1
|
Rolls RJ, Deane DC, Johnson SE, Heino J, Anderson MJ, Ellingsen KE. Biotic homogenisation and differentiation as directional change in beta diversity: synthesising driver-response relationships to develop conceptual models across ecosystems. Biol Rev Camb Philos Soc 2023; 98:1388-1423. [PMID: 37072381 DOI: 10.1111/brv.12958] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/20/2023]
Abstract
Biotic homogenisation is defined as decreasing dissimilarity among ecological assemblages sampled within a given spatial area over time. Biotic differentiation, in turn, is defined as increasing dissimilarity over time. Overall, changes in the spatial dissimilarities among assemblages (termed 'beta diversity') is an increasingly recognised feature of broader biodiversity change in the Anthropocene. Empirical evidence of biotic homogenisation and biotic differentiation remains scattered across different ecosystems. Most meta-analyses quantify the prevalence and direction of change in beta diversity, rather than attempting to identify underlying ecological drivers of such changes. By conceptualising the mechanisms that contribute to decreasing or increasing dissimilarity in the composition of ecological assemblages across space, environmental managers and conservation practitioners can make informed decisions about what interventions may be required to sustain biodiversity and can predict potential biodiversity outcomes of future disturbances. We systematically reviewed and synthesised published empirical evidence for ecological drivers of biotic homogenisation and differentiation across terrestrial, marine, and freshwater realms to derive conceptual models that explain changes in spatial beta diversity. We pursued five key themes in our review: (i) temporal environmental change; (ii) disturbance regime; (iii) connectivity alteration and species redistribution; (iv) habitat change; and (v) biotic and trophic interactions. Our first conceptual model highlights how biotic homogenisation and differentiation can occur as a function of changes in local (alpha) diversity or regional (gamma) diversity, independently of species invasions and losses due to changes in species occurrence among assemblages. Second, the direction and magnitude of change in beta diversity depends on the interaction between spatial variation (patchiness) and temporal variation (synchronicity) of disturbance events. Third, in the context of connectivity and species redistribution, divergent beta diversity outcomes occur as different species have different dispersal characteristics, and the magnitude of beta diversity change associated with species invasions also depends strongly on alpha and gamma diversity prior to species invasion. Fourth, beta diversity is positively linked with spatial environmental variability, such that biotic homogenisation and differentiation occur when environmental heterogeneity decreases or increases, respectively. Fifth, species interactions can influence beta diversity via habitat modification, disease, consumption (trophic dynamics), competition, and by altering ecosystem productivity. Our synthesis highlights the multitude of mechanisms that cause assemblages to be more or less spatially similar in composition (taxonomically, functionally, phylogenetically) through time. We consider that future studies should aim to enhance our collective understanding of ecological systems by clarifying the underlying mechanisms driving homogenisation or differentiation, rather than focusing only on reporting the prevalence and direction of change in beta diversity, per se.
