1
|
Li J, Deng L, Peñuelas J, Wu J, Shangguan Z, Sardans J, Peng C, Kuzyakov Y. C:N:P stoichiometry of plants, soils, and microorganisms: Response to altered precipitation. GLOBAL CHANGE BIOLOGY 2023; 29:7051-7071. [PMID: 37787740 DOI: 10.1111/gcb.16959] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 10/04/2023]
Abstract
Precipitation changes modify C, N, and P cycles, which regulate the functions and structure of terrestrial ecosystems. Although altered precipitation affects above- and belowground C:N:P stoichiometry, considerable uncertainties remain regarding plant-microbial nutrient allocation strategies under increased (IPPT) and decreased (DPPT) precipitation. We meta-analyzed 827 observations from 235 field studies to investigate the effects of IPPT and DPPT on the C:N:P stoichiometry of plants, soils, and microorganisms. DPPT reduced leaf C:N ratio, but increased the leaf and root N:P ratios reflecting stronger decrease of P compared with N mobility in soil under drought. IPPT increased microbial biomass C (+13%), N (+15%), P (26%), and the C:N ratio, whereas DPPT decreased microbial biomass N (-12%) and the N:P ratio. The C:N and N:P ratios of plant leaves were more sensitive to medium DPPT than to IPPT because drought increased plant N content, particularly in humid areas. The responses of plant and soil C:N:P stoichiometry to altered precipitation did not fit the double asymmetry model with a positive asymmetry under IPPT and a negative asymmetry under extreme DPPT. Soil microorganisms were more sensitive to IPPT than to DPPT, but they were more sensitive to extreme DPPT than extreme IPPT, consistent with the double asymmetry model. Soil microorganisms maintained stoichiometric homeostasis, whereas N:P ratios of plants follow that of the soils under altered precipitation. In conclusion, specific N allocation strategies of plants and microbial communities as well as N and P availability in soil critically mediate C:N:P stoichiometry by altered precipitation that need to be considered by prediction of ecosystem functions and C cycling under future climate change scenarios.
Collapse
Affiliation(s)
- Jiwei Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- College of Forestry, Northwest A&F University, Yangling, China
| | - Lei Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- College of Forestry, Northwest A&F University, Yangling, China
| | - Josep Peñuelas
- CREAF, Cerdanyola del Vallès, Barcelona, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
| | - Jianzhao Wu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, China
| | - Zhouping Shangguan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| | - Jordi Sardans
- CREAF, Cerdanyola del Vallès, Barcelona, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
| | - Changhui Peng
- Center of CEF/ESCER, Department of Biological Science, University of Quebec at Montreal, Montreal, Quebec, Canada
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, University of Goettingen, Göttingen, Germany
- Department of Agricultural Soil Science, University of Goettingen, Göttingen, Germany
- Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
2
|
Villa-Galaviz E, Smart SM, Ward SE, Fraser MD, Memmott J. Fertilization using manure minimizes the trade-offs between biodiversity and forage production in agri-environment scheme grasslands. PLoS One 2023; 18:e0290843. [PMID: 37792796 PMCID: PMC10550152 DOI: 10.1371/journal.pone.0290843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/16/2023] [Indexed: 10/06/2023] Open
Abstract
A common practice used to restore and maintain biodiversity in grasslands is to stop or decrease the use of fertilizers as they are a major cause of biodiversity loss. This practice is problematic for farmers who need fertilizers to increase forage and meet the nutritional needs of livestock. Evidence is needed that helps identify optimal fertilizer regimes that could benefit biodiversity and livestock production simultaneously over the long-term. Here, we evaluated the impact of different fertilizer regimes on indicators related to both biodiversity (plant, pollinator, leaf miners and parasitoid Shannon-Weiner diversity, bumblebee abundance, nectar productivity and forb species richness), and forage production (ash, crude protein, ruminant metabolizable energy and dry matter). To this end, we used data from a grassland restoration experiment managed under four nutrient inputs schemes for 27 years: farmyard manure (FYM; 72 kg N ha-1 yr-1), artificial nitrogen-phosphorus and potassium (NPK; 25 kg N ha-1 yr-1), FYM + NPK (97 kg N ha-1 yr-1) and no-fertilizer. Results showed strong trade-offs between biodiversity and forage production under all treatments even in applications lower than the critical load in the EU. Overall, farmyard manure was the fertilizer that optimized production and biodiversity while 97 kg N ha-1 yr-1 of fertilizer addition (FYM+NPK) had the most negative impact on biodiversity. Finally, forage from places where no fertilizer has been added for 27 years did not meet the nutritional requirements of cattle, but it did for sheep. Rethinking typical approaches of nutrient addition could lead to land management solutions suitable for biological conservation and agriculture.
