1
|
Schoombie S, Wilson RP, Ropert-Coudert Y, Dilley BJ, Ryan PG. The efficiency of detecting seabird behaviour from movement patterns: the effect of sampling frequency on inferring movement metrics in Procellariiformes. MOVEMENT ECOLOGY 2024; 12:59. [PMID: 39223688 PMCID: PMC11370088 DOI: 10.1186/s40462-024-00499-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Recent technological advances have resulted in low-cost GPS loggers that are small enough to be used on a range of seabirds, producing accurate location estimates (± 5 m) at sampling intervals as low as 1 s. However, tradeoffs between battery life and sampling frequency result in studies using GPS loggers on flying seabirds yielding locational data at a wide range of sampling intervals. Metrics derived from these data are known to be scale-sensitive, but quantification of these errors is rarely available. Very frequent sampling, coupled with limited movement, can result in measurement error, overestimating movement, but a much more pervasive problem results from sampling at long intervals, which grossly underestimates path lengths. METHODS We use fine-scale (1 Hz) GPS data from a range of albatrosses and petrels to study the effect of sampling interval on metrics derived from the data. The GPS paths were sub-sampled at increasing intervals to show the effect on path length (i.e. ground speed), turning angles, total distance travelled, as well as inferred behavioural states. RESULTS We show that distances (and per implication ground speeds) are overestimated (4% on average, but up to 20%) at the shortest sampling intervals (1-5 s) and underestimated at longer intervals. The latter bias is greater for more sinuous flights (underestimated by on average 40% when sampling > 1-min intervals) as opposed to straight flight (11%). Although sample sizes were modest, the effect of the bias seemingly varied with species, where species with more sinuous flight modes had larger bias. Sampling intervals also played a large role when inferring behavioural states from path length and turning angles. CONCLUSIONS Location estimates from low-cost GPS loggers are appropriate to study the large-scale movements of seabirds when using coarse sampling intervals, but actual flight distances are underestimated. When inferring behavioural states from path lengths and turning angles, moderate sampling intervals (10-30 min) may provide more stable models, but the accuracy of the inferred behavioural states will depend on the time period associated with specific behaviours. Sampling rates have to be considered when comparing behaviours derived using varying sampling intervals and the use of bias-informed analyses are encouraged.
Collapse
Affiliation(s)
- Stefan Schoombie
- DST-NRF Centre of Excellence, FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, 7701, South Africa.
- Department of Statistical Sciences, Centre for Statistics in Ecology, Environment and Conservation (SEEC), University of Cape Town, Cape Town, 7701, South Africa.
| | - Rory P Wilson
- Department of Biosciences, Swansea University, Swansea, SA1 8PP, UK
| | - Yan Ropert-Coudert
- Centre d'Etudes Biologiques de Chizé, Station d'Écologie de Chizé-La Rochelle Université, CNRS UMR7372, Villiers-en-Bois, France
| | - Ben J Dilley
- DST-NRF Centre of Excellence, FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, 7701, South Africa
| | - Peter G Ryan
- DST-NRF Centre of Excellence, FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, 7701, South Africa
| |
Collapse
|
2
|
Schoombie S, Jeantet L, Chimienti M, Sutton GJ, Pistorius PA, Dufourq E, Lowther AD, Oosthuizen WC. Identifying prey capture events of a free-ranging marine predator using bio-logger data and deep learning. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240271. [PMID: 39100157 PMCID: PMC11296051 DOI: 10.1098/rsos.240271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 08/06/2024]
Abstract
Marine predators are integral to the functioning of marine ecosystems, and their consumption requirements should be integrated into ecosystem-based management policies. However, estimating prey consumption in diving marine predators requires innovative methods as predator-prey interactions are rarely observable. We developed a novel method, validated by animal-borne video, that uses tri-axial acceleration and depth data to quantify prey capture rates in chinstrap penguins (Pygoscelis antarctica). These penguins are important consumers of Antarctic krill (Euphausia superba), a commercially harvested crustacean central to the Southern Ocean food web. We collected a large data set (n = 41 individuals) comprising overlapping video, accelerometer and depth data from foraging penguins. Prey captures were manually identified in videos, and those observations were used in supervised training of two deep learning neural networks (convolutional neural network (CNN) and V-Net). Although the CNN and V-Net architectures and input data pipelines differed, both trained models were able to predict prey captures from new acceleration and depth data (linear regression slope of predictions against video-observed prey captures = 1.13; R 2 ≈ 0.86). Our results illustrate that deep learning algorithms offer a means to process the large quantities of data generated by contemporary bio-logging sensors to robustly estimate prey capture events in diving marine predators.