Collapse
Affiliation(s)
- Robert J Rolls
- School of Environmental and Rural Sciences, University of New England, Armidale, New South Wales, 2351, Australia
| | - David C Deane
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Sarah E Johnson
- Natural Resources Department, Northland College, Ashland, WI, 54891, USA
| | - Jani Heino
- Geography Research Unit, University of Oulu, P.O. Box 8000, Oulu, FI-90014, Finland
| | - Marti J Anderson
- New Zealand Institute for Advanced Study (NZIAS), Massey University, Albany Campus, Auckland, New Zealand
| | - Kari E Ellingsen
- Norwegian Institute for Nature Research (NINA), Fram Centre, P.O. Box 6606 Langnes, Tromsø, 9296, Norway
| |
Collapse
|
2
|
Walther EJ, Zimmerman MS, Falke JA, Westley PAH. Species distributions and the recognition of risk in restoration planning: A case study of salmonid fishes. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2701. [PMID: 35751517 DOI: 10.1002/eap.2701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 04/06/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
One of the risks faced by habitat restoration practitioners is whether habitats included in restoration planning will be used by the target species or, conversely, whether habitats excluded from restoration planning would have benefited the target species. With the goal of providing a quantitative decision-making approach that represented varying levels of risk tolerance, we used multiple probability decision thresholds (PDT) to predict the range of occurrence for three anadromous fishes (Oncorhynchus spp.) in a watershed in southwestern Washington, USA. For each species, we compared the predicted range of occurrence to the distribution used for restoration planning and quantified the amount of habitat blocked by anthropogenic barriers. Coho salmon (O. kisutch) had the broadest predicted range of occurrence (3061.6-6357.9 km; 0.75-0.25 PDT), followed by steelhead trout (O. mykiss; 1828.8-2836.8 km) and chum salmon (O. keta; 1373.9-1629.1 km). For each species, the predicted range of occurrence was similar or greater than the distribution used for restoration planning, suggesting that the current plan may exclude habitats that would benefit each species. Coho salmon had the greatest percentage of habitat blocked by anthropogenic barriers, followed by steelhead trout and chum salmon, respectively. Modeling species distributions at multiple risk-tolerance scenarios acknowledges uncertainty in restoration planning and allows practitioners to weigh the ecological benefits and budgetary constraints when considering locations for restoration. To effectively communicate restoration science to support practitioners in decision-making, we developed an R Shiny application online user interface available at: https://shiny.wdfw-fish.us/ChehalisRiverBasinSalmonidRangeOfOccurence/.
Collapse
Affiliation(s)
- Eric J Walther
- Fish Ecology and Life Cycle Monitoring Unit, Science Division, Fish Program, Washington Department of Fish and Wildlife, Olympia, Washington, USA
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Mara S Zimmerman
- Fish Ecology and Life Cycle Monitoring Unit, Science Division, Fish Program, Washington Department of Fish and Wildlife, Olympia, Washington, USA
| | - Jeffrey A Falke
- Alaska Cooperative Fish and Wildlife Research Unit, United States Geological Survey, Fairbanks, Alaska, USA
| | - Peter A H Westley
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| |
Collapse
|
3
|
Cid N, Erős T, Heino J, Singer G, Jähnig SC, Cañedo‐Argüelles M, Bonada N, Sarremejane R, Mykrä H, Sandin L, Paloniemi R, Varumo L, Datry T. From meta-system theory to the sustainable management of rivers in the Anthropocene. FRONTIERS IN ECOLOGY AND THE ENVIRONMENT 2022; 20:49-57. [PMID: 35873359 PMCID: PMC9292669 DOI: 10.1002/fee.2417] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Regional-scale ecological processes, such as the spatial flows of material, energy, and organisms, are fundamental for maintaining biodiversity and ecosystem functioning in river networks. Yet these processes remain largely overlooked in most river management practices and underlying policies. Here, we propose adoption of a meta-system approach, where regional processes acting at different levels of ecological organization - populations, communities, and ecosystems - are integrated into conventional river conservation, restoration, and biomonitoring. We also describe a series of measurements and indicators that could be assimilated into the implementation of relevant biodiversity and environmental policies. Finally, we highlight the need for alternative management strategies that can guide practitioners toward applying recent advances in ecology to preserve and restore river ecosystems and the ecosystem services they provide, in the context of increasing alteration of river network connectivity worldwide.