Collapse
Affiliation(s)
- Edith Villa-Galaviz
- School of Biological Sciences, University of Bristol, Life Sciences Building, Bristol, United Kingdom
| | - Simon M. Smart
- NERC Centre for Ecology & Hydrology, Library Avenue, Bailrigg, Lancaster, United Kingdom
| | - Susan E. Ward
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Mariecia D. Fraser
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Pwllpeiran, Cwmystwyth, Aberystwyth, United Kingdom
| | - Jane Memmott
- School of Biological Sciences, University of Bristol, Life Sciences Building, Bristol, United Kingdom
| |
Collapse
|
3
|
Fang W, Huang Q, Huang G, Ming B, Quan Q, Li P, Guo Y, Zheng X, Feng G, Peng J. Assessment of dynamic drought-induced ecosystem risk: Integrating time-varying hazard frequency, exposure and vulnerability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118176. [PMID: 37207461 DOI: 10.1016/j.jenvman.2023.118176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/21/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Terrestrial ecosystems, occupying 28.26% of Earth's surface, are extensively at risk from droughts, which is likely to propagate into human communities owing to loss of vital services. Ecosystem risk also tends to fluctuate within anthropogenically-forced nonstationary environments, raising considerable concerns about effectiveness of mitigation strategies. This study aims to assess dynamic ecosystem risk induced by droughts and identify risk hotspots. Bivariate nonstationary drought frequency was initially derived as a hazard component of risk. By coupling vegetation coverage and biomass quantity, a two-dimensional exposure indicator was developed. Trivariate likelihood of vegetation decline was calculated under arbitrary droughts to intuitively determine ecosystem vulnerability. Ultimately, time-variant drought frequency, exposure and vulnerability were multiplied to derive dynamic ecosystem risk, followed by hotspot and attribution analyses. Risk assessment implemented in the drought-prevalent Pearl River basin (PRB) of China during 1982-2017 showed that meteorological droughts in eastern and western margins, although less frequent, were prolonged and aggravated in contrast to prevalence of less persistent and severe droughts in the middle. In 86.12% of the PRB, ecosystem exposure maintains high levels (0.62). Relatively high vulnerability (>0.5) occurs in water-demanding agroecosystems, exhibiting a northwest-southeast-directed extension. A 0.1-degree risk atlas unveils that high and medium risks occupy 18.96% and 37.99% of the PRB, while risks are magnified in the north. The most pressing hotspots with high risk continuing to escalate reside in the East River and Hongliu River basins. Our results provide knowledge of composition, spatio-temporal variability and driving mechanism of drought-induced ecosystem risk, which will assist in risk-based mitigation prioritization.
Collapse
Affiliation(s)
- Wei Fang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, School of Water Resources and Hydropower, Xi'an University of Technology, Xi'an, China.
| | - Qiang Huang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, School of Water Resources and Hydropower, Xi'an University of Technology, Xi'an, China
| | - Gordon Huang
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, Canada
| | - Bo Ming
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, School of Water Resources and Hydropower, Xi'an University of Technology, Xi'an, China.
| | - Quan Quan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, School of Water Resources and Hydropower, Xi'an University of Technology, Xi'an, China.
