1
|
Habibi I, Achour H, Bounaceur F, Benaradj A, Aulagnier S. Predicting the future distribution of the Barbary ground squirrel (Atlantoxerus getulus) under climate change using niche overlap analysis and species distribution modeling. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1140. [PMID: 39480628 DOI: 10.1007/s10661-024-13350-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
This study combines niche overlap analysis with species distribution modeling (SDM) to examine the niche dynamics of Atlantoxerus getulus, a ground squirrel native to Morocco and Algeria that has been introduced to the Canary Islands. We compiled 1272 records of A. getulus in its native and exotic ranges and five bioclimatic variables for present and future climate conditions for the years 2050 and 2070. We assessed the ecological niche of the species using exploratory and ordination analyses, followed by the prediction of its distribution using the SpatialMaxent model. Our results showed that the niches of A. getulus exhibited equivalence (p > 0.05) and significant similarity (p < 0.05) between the native and exotic ranges. No observed niche expansion in the exotic area is shown to be associated with complete niche stability. However, 90% of the niche in the Canary Islands remains unfilled, suggesting potential for further invasion. Our results highlighted habitat contractions ranging from 41% (SSP245-2050) to 60% (SSP585-2070), associated with a shift in the centroid of suitable habitat towards the Atlantic coast. These contractions are particularly severe in Algeria, where suitable habitats could disappear by 2050, contrasting with stable habitats maintained in the Canary Islands under all scenarios. Urgent habitat restoration in Algeria is crucial, including efforts to combat poaching. In Morocco, targeted in situ conservation is recommended, while in the Canary Islands, the focus should be on invasive species management and public awareness campaigns to prevent further spread.
Collapse
Affiliation(s)
- Imene Habibi
- Laboratory of Sustainable Management of Natural Resources in Arid and Semi-arid Areas, Salhi Ahmed University Center of Naama, 45000, Naama, Algeria
| | - Hammadi Achour
- Institut Sylvo-pastoral de Tabarka, Laboratoire des ressources sylvo-pastorales, Université de Jendouba, 8110, Tabarka, Tunisie.
| | - Farid Bounaceur
- Equipe de recherche Biologie de la conservation en zones arides et semi-arides, Laboratoire Agronomie Environnement, Faculté des Sciences et de Technologie, Département des Sciences de la Nature et de la Vie, Tissemesilt University, 38000, Tissemesilt, Algeria
| | - Abdelkrim Benaradj
- Laboratory of Sustainable Management of Natural Resources in Arid and Semi-arid Areas, Salhi Ahmed University Center of Naama, 45000, Naama, Algeria
| | - Stéphane Aulagnier
- Comportement et Ecologie de la Faune Sauvage, INRAE, Université de Toulouse, 52627, 31326, Castanet-Tolosan cedex, CS, France
| |
Collapse
|
2
|
McGaughran A, Dhami MK, Parvizi E, Vaughan AL, Gleeson DM, Hodgins KA, Rollins LA, Tepolt CK, Turner KG, Atsawawaranunt K, Battlay P, Congrains C, Crottini A, Dennis TPW, Lange C, Liu XP, Matheson P, North HL, Popovic I, Rius M, Santure AW, Stuart KC, Tan HZ, Wang C, Wilson J. Genomic Tools in Biological Invasions: Current State and Future Frontiers. Genome Biol Evol 2024; 16:evad230. [PMID: 38109935 PMCID: PMC10776249 DOI: 10.1093/gbe/evad230] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/16/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023] Open
Abstract
Human activities are accelerating rates of biological invasions and climate-driven range expansions globally, yet we understand little of how genomic processes facilitate the invasion process. Although most of the literature has focused on underlying phenotypic correlates of invasiveness, advances in genomic technologies are showing a strong link between genomic variation and invasion success. Here, we consider the ability of genomic tools and technologies to (i) inform mechanistic understanding of biological invasions and (ii) solve real-world issues in predicting and managing biological invasions. For both, we examine the current state of the field and discuss how genomics can be leveraged in the future. In addition, we make recommendations pertinent to broader research issues, such as data sovereignty, metadata standards, collaboration, and science communication best practices that will require concerted efforts from the global invasion genomics community.
