotypes clustered in a well-supported clade with another 18 sequences that included Karyolysus galloti and Karyolysus lacazei. Morphological evidence also supported that K. bicapsulatus clustered in this monophyletic clade. These results supported the taxonomic validity of the genus. In addition, we found some parasite haplotypes that infected different lizard host genera with ancient diverging histories, which suggested that Karyolysus is less host-specific than other blood parasites of lizards in the region. A co-phylogenetic analysis supported this interpretation because no significant co-speciation signal was shown between Karyolysus and lizard hosts.
Collapse
|
10
|
Brusch GA, Le Galliard J, Viton R, Gavira RSB, Clobert J, Lourdais O. Reproducing in a changing world: combined effects of thermal conditions by day and night and of water constraints during pregnancy in a cold‐adapted ectotherm. OIKOS 2022. [DOI: 10.1111/oik.09536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- George A. Brusch
- Biological Sciences, California State Univ. San Marcos San Marcos CA USA
| | - Jean‐François Le Galliard
- Sorbonne Univ., CNRS, IRD, INRAe, Inst. d'Écologie et des Sciences de l'Environnement (IEES) Paris Cedex 5 France
- Ecole Normale Supérieure, PSL Univ., Dépt de Biologie, CNRS, UMS 3194, Centre de Recherche en Écologie Expérimentale et Prédictive (CEREEP‐Ecotron IleDeFrance) Saint‐Pierre‐lès‐Nemours France
| | - Robin Viton
- Centre d'Etudes Biologiques de Chizé, CNRS Villiers en Bois France
| | | | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale de Moulis, CNRS, UMR 5321 Saint Girons France
| | - Olivier Lourdais
- Centre d'Etudes Biologiques de Chizé, CNRS Villiers en Bois France
- School of Life Sciences, Arizona State Univ. Tempe AZ USA
| |
Collapse
|
11
|
A quantitative synthesis of and predictive framework for studying winter warming effects in reptiles. Oecologia 2022; 200:259-271. [PMID: 36100724 PMCID: PMC9547783 DOI: 10.1007/s00442-022-05251-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 08/19/2022] [Indexed: 12/03/2022]
Abstract
Increases in temperature related to global warming have important implications for organismal fitness. For ectotherms inhabiting temperate regions, ‘winter warming’ is likely to be a key source of the thermal variation experienced in future years. Studies focusing on the active season predict largely positive responses to warming in the reptiles; however, overlooking potentially deleterious consequences of warming during the inactive season could lead to biased assessments of climate change vulnerability. Here, we review the overwinter ecology of reptiles, and test specific predictions about the effects of warming winters, by performing a meta-analysis of all studies testing winter warming effects on reptile traits to date. We collated information from observational studies measuring responses to natural variation in temperature in more than one winter season, and experimental studies which manipulated ambient temperature during the winter season. Available evidence supports that most reptiles will advance phenologies with rising winter temperatures, which could positively affect fitness by prolonging the active season although effects of these shifts are poorly understood. Conversely, evidence for shifts in survivorship and body condition in response to warming winters was equivocal, with disruptions to biological rhythms potentially leading to unforeseen fitness ramifications. Our results suggest that the effects of warming winters on reptile species are likely to be important but highlight the need for more data and greater integration of experimental and observational approaches. To improve future understanding, we recap major knowledge gaps in the published literature of winter warming effects in reptiles and outline a framework for future research.
Collapse
|
12
|
Dajčman U, Carretero MA, Megía-Palma R, Perera A, Kostanjšek R, Žagar A. Shared haemogregarine infections in competing lacertids. Parasitology 2022; 149:193-202. [PMID: 35234602 PMCID: PMC11010482 DOI: 10.1017/s0031182021001645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 11/05/2022]
Abstract
In parasite–host interactions host species may differ in their ability to fight parasitic infections, while other ecological interactions, including competition, may differentially alter their physiological state, making them even more susceptible to parasites. In this study, we analyse the haemogregarine blood parasites infecting two competing lizard species, Iberolacerta horvathi and Podarcis muralis, and explore host–parasite relationships under different host competition scenarios. Both species were infected with haemogregarine parasites belonging to the genus Karyolysus. Using the 18S rRNA gene, six new Karyolysus haplotypes were identified clustering with other Central and Eastern European samples, and widely shared between both lizard hosts. Haemogregarine infections were detected at all sampled sites with over 50% of individuals parasitized. Overall, I. horvathi was more frequently and also more intensely parasitized than P. muralis, with higher infection rates observed in syntopy. Males of both species tended to be more frequently infected and showed a higher infection intensity than conspecific females. The results suggest that parasitisation by haemogregarines may be relevant in the dynamics of the competitive relationship between these lizard species. More studies, including immunological response analysis, and the identification of the vectors are needed to better understand host–parasite relationships and competition.
Collapse
Affiliation(s)
- Urban Dajčman
- Biotechnical Faculty of the University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Miguel A. Carretero
- CIBIO, InBIO – Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Rodrigo Megía-Palma
- CIBIO, InBIO – Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, Portugal
- Department of Biomedicine and Biotechnology, Universidad de Alcalá, Parasitology Area, School of Pharmacy, 28805, Alcalá de Henares, Spain
| | - Ana Perera
- CIBIO, InBIO – Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, Portugal
| | - Rok Kostanjšek
- Biotechnical Faculty of the University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Anamarija Žagar
- CIBIO, InBIO – Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, Portugal
- Department of Organisms and Ecosystem Research, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia
| |
Collapse
|