| | - Pei Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, School of Water Resources and Hydropower, Xi'an University of Technology, Xi'an, China
| | - Yi Guo
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, School of Water Resources and Hydropower, Xi'an University of Technology, Xi'an, China
| | - Xudong Zheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, School of Water Resources and Hydropower, Xi'an University of Technology, Xi'an, China
| | - Gang Feng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, School of Water Resources and Hydropower, Xi'an University of Technology, Xi'an, China
| | - Jian Peng
- Department of Remote Sensing, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany; Remote Sensing Centre for Earth System Research, Leipzig University, Leipzig, Germany
| |
Collapse
|
4
|
Intensive grassland management disrupts below-ground multi-trophic resource transfer in response to drought. Nat Commun 2022; 13:6991. [PMID: 36385003 PMCID: PMC9668848 DOI: 10.1038/s41467-022-34449-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
Modification of soil food webs by land management may alter the response of ecosystem processes to climate extremes, but empirical support is limited and the mechanisms involved remain unclear. Here we quantify how grassland management modifies the transfer of recent photosynthates and soil nitrogen through plants and soil food webs during a post-drought period in a controlled field experiment, using in situ 13C and 15N pulse-labelling in intensively and extensively managed fields. We show that intensive management decrease plant carbon (C) capture and its transfer through components of food webs and soil respiration compared to extensive management. We observe a legacy effect of drought on C transfer pathways mainly in intensively managed grasslands, by increasing plant C assimilation and 13C released as soil CO2 efflux but decreasing its transfer to roots, bacteria and Collembola. Our work provides insight into the interactive effects of grassland management and drought on C transfer pathways, and highlights that capture and rapid transfer of photosynthates through multi-trophic networks are key for maintaining grassland resistance to drought.
Collapse
|
5
|
De Vitis M, Havens K, Barak RS, Egerton-Warburton L, Ernst AR, Evans M, Fant JB, Foxx AJ, Hadley K, Jabcon J, O’Shaughnessey J, Ramakrishna S, Sollenberger D, Taddeo S, Urbina-Casanova R, Woolridge C, Xu L, Zeldin J, Kramer AT. Why are some plant species missing from restorations? A diagnostic tool for temperate grassland ecosystems. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.1028295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The U.N. Decade on Ecosystem Restoration aims to accelerate actions to prevent, halt, and reverse the degradation of ecosystems, and re-establish ecosystem functioning and species diversity. The practice of ecological restoration has made great progress in recent decades, as has recognition of the importance of species diversity to maintaining the long-term stability and functioning of restored ecosystems. Restorations may also focus on specific species to fulfill needed functions, such as supporting dependent wildlife or mitigating extinction risk. Yet even in the most carefully planned and managed restoration, target species may fail to germinate, establish, or persist. To support the successful reintroduction of ecologically and culturally important plant species with an emphasis on temperate grasslands, we developed a tool to diagnose common causes of missing species, focusing on four major categories of filters, or factors: genetic, biotic, abiotic, and planning & land management. Through a review of the scientific literature, we propose a series of diagnostic tests to identify potential causes of failure to restore target species, and treatments that could improve future outcomes. This practical diagnostic tool is meant to strengthen collaboration between restoration practitioners and researchers on diagnosing and treating causes of missing species in order to effectively restore them.
Collapse
|
6
|
Perera PCD, Nocoń Z, Mollashahi H, Wierzbicka M, Szymura TH, Szymura M. Seeds harvested during mowing from semi-natural grasslands as an ad hoc but effective solution for grassland restoration. PeerJ 2022; 10:e13621. [PMID: 35855903 PMCID: PMC9288168 DOI: 10.7717/peerj.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/02/2022] [Indexed: 01/17/2023] Open
Abstract
Species-rich grasslands formed by local ecotypes of native species provide numerous ecosystem services both in rural areas as well as urban grasslands. Nonetheless, their area is still too small, making grasslands one of the most frequently restored habitats. Successful restoration requires high-quality seed material, which is expensive and often not easy to acquire. In this study, we tested the potential of seeds accidentally collected during the mowing of a semi-natural grassland for grassland restoration. We tested seed purity, species composition, and germination capability in both laboratory and field conditions. Ninety percent of the collected material consisted of pure seeds of numerous species. Their germination capability was relatively low but still sufficient for successful grassland restoration under a typical seed density/mass per unit area seeding ratio. The germination capacity was the highest in the first two weeks after sowing and increased with overwintering seed storage. The results suggested that the seeds could be successfully used for species-rich grassland restoration. In terms of advantages, the seed mixture had a low cost and contained native species seeds representing local ecotypes. In terms of disadvantages, there was a relatively low amount of seed material and an inability to plan the time of seed harvesting. Thus, the use of the accidentally collected seeds can be considered an effective but rather ad hoc solution.