Collapse
Affiliation(s)
- Núria Cid
- INRAEUR RiverLyCentre de Lyon‐VilleurbanneVilleurbanne CedexFrance
| | - Tibor Erős
- Balaton Limnological Research InstituteTihanyHungary
| | - Jani Heino
- Finnish Environment InstituteFreshwater CentreOuluFinland
| | - Gabriel Singer
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| | - Sonja C Jähnig
- Leibniz Institute of Freshwater Ecology and Inland FisheriesDepartment of Ecosystem ResearchBerlinGermany
- Geography DepartmentFaculty of Mathematics and Natural SciencesHumboldt‐Universität zu BerlinBerlinGermany
| | - Miguel Cañedo‐Argüelles
- Freshwater Ecology, Hydrology and Management Research GroupDepartament de Biologia EvolutivaEcologia i Ciències AmbientalsFacultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
- Institut de Recerca de l'AiguaUniversitat de BarcelonaBarcelonaSpain
| | - Núria Bonada
- Freshwater Ecology, Hydrology and Management Research GroupDepartament de Biologia EvolutivaEcologia i Ciències AmbientalsFacultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
- Institut de Recerca de la BiodiversitatUniversitat de BarcelonaBarcelonaSpain
| | | | - Heikki Mykrä
- Finnish Environment InstituteFreshwater CentreOuluFinland
| | | | - Riikka Paloniemi
- Finnish Environment InstituteEnvironmental Policy CentreHelsinkiFinland
| | - Liisa Varumo
- Finnish Environment InstituteEnvironmental Policy CentreHelsinkiFinland
| | - Thibault Datry
- INRAEUR RiverLyCentre de Lyon‐VilleurbanneVilleurbanne CedexFrance
| |
Collapse
|
4
|
Lopera‐Congote L, Salgado J, Isabel Vélez M, Link A, González‐Arango C. River connectivity and climate behind the long-term evolution of tropical American floodplain lakes. Ecol Evol 2021; 11:12970-12988. [PMID: 34646446 PMCID: PMC8495813 DOI: 10.1002/ece3.7674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/08/2022] Open
Abstract
This study presents the long-term evolution of two floodplains lakes (San Juana and Barbacoas) of the Magdalena River in Colombia with varying degree of connectivity to the River and with different responses to climate events (i.e., extreme floods and droughts). Historical limnological changes were identified through a multiproxy-based reconstruction including diatoms, sedimentation, and sediment geochemistry, while historical climatic changes were derived from the application of the Standardised Precipitation-Evapotranspiration Index. The main gradients in climatic and limnological change were assessed via multivariate analysis and generalized additive models. The reconstruction of the more isolated San Juana Lake spanned the last c. 500 years. Between c. 1,620 and 1,750 CE, riverine-flooded conditions prevailed as indicated by high detrital input, reductive conditions, and dominance of planktonic diatoms. Since the early 1800s, the riverine meander became disconnected, conveying into a marsh-like environment rich in aerophil diatoms and organic matter. The current lake was then formed around the mid-1960s with a diverse lake diatom flora including benthic and planktonic diatoms, and more oxygenated waters under a gradual increase in sedimentation and nutrients. The reconstruction for Barbacoas Lake, a waterbody directly connected to the Magdalena River, spanned the last 60 years and showed alternating riverine-wetland-lake conditions in response to varying ENSO conditions. Wet periods were dominated by planktonic and benthic diatoms, while aerophil diatom species prevailed during dry periods; during the two intense ENSO periods of 1987 and 1992, the lake almost desiccated and sedimentation rates spiked. A gradual increase in sedimentation rates post-2000 suggests that other factors rather than climate are also influencing sediment deposition in the lake. We propose that hydrological connectivity to the Magdalena River is a main factor controlling lake long-term responses to human pressures, where highly connected lakes respond more acutely to ENSO events while isolated lakes are more sensitive to local land-use changes.
