1
|
Vilà-Cabrera A, Astigarraga J, Jump AS, Zavala MA, Seijo F, Sperlich D, Ruiz-Benito P. Anthropogenic land-use legacies underpin climate change-related risks to forest ecosystems. TRENDS IN PLANT SCIENCE 2023; 28:1132-1143. [PMID: 37263916 DOI: 10.1016/j.tplants.2023.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/13/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023]
Abstract
Forest ecosystems with long-lasting human imprints can emerge worldwide as outcomes of land-use cessation. However, the interaction of these anthropogenic legacies with climate change impacts on forests is not well understood. Here, we set out how anthropogenic land-use legacies that persist in forest properties, following alterations in forest distribution, structure, and composition, can interact with climate change stressors. We propose a risk-based framework to identify anthropogenic legacies of land uses in forest ecosystems and quantify the impact of their interaction with climate-related stress on forest responses. Considering anthropogenic land-use legacies alongside environmental drivers of forest ecosystem dynamics will improve our predictive capacity of climate-related risks to forests and our ability to promote ecosystem resilience to climate change.
Collapse
Affiliation(s)
- Albert Vilà-Cabrera
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain; Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK; Universidad de Alcalá, Grupo de Ecología y Restauración Forestal, Departamento de Ciencias de la Vida, 28805 Alcalá de Henares, Madrid, Spain.
| | - Julen Astigarraga
- Universidad de Alcalá, Grupo de Ecología y Restauración Forestal, Departamento de Ciencias de la Vida, 28805 Alcalá de Henares, Madrid, Spain
| | - Alistair S Jump
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Miguel A Zavala
- Universidad de Alcalá, Grupo de Ecología y Restauración Forestal, Departamento de Ciencias de la Vida, 28805 Alcalá de Henares, Madrid, Spain
| | - Francisco Seijo
- Instituto de Empresa, School of Global and Public Affairs, Madrid, Spain
| | - Dominik Sperlich
- Department of Forestry Economics and Forest Planning, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| | - Paloma Ruiz-Benito
- Universidad de Alcalá, Grupo de Ecología y Restauración Forestal, Departamento de Ciencias de la Vida, 28805 Alcalá de Henares, Madrid, Spain; Universidad de Alcalá, Grupo de Investigación en Teledetección Ambiental, Departamento de Geología, Geografía y Medio Ambiente, 28801 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
2
|
Cui L, Chen Y, Yuan Y, Luo Y, Huang S, Li G. Comprehensive evaluation system for vegetation ecological quality: a case study of Sichuan ecological protection redline areas. FRONTIERS IN PLANT SCIENCE 2023; 14:1178485. [PMID: 37434604 PMCID: PMC10331475 DOI: 10.3389/fpls.2023.1178485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/09/2023] [Indexed: 07/13/2023]
Abstract
Dynamic monitoring and evaluation of vegetation ecological quality (VEQ) is indispensable for ecological environment management and sustainable development. Single-indicator methods that have been widely used may cause biased results due to neglect of the variety of vegetation ecological elements. We developed the vegetation ecological quality index (VEQI) by coupling vegetation structure (vegetation cover) and function (carbon sequestration, water conservation, soil retention, and biodiversity maintenance) indicators. The changing characteristics of VEQ and the relative contribution of driving factors in the ecological protection redline areas in Sichuan Province (EPRA), China, from 2000 to 2021 were explored using VEQI, Sen's slope, Mann-Kendall test, Hurst index, and residual analysis based on the XGBoost (Extreme gradient boosting regressor). The results showed that the VEQ in the EPRA has improved over the 22-year study period, but this trend may be unsustainable in the future. Temperature was the most influential climate factor. And human activities were the dominant factor with a relative contribution of 78.57% to VEQ changes. This study provides ideas for assessing ecological restoration in other regions, and can provide guidance for ecosystem management and conservation.
Collapse
Affiliation(s)
- Linlin Cui
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, China
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Yanhui Chen
- College of Tourism and Geographical Science, Jilin Normal University, Siping, China
| | - Yue Yuan
- Sichuan Meteorological Disaster Prevention Technology Center, Sichuan Provincial Meteorological Service, Chengdu, China
| | - Yi Luo
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, China
| | - Shiqi Huang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, China
| | - Guosheng Li
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Warner E, Lewis OT, Brown N, Green R, McDonnell A, Gilbert D, Hector A. Does restoring native forest restore ecosystem functioning? Evidence from a large‐scale reforestation project in the Scottish Highlands. Restor Ecol 2022. [DOI: 10.1111/rec.13530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Emily Warner
- Department of Plant Sciences University of Oxford Oxford U.K
| | - Owen T. Lewis
- Department of Zoology University of Oxford Oxford U.K
| | - Nick Brown
- Department of Plant Sciences University of Oxford Oxford U.K
| | - Rowan Green
- Department of Plant Sciences University of Oxford Oxford U.K
- Department of Zoology University of Oxford Oxford U.K
- Department of Life Sciences University of Manchester Manchester U.K
| | | | | | - Andy Hector
- Department of Plant Sciences University of Oxford Oxford U.K
| |
Collapse
|
4
|
Villar N, Medici EP. Large wild herbivores slow down the rapid decline of plant diversity in a tropical forest biodiversity hotspot. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.14054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nacho Villar
- Department of Aquatic Ecology Netherlands Institute of Ecology Wageningen The Netherlands
| | - Emília Patrícia Medici
- Lowland Tapir Conservation Initiative Institute for Ecological Research Campo Grande Brazil
- School of Environmental Conservation and Sustainability Nazaré Paulista Brazil
- International Union for Conservation of Nature Species Survival CommissionTapir Specialist Group Campo Grande Brazil
| |
Collapse
|