Collapse
Affiliation(s)
| | - Zofia Nocoń
- Department of Ecology, Biogeochemistry and Environment Protection, University of Wrocław, Wrocław, Poland
| | - Hassanali Mollashahi
- Institute of Agroecology and Plant Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Malwina Wierzbicka
- Institute of Agroecology and Plant Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Tomasz H. Szymura
- Department of Ecology, Biogeochemistry and Environment Protection, University of Wrocław, Wrocław, Poland
| | - Magdalena Szymura
- Institute of Agroecology and Plant Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
7
|
Villa-Galaviz E, Smart SM, Clare EL, Ward SE, Memmott J. Differential effects of fertilisers on pollination and parasitoid interaction networks. J Anim Ecol 2020; 90:404-414. [PMID: 33067860 DOI: 10.1111/1365-2656.13373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 09/30/2020] [Indexed: 11/29/2022]
Abstract
Grassland fertilisation drives non-random plant loss resulting in areas dominated by perennial grass species. How these changes cascade through linked trophic levels, however, is not well understood. We studied how grassland fertilisation propagates change through the plant assemblage into the plant-flower-visitor, plant-leaf miner and leaf miner-parasitoid networks using a year's data collection from a long-term grassland fertiliser application experiment. Our experiment had three fertiliser treatments each applied to replicate plots 15 m2 in size: mineral fertiliser, farmyard manure, and mineral fertiliser and farmyard manure combined, along with a control of no fertiliser. The combined treatment had the most significant impact, and both plant species richness and floral abundance decreased with the addition of fertiliser. While insect species richness was unaffected by fertiliser treatment, fertilised plots had a significantly higher abundance of leaf miners and parasitoids and a significantly lower abundance of bumblebees. The plant-flower-visitor and plant-herbivore networks showed higher values of vulnerability and lower modularity with fertiliser addition, while leaf miner-parasitoid networks showed a rise in generality. The different groups of insects were impacted by fertilisers to varying degrees: while the effect on abundance was the highest for leaf miners, the vulnerability and modularity of flower-visitor networks was the most affected. The impact on the abundance of leaf miners was positive and three times higher than the impact on parasitoids, and the impact on bumblebee abundance was negative and double the magnitude of impact on flower abundance. Overall, our results show that while insect species richness was unaffected by fertilisers, network structure changed significantly as the replacement of forbs by grasses resulted in changes in relative abundance across trophic levels, with the direction of change depending on the type of network. Synthesis. By studying multiple networks simultaneously, we were able to rank the relative impact of habitat change on the different groups of species within the community. This provided a more holistic picture of the impact of agricultural intensification and provides useful information when deciding on priorities for mitigation.
Collapse
Affiliation(s)
| | | | - Elizabeth L Clare
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Susan E Ward
- Lancaster Environment Centre, Lancaster University, Bailrigg, UK
| | - Jane Memmott
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
8
|
Piton G, Foulquier A, Martinez‐García LB, Legay N, Arnoldi C, Brussaard L, Hedlund K, Martins da Silva P, Nascimento E, Reis F, Sousa JP, Clément J, De Deyn GB. Resistance–recovery trade‐off of soil microbial communities under altered rain regimes: An experimental test across European agroecosystems. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13774] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Gabin Piton
- University of Grenoble AlpesUniversity of Savoie Mont BlancCNRSLECA Grenoble France
| | - Arnaud Foulquier
- University of Grenoble AlpesUniversity of Savoie Mont BlancCNRSLECA Grenoble France
| | | | - Nicolas Legay
- INSA Centre Val de Loire Université de ToursCNRSUMR 7324 CITERES Tours France
| | - Cindy Arnoldi
- University of Grenoble AlpesUniversity of Savoie Mont BlancCNRSLECA Grenoble France
| | - Lijbert Brussaard
- Soil Biology Group Wageningen University & Research Wageningen The Netherlands
| | | | - Pedro Martins da Silva
- Centre for Functional Ecology Department of Life Sciences University of Coimbra Coimbra Portugal
| | - Eduardo Nascimento
- Centre for Functional Ecology Department of Life Sciences University of Coimbra Coimbra Portugal
| | - Filipa Reis
- Centre for Functional Ecology Department of Life Sciences University of Coimbra Coimbra Portugal
| | - José Paulo Sousa
- Centre for Functional Ecology Department of Life Sciences University of Coimbra Coimbra Portugal
| | | | - Gerlinde B. De Deyn
- Soil Biology Group Wageningen University & Research Wageningen The Netherlands
| |
Collapse
|
9
|
Lafuente A, Recio J, Ochoa-Hueso R, Gallardo A, Pérez-Corona ME, Manrique E, Durán J. Simulated nitrogen deposition influences soil greenhouse gas fluxes in a Mediterranean dryland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139610. [PMID: 32535308 DOI: 10.1016/j.scitotenv.2020.139610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Soil nitrogen (N) availability is a key driver of soil-atmosphere greenhouse gas (GHG) exchange, yet we are far from understanding how increases in N deposition due to human activities will influence the net soil-atmosphere fluxes of the three most important GHGs: nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2). We simulated four levels of N deposition (10, 20 and 50 kg N ha-1 yr-1, plus unfertilised control) to evaluate their effects on N2O, CH4 and CO2 soil fluxes in a semiarid shrubland in central Spain. After 8 years of experimental fertilisation, increasing N availability led to a consistent increase in N2O emissions, likely due to simultaneous increases in soil microbial nitrification and/or denitrification processes. However, only intermediate levels of N fertilisation reduced CH4 uptake, while increasing N fertilisation had no effects on CO2 fluxes, suggesting complex interactions between N deposition loads and GHG fluxes. Our study provides novel insight into the responses of GHGs to N deposition in drylands, forecasting increases in N2O emissions, and decreases in CH4 uptake rates, with likely consequences to the on-going climate change.