Collapse
Affiliation(s)
- Angela McGaughran
- Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand
| | - Manpreet K Dhami
- Biocontrol and Molecular Ecology, Manaaki Whenua Landcare Research, Lincoln, New Zealand
- School of Biological Sciences, Waipapa Taumata Rau/University of Auckland, Auckland, New Zealand
| | - Elahe Parvizi
- Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand
| | - Amy L Vaughan
- Biocontrol and Molecular Ecology, Manaaki Whenua Landcare Research, Lincoln, New Zealand
| | - Dianne M Gleeson
- Centre for Conservation Ecology and Genomics, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Lee A Rollins
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Carolyn K Tepolt
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Kathryn G Turner
- Department of Biological Sciences, Idaho State University, Pocatello, ID, USA
| | - Kamolphat Atsawawaranunt
- School of Biological Sciences, Waipapa Taumata Rau/University of Auckland, Auckland, New Zealand
| | - Paul Battlay
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Carlos Congrains
- Entomology Section, Department of Plant and Environmental Protection Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
- US Department of Agriculture-Agricultural Research Service, Daniel K. Inouye US Pacific Basin Agricultural Research Center, Hilo, HI 96720, USA
| | - Angelica Crottini
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto 4169–007, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
| | - Tristan P W Dennis
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Claudia Lange
- Biocontrol and Molecular Ecology, Manaaki Whenua Landcare Research, Lincoln, New Zealand
| | - Xiaoyue P Liu
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Paige Matheson
- Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand
| | - Henry L North
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Iva Popovic
- School of the Environment, University of Queensland, Brisbane, QLD, Australia
| | - Marc Rius
- Centre for Advanced Studies of Blanes (CEAB, CSIC), Accés a la Cala Sant Francesc, Blanes, Spain
- Department of Zoology, Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Johannesburg 2006, South Africa
| | - Anna W Santure
- School of Biological Sciences, Waipapa Taumata Rau/University of Auckland, Auckland, New Zealand
| | - Katarina C Stuart
- School of Biological Sciences, Waipapa Taumata Rau/University of Auckland, Auckland, New Zealand
| | - Hui Zhen Tan
- School of Biological Sciences, Waipapa Taumata Rau/University of Auckland, Auckland, New Zealand
| | - Cui Wang
- The Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Jonathan Wilson
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Spatz DR, Holmes ND, Will DJ, Hein S, Carter ZT, Fewster RM, Keitt B, Genovesi P, Samaniego A, Croll DA, Tershy BR, Russell JC. The global contribution of invasive vertebrate eradication as a key island restoration tool. Sci Rep 2022; 12:13391. [PMID: 35948555 PMCID: PMC9365850 DOI: 10.1038/s41598-022-14982-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022] Open
Abstract
Islands are global hotspots for biodiversity and extinction, representing ~ 5% of Earth's land area alongside 40% of globally threatened vertebrates and 61% of global extinctions since the 1500s. Invasive species are the primary driver of native biodiversity loss on islands, though eradication of invasive species from islands has been effective at halting or reversing these trends. A global compendium of this conservation tool is essential for scaling best-practices and enabling innovations to maximize biodiversity outcomes. Here, we synthesize over 100 years of invasive vertebrate eradications from islands, comprising 1550 eradication attempts on 998 islands, with an 88% success rate. We show a significant growth in eradication activity since the 1980s, primarily driven by rodent eradications. The annual number of eradications on islands peaked in the mid-2000s, but the annual area treated continues to rise dramatically. This trend reflects increases in removal efficacy and project complexity, generating increased conservation gains. Our synthesis demonstrates the collective contribution of national interventions towards global biodiversity outcomes. Further investment in invasive vertebrate eradications from islands will expand biodiversity conservation while strengthening biodiversity resilience to climate change and creating co-benefits for human societies.
Collapse
Affiliation(s)
| | | | | | - Stella Hein
- Island Conservation, Santa Cruz, CA, USA.,UC Santa Cruz, Santa Cruz, CA, USA
| | | | | | | | - Piero Genovesi
- Institute for Environmental Protection and Research (ISPRA), Rome, Italy.,IUCN SSC Invasive Species Specialist Group, Rome, Italy
| | | | | | | | | |
Collapse
|
4
|
Burgess BT, Irvine RL, Howald GR, Russello MA. The Promise of Genetics and Genomics for Improving Invasive Mammal Management on Islands. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.704809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Invasive species are major contributors to global biodiversity decline. Invasive mammalian species (IMS), in particular, have profound negative effects in island systems that contain disproportionally high levels of species richness and endemism. The eradication and control of IMS have become important conservation tools for managing species invasions on islands, yet these management operations are often subject to failure due to knowledge gaps surrounding species- and system-specific characteristics, including invasion pathways and contemporary migration patterns. Here, we synthesize the literature on ways in which genetic and genomic tools have effectively informed IMS management on islands, specifically associated with the development and modification of biosecurity protocols, and the design and implementation of eradication and control programs. In spite of their demonstrated utility, we then explore the challenges that are preventing genetics and genomics from being implemented more frequently in IMS management operations from both academic and non-academic perspectives, and suggest possible solutions for breaking down these barriers. Finally, we discuss the potential application of genome editing to the future management of invasive species on islands, including the current state of the field and why islands may be effective targets for this emerging technology.
Collapse
|