Collapse
Affiliation(s)
- Laura Lopera‐Congote
- Laboratorio de Palinología y Paleoecología TropicalUniversidad de los AndesBogotáColombia
| | - Jorge Salgado
- Laboratorio de Palinología y Paleoecología TropicalUniversidad de los AndesBogotáColombia
- Facultad de IngenieríaUniversidad Católica de ColombiaBogotáColombia
- School of GeographyNottingham UniversityNottinghamUK
| | | | - Andrés Link
- Laboratorio de Ecología de Bosques Tropicales y PrimatologíaDepartamento de Ciencias BiológicasUniversidad de Los AndesBogotáColombia
| | | |
Collapse
|
5
|
Patrick CJ, Anderson KE, Brown BL, Hawkins CP, Metcalfe A, Saffarinia P, Siqueira T, Swan CM, Tonkin JD, Yuan LL. The application of metacommunity theory to the management of riverine ecosystems. WIRES. WATER 2021; 8:1-21. [PMID: 35874117 PMCID: PMC9301706 DOI: 10.1002/wat2.1557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
River managers strive to use the best available science to sustain biodiversity and ecosystem function. To achieve this goal requires consideration of processes at different scales. Metacommunity theory describes how multiple species from different communities potentially interact with local-scale environmental drivers to influence population dynamics and community structure. However, this body of knowledge has only rarely been used to inform management practices for river ecosystems. In this paper, we present a conceptual model outlining how the metacommunity processes of local niche sorting and dispersal can influence the outcomes of management interventions and provide a series of specific recommendations for applying these ideas as well as research needs. In all cases, we identify situations where traditional approaches to riverine management could be enhanced by incorporating an understanding of metacommunity dynamics. A common theme is developing guidelines for assessing the metacommunity context of a site or region, evaluating how that context may affect the desired outcome, and incorporating that understanding into the planning process and methods used. To maximize the effectiveness of management activities, scientists and resource managers should update the toolbox of approaches to riverine management to reflect theoretical advances in metacommunity ecology.
Collapse
Affiliation(s)
- Christopher J Patrick
- Department of Biological Sciences, Virginia Institute of Marine Science, College of William and Mary, 1370 Greate Rd., Gloucester Point, VA 23062
| | - Kurt E Anderson
- Department of Evolution, Ecology, and Organismal Biology, 900 University Ave., University of California, Riverside, CA, 92521, USA
| | - Brown L Brown
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24060, USA
| | - Charles P Hawkins
- Department of Watershed Sciences, Ecology Center, and National Aquatic Monitoring Center, Utah State University, Logan, Utah, USA
| | - Anya Metcalfe
- United States Geological Survey, Grand Canyon Monitoring and Research Center, 2255 North Gemini Drive, Flagstaff, AZ 86001
| | - Parsa Saffarinia
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, CA, 95616, USA
| | - Tadeu Siqueira
- Institute of Biosciences, São Paulo State University (Unesp), Av. 24A 1515, Rio Claro, São Paulo 13506-900 Brazil
| | | | - Jonathan D Tonkin
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Lester L Yuan
- United States Environmental Protection Agency - Office of Water
| |
Collapse
|
6
|
Abstract
Perhaps more than any other ecological discipline, invasion biology has married the practices of basic science and the application of that science. The conceptual frameworks of population regulation, metapopulations, supply-side ecology, and community assembly have all to some degree informed the regulation, management, and prevention of biological invasions. Invasion biology needs to continue to adopt emerging frameworks and paradigms to progress as both a basic and applied science. This need is urgent as the biological invasion problem continues to worsen. The development of metacommunity theory in the last two decades represents a paradigm-shifting approach to community ecology that emphasizes the multi-scale nature of community assembly and biodiversity regulation. Work on metacommunities has demonstrated that even relatively simple processes at local scales are often heavily influenced by regional-scale processes driven primarily by the dispersal of organisms. Often the influence of dispersal interacts with, or even swamps, the influence of local-scale drivers like environmental conditions and species interactions. An emphasis on dispersal and a focus on multi-scale processes enable metacommunity theory to contribute strongly to the advancement of invasion biology. Propagule pressure of invaders has been identified as one of the most important drivers facilitating invasion, so the metacommunity concept, designed to address how dispersal-driven dynamics affect community structure, can directly address many of the central questions of invasion biology. Here we revisit many of the important concepts and paradigms of biological invasions—propagule pressure, biotic resistance, enemy release, functional traits, neonative species, human-assisted transport,—and view those concepts through the lens of metacommunity theory. In doing so, we accomplish several goals. First, we show that work on metacommunities has generated multiple predictions, models, and the tools that can be directly applied to invasion scenarios. Among these predictions is that invasibility of a community should decrease with both local controls on community assembly, and the dispersal rates of native species. Second, we demonstrate that framing biological invasions in metacommunity terms actually unifies several seemingly disparate concepts central to invasion biology. Finally, we recommend several courses of action for the control and management of invasive species that emerge from applying the concepts of metacommunity theory.