Collapse
Affiliation(s)
- Angela Lafuente
- Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, c/ Tulipán s/n, 28933 Móstoles, Spain.
| | - Jaime Recio
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain; Research Center for the Management of Environmental and Agricultural Risks (CEIGRAM), Universidad Politécnica de Madrid, Madrid 28040, Spain
| | - Raúl Ochoa-Hueso
- Departamento de Biología-IVAGRO, Universidad de Cádiz, Av. República Árabe Saharaui, 11510 Puerto Real, Cádiz, Spain
| | - Antonio Gallardo
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - M Esther Pérez-Corona
- Departamento de Biodiversidad, Ecología y Evolución (UD Ecología), Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, c/ José Antonio Novais 12, 28040 Madrid, Spain
| | - Esteban Manrique
- Real Jardín Botánico, Consejo Superior de Investigaciones Científicas, c/ Claudio Moyano, 1, 28014 Madrid, Spain
| | - Jorge Durán
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
10
|
Disease-mediated ecosystem services: Pathogens, plants, and people. Trends Ecol Evol 2020; 35:731-743. [DOI: 10.1016/j.tree.2020.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 01/05/2023]
|
11
|
Valkó O, Deák B, Török P, Tóth K, Kiss R, Kelemen A, Miglécz T, Sonkoly J, Tóthmérész B. Dynamics in vegetation and seed bank composition highlight the importance of post‐restoration management in sown grasslands. Restor Ecol 2020. [DOI: 10.1111/rec.13192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Orsolya Valkó
- MTA‐ÖK Lendület Seed Ecology Research Group Institute of Ecology and Botany, Centre for Ecological Research Alkotmány út 2‐4, 2163 Vácrátót Hungary
| | - Balázs Deák
- MTA‐ÖK Lendület Seed Ecology Research Group Institute of Ecology and Botany, Centre for Ecological Research Alkotmány út 2‐4, 2163 Vácrátót Hungary
| | - Péter Török
- Department of Ecology, Faculty of Science and Technology University of Debrecen Egyetem sqr. 1, 4032 Debrecen Hungary
- MTA‐DE Lendület Functional and Restoration Ecology Research Group Egyetem sqr. 1, 4032 Debrecen Hungary
| | - Katalin Tóth
- Department of Ecology, Faculty of Science and Technology University of Debrecen Egyetem sqr. 1, 4032 Debrecen Hungary
| | - Réka Kiss
- MTA‐ÖK Lendület Seed Ecology Research Group Institute of Ecology and Botany, Centre for Ecological Research Alkotmány út 2‐4, 2163 Vácrátót Hungary
| | - András Kelemen
- MTA‐ÖK Lendület Seed Ecology Research Group Institute of Ecology and Botany, Centre for Ecological Research Alkotmány út 2‐4, 2163 Vácrátót Hungary
| | - Tamás Miglécz
- Department of Ecology, Faculty of Science and Technology University of Debrecen Egyetem sqr. 1, 4032 Debrecen Hungary
| | - Judit Sonkoly
- MTA‐DE Lendület Functional and Restoration Ecology Research Group Egyetem sqr. 1, 4032 Debrecen Hungary
| | - Béla Tóthmérész
- MTA‐DE Biodiversity and Ecosystem Services Research Group Egyetem sqr. 1, 4032 Debrecen Hungary
| |
Collapse
|