Collapse
Affiliation(s)
- Stefan Schoombie
- Department of Statistical Sciences, Centre for Statistics in Ecology, Environment and Conservation (SEEC), University of Cape Town, Cape Town7701, South Africa
- National Institute for Theoretical and Computational Sciences, South Africa
| | - Lorène Jeantet
- African Institute for Mathematical Sciences, Cape Town7945, South Africa
- Department of Mathematical Sciences, Stellenbosch University, Stellenbosch7602, South Africa
| | - Marianna Chimienti
- Centre D’Études Biologiques de Chizé, UMR7372 CNRS-La Rochelle, Villiers-en-Bois, France
| | - Grace J. Sutton
- Department of Environment & Genetics, and Research Centre for Future Landscapes, La Trobe University, Melbourne, VIC3086, Australia
| | - Pierre A. Pistorius
- Marine Apex Predator Research Unit, Department of Zoology and Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha6031, South Africa
| | - Emmanuel Dufourq
- African Institute for Mathematical Sciences, Cape Town7945, South Africa
- Department of Mathematical Sciences, Stellenbosch University, Stellenbosch7602, South Africa
- African Institute for Mathematical Sciences, Research and Innovation Centre, Kigali, Rwanda
| | | | - W. Chris Oosthuizen
- Department of Statistical Sciences, Centre for Statistics in Ecology, Environment and Conservation (SEEC), University of Cape Town, Cape Town7701, South Africa
| |
Collapse
|
3
|
van de Wolfshaar KE, Brinkman AG, Benden DLP, Craeymeersch JA, Glorius S, Leopold MF. Impact of disturbance on common scoter carrying capacity based on an energetic model. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118255. [PMID: 37276626 DOI: 10.1016/j.jenvman.2023.118255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
Shallow coastal zones are intensely used by humans but simultaneously are biodiversity hotspots, with a crucial role in the life cycle of many marine species. The competition for food or space between humans and protected wildlife intensifies under pressure of an increased need for marine resources for human consumption. For successful management it is important to establish the key components driving such conflicts of interest. Here we focus on the protected common scoter (Melanitta nigra), a sea duck wintering in coastal habitats that are rich in food, but also among the most disturbed marine systems worldwide. Due to the scoters' shyness disturbance impacts the birds' ability to forage and poses a conflict for balancing bird conservation and economics, including a fishery on its main bivalve prey Spisula subtruncata. In this study, we use an energy budget model to quantify the consequences of depth, currents and disturbance on scoter energetics and carrying capacity. Energetics were described using physical parameters and field data on food availability and disturbance. Results reveal non-linear relationships and a threshold value for when a scoter can no longer maintain its energy balance. This is caused by limited foraging time, rather than food availability. From a conservation perspective, this implies that a precautionary principle should be used, because there will be no warning when an area becomes unsuitable. In addition, the model was applied to study the effects of disturbance from different kinds of shipping in a coastal area of the North Sea, north of The Netherlands. Cargo shipping has the largest impact on the carrying capacity, where there is spatial overlap of prey and an intensively used shipping lane. In other prey distribution situations shrimp vessels may cause most disturbance. Spisula-Ensis fisheries did not limit the potential carrying capacity due to the limited catches and number of fishing trips. Scoter protection should be aimed at flexible spatial management and on only those vessel types above a Spisula bed with a large number of trips, and above all should work from a precautionary principle given the critical thresholds for scoter presence.
Collapse
Affiliation(s)
| | - A G Brinkman
- Wageningen Marine Research, Haringkade 1, IJmuiden, the Netherlands.
| | - D L P Benden
- Wageningen Marine Research, Haringkade 1, IJmuiden, the Netherlands.
| | - J A Craeymeersch
- Wageningen Marine Research, Haringkade 1, IJmuiden, the Netherlands.
| | - S Glorius
- Wageningen Marine Research, Haringkade 1, IJmuiden, the Netherlands.
| | - M F Leopold
- Wageningen Marine Research, Haringkade 1, IJmuiden, the Netherlands.
| |
Collapse
|
4
|
Patterson A, Gilchrist HG, Benjaminsen S, Bolton M, Bonnet-Lebrun AS, Davoren GK, Descamps S, Erikstad KE, Frederiksen M, Gaston AJ, Gulka J, Hentati-Sundberg J, Huffeldt NP, Johansen KL, Labansen AL, Linnebjerg JF, Love OP, Mallory ML, Merkel FR, Montevecchi WA, Mosbech A, Olsson O, Owen E, Ratcliffe N, Regular PM, Reiertsen TK, Ropert-Coudert Y, Strøm H, Thórarinsson TL, Elliott KH. Foraging range scales with colony size in high-latitude seabirds. Curr Biol 2022; 32:3800-3807.e3. [PMID: 35870447 DOI: 10.1016/j.cub.2022.06.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/26/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
Abstract
Density-dependent prey depletion around breeding colonies has long been considered an important factor controlling the population dynamics of colonial animals.1-4 Ashmole proposed that as seabird colony size increases, intraspecific competition leads to declines in reproductive success, as breeding adults must spend more time and energy to find prey farther from the colony.1 Seabird colony size often varies over several orders of magnitude within the same species and can include millions of individuals per colony.5,6 As such, colony size likely plays an important role in determining the individual behavior of its members and how the colony interacts with the surrounding environment.6 Using tracking data from murres (Uria spp.), the world's most densely breeding seabirds, we show that the distribution of foraging-trip distances scales to colony size0.33 during the chick-rearing stage, consistent with Ashmole's halo theory.1,2 This pattern occurred across colonies varying in size over three orders of magnitude and distributed throughout the North Atlantic region. The strong relationship between colony size and foraging range means that the foraging areas of some colonial species can be estimated from colony sizes, which is more practical to measure over a large geographic scale. Two-thirds of the North Atlantic murre population breed at the 16 largest colonies; by extrapolating the predicted foraging ranges to sites without tracking data, we show that only two of these large colonies have significant coverage as marine protected areas. Our results are an important example of how theoretical models, in this case, Ashmole's version of central-place-foraging theory, can be applied to inform conservation and management in colonial breeding species.
Collapse
Affiliation(s)
- Allison Patterson
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Boulevard, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - H Grant Gilchrist
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - Sigurd Benjaminsen
- Norwegian Institute for Nature Research, Fram Centre, 9296 Tromsø, Norway
| | - Mark Bolton
- RSPB Centre for Conservation Science, Royal Society for the Protection of Birds, Sandy, UK
| | | | - Gail K Davoren
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Sébastien Descamps
- Norwegian Polar Institute, Fram Centre, PO Box 6606 Langnes, 9296 Tromsø, Norway
| | - Kjell Einar Erikstad
- Norwegian Institute for Nature Research, Fram Centre, 9296 Tromsø, Norway; Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Morten Frederiksen
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Anthony J Gaston
- Laskeek Bay Conservation Society, Queen Charlotte, PO Box 867, Queen Charlotte, BC V0T 1S0, Canada
| | - Julia Gulka
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Jonas Hentati-Sundberg
- Department of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural Sciences, Lysekil, Sweden
| | - Nicholas Per Huffeldt
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; Greenland Institute of Natural Resources, Kivioq 2, 3900 Nuuk, Greenland
| | | | - Aili Lage Labansen
- Greenland Institute of Natural Resources, Kivioq 2, 3900 Nuuk, Greenland
| | | | - Oliver P Love
- Department of Integrative Biology, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| | - Mark L Mallory
- Biology, Acadia University, 15 University Avenue, Wolfville, NS B4P 2R6, Canada
| | - Flemming Ravn Merkel
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; Department of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural Sciences, Lysekil, Sweden
| | - William A Montevecchi
- Psychology and Biology Departments, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Anders Mosbech
- Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Olof Olsson
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| | - Ellie Owen
- RSPB Centre for Conservation Science, Royal Society for the Protection of Birds, Sandy, UK
| | - Norman Ratcliffe
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, UK
| | - Paul M Regular
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John's, NL, Canada
| | | | - Yan Ropert-Coudert
- Centre d'Etudes Biologiques de Chizé, CNRS - La Rochelle Université, Villiers-en-Bois, France
| | - Hallvard Strøm
- Norwegian Polar Institute, Fram Centre, PO Box 6606 Langnes, 9296 Tromsø, Norway
| | | | - Kyle H Elliott
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Boulevard, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
5
|
Hentati-Sundberg J, Berglund PA, Hejdström A, Olsson O. COVID-19 lockdown reveals tourists as seabird guardians. BIOLOGICAL CONSERVATION 2021; 254:108950. [PMID: 35719894 PMCID: PMC9187360 DOI: 10.1016/j.biocon.2021.108950] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 05/23/2023]
Abstract
The widespread lockdowns put in place to limit the spread of the new coronavirus disease (COVID-19) offers a rare opportunity in understanding how human presence influence ecosystems. Using data from long-term seabird monitoring, we reveal a previously concealed guarding effect by tourist groups on an iconic seabird colony in the Baltic Sea. The absence of tourists in 2020 lead to a sevenfold increase in presence of white-tailed eagles Haliaeetus albicilla, a sevenfold increase in their disturbance of breeding common murres Uria aalge and causing 26% lower murre productivity than the long-term average. Eagles did not prey on murres, but their frequent disturbances delayed egg laying and facilitated egg predation from herring gulls Larus argentatus and hooded crows Corvus cornix. Based on our findings, we suggest that human presence could be used as a strategic measure in guarding seabird colonies, and that a social-ecological systems perspective is vital for long-term success in protected area management.
Collapse
Affiliation(s)
- Jonas Hentati-Sundberg
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Turistgatan 5, 453 00 Lysekil, Sweden
| | - Per-Arvid Berglund
- Baltic Seabird Project, Karlsö Jagt och Djurskyddsförenings AB, Box 1431, 621 25 Visby, Sweden
| | - Aron Hejdström
- Baltic Seabird Project, Karlsö Jagt och Djurskyddsförenings AB, Box 1431, 621 25 Visby, Sweden
| | - Olof Olsson
- Stockholm Resilience Centre, Stockholm University, Sweden
| |
Collapse
|