Collapse
|
7
|
van Rees CB, Waylen KA, Schmidt‐Kloiber A, Thackeray SJ, Kalinkat G, Martens K, Domisch S, Lillebø AI, Hermoso V, Grossart H, Schinegger R, Decleer K, Adriaens T, Denys L, Jarić I, Janse JH, Monaghan MT, De Wever A, Geijzendorffer I, Adamescu MC, Jähnig SC. Safeguarding freshwater life beyond 2020: Recommendations for the new global biodiversity framework from the European experience. Conserv Lett 2020. [DOI: 10.1111/conl.12771] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
| | - Kerry A. Waylen
- Social, Economic and Geographical Sciences Department The James Hutton Institute Aberdeen Scotland UK
| | - Astrid Schmidt‐Kloiber
- Institute of Hydrobiology and Aquatic Ecosystem Management University of Natural Resources and Life Sciences Vienna (BOKU) Vienna Austria
| | | | - Gregor Kalinkat
- Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany
| | - Koen Martens
- Royal Belgian Institute of Natural Sciences Brussels Belgium
- University of Ghent, Biology Ghent Belgium
| | - Sami Domisch
- Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany
| | - Ana I. Lillebø
- Department of Biology & CESAM University of Aveiro Aveiro Portugal
| | - Virgilio Hermoso
- Centre de Ciència i Tecnologia Forestal de Catalunya (CTFC) Solsona Spain
| | - Hans‐Peter Grossart
- Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany
- Institute of Biochemistry and Biology University of Potsdam Germany
| | - Rafaela Schinegger
- Institute of Hydrobiology and Aquatic Ecosystem Management University of Natural Resources and Life Sciences Vienna (BOKU) Vienna Austria
| | - Kris Decleer
- Research Institute for Nature and Forest (INBO) Brussels Belgium
| | - Tim Adriaens
- Research Institute for Nature and Forest (INBO) Brussels Belgium
| | - Luc Denys
- Research Institute for Nature and Forest (INBO) Brussels Belgium
| | - Ivan Jarić
- Biology Centre of the Czech Academy of Sciences Institute of Hydrobiology České Budějovice Czech Republic
- Faculty of Science Department of Ecosystem Biology, University of South Bohemia České Budějovice Czech Republic
| | - Jan H. Janse
- PBL Netherlands Environmental Assessment Agency The Hague The Netherlands
- Netherlands Institute of Ecology, NIOO‐KNAW Wageningen The Netherlands
| | - Michael T. Monaghan
- Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany
- Institut für Biologie Freie Universität Berlin Germany
| | - Aaike De Wever
- Research Institute for Nature and Forest (INBO) Brussels Belgium
| | - Ilse Geijzendorffer
- Tour du Valat Research Institute for the Conservation of Mediterranean Wetlands Arles France
| | - Mihai C. Adamescu
- Research Centre in Systems Ecology and Sustainability University of Bucharest Bucharest Romania
| | - Sonja C. Jähnig
- Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany
- Geography Department Humboldt‐Universität zu Berlin, Berlin Germany
| |
Collapse
|
8
|
Salgado J, Sayer CD, Brooks SJ, Davidson TA, Baker AG, Willby N, Patmore IR, Goldsmith B, Bennion H, Okamura B. Connectivity and zebra mussel invasion offer short‐term buffering of eutrophication impacts on floodplain lake landscape biodiversity. DIVERS DISTRIB 2019. [DOI: 10.1111/ddi.12938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Jorge Salgado
- Department of Life Sciences Natural History Museum London UK
- Environmental Change Research Centre, Department of Geography University College London London UK
- Grupo de Palinología y Paleoecología Tropical, Departamento de Ciencias Biológicas Universidad de los Andes Bogotá Colombia
| | - Carl D. Sayer
- Environmental Change Research Centre, Department of Geography University College London London UK
| | | | - Thomas A. Davidson
- Lake Group and Arctic Research Centre, Department of Bioscience Aarhus University Aarhus Denmark
| | - Ambroise G. Baker
- Environmental Change Research Centre, Department of Geography University College London London UK
| | - Nigel Willby
- Biological and Environmental Sciences University of Stirling Stirling UK
| | - Ian R. Patmore
- Environmental Change Research Centre, Department of Geography University College London London UK
| | - Ben Goldsmith
- Environmental Change Research Centre, Department of Geography University College London London UK
| | - Helen Bennion
- Environmental Change Research Centre, Department of Geography University College London London UK
| | - Beth Okamura
- Department of Life Sciences Natural History Museum London UK
| |
Collapse
|
9
|
Salgado J, Sayer CD, Brooks SJ, Davidson TA, Goldsmith B, Patmore IR, Baker AG, Okamura B. Eutrophication homogenizes shallow lake macrophyte assemblages over space and time. Ecosphere 2018. [DOI: 10.1002/ecs2.2406] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Jorge Salgado
- Department of Life Sciences; Natural History Museum; Cromwell Road London SW7 5BD UK
- Environmental Change Research Centre; Department of Geography; University College London; Gower Street London WC1E 6BT UK
- Grupo de Palinología y Paleoecología Tropical; Departamento de Ciencias Biológicas; Universidad de Los Andes; Cra 1A No. 18A-12 Bogotá Colombia
| | - Carl D. Sayer
- Environmental Change Research Centre; Department of Geography; University College London; Gower Street London WC1E 6BT UK
| | - Stephen J. Brooks
- Department of Life Sciences; Natural History Museum; Cromwell Road London SW7 5BD UK
| | - Thomas A. Davidson
- Lake Group and Arctic Research Centre; Department of Bioscience; Aarhus University; Ny Munkegade 116, DK-8000 Aarhus C Silkeborg Denmark
| | - Ben Goldsmith
- Environmental Change Research Centre; Department of Geography; University College London; Gower Street London WC1E 6BT UK
| | - Ian R. Patmore
- Environmental Change Research Centre; Department of Geography; University College London; Gower Street London WC1E 6BT UK
| | - Ambroise G. Baker
- Environmental Change Research Centre; Department of Geography; University College London; Gower Street London WC1E 6BT UK
| | - Beth Okamura
- Department of Life Sciences; Natural History Museum; Cromwell Road London SW7 5BD UK
| |
Collapse
|
10
|
Olden JD, Comte L, Giam X. The Homogocene: a research prospectus for the study of biotic homogenisation. NEOBIOTA 2018. [DOI: 10.3897/neobiota.37.22552] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In an era of global change, the process of biotic homogenisation by which regional biotas become more similar through time has attracted considerable attention from ecologists. Here, a retrospective look at the literature is taken and the question asked how comprehensive is the understanding of this global phenomenon? The goal is to identify potential areas for additional and future enquiries to advance this research frontier and best ensure the long-term preservation of biological diversity across the world. Six propositions are presented here to; (1) broaden our geographic and taxonomic understanding, (2) diversify the spatial and temporal scales of inquiry, (3) reconcile past and embrace new approaches to quantification, (4) improve our knowledge of the underlying drivers, (5) reveal the conservation implications and (6) forecast future homogenisation. It is argued that significant progress in the understanding of the causes, consequences and conservation implication of biotic homogenisation will come by integrating concepts and approaches from ecology, evolution and conservation across a hierarchy of spatial and temporal scales.
Collapse
|