1
|
Du L, Tian S, Sun J, Zhang B, Mu XH, Tang L, Zheng X, Li Y. Ecosystem multifunctionality, maximum height, and biodiversity of shrub communities affected by precipitation fluctuations in Northwest China. FRONTIERS IN PLANT SCIENCE 2023; 14:1259858. [PMID: 37818321 PMCID: PMC10560859 DOI: 10.3389/fpls.2023.1259858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/28/2023] [Indexed: 10/12/2023]
Abstract
Introduction Dryland ecosystems face serious threats from climate change. Establishing the spatial pattern of ecosystem multifunctionality, maximum height and the correlation of biodiversity patterns with climate change is important for understanding changes in complex ecosystem processes. However, the understanding of their relationships across large spatial areas remains limited in drylands. Methods Accordingly, this study examined the spatial patterns of ecosystem multifunctionality, maximum height and considered a set of potential environmental drivers by investigating natural shrub communities in Northwest China. Results We found that the ecosystem multifunctionality (EMF) and maximum height of shrub communities were both affected by longitude, which was positively correlated with the precipitation gradient. Specifically, the EMF was driven by high precipitation seasonality, and the maximum height was driven by high precipitation stability during the growing season. Among the multiple biodiversity predictors, species beta diversity (SD-beta) is the most common in determining EMF, although this relationship is weak. Discussion Unlike tree life form, we did not observe biodiversity-maximum height relationships in shrub communities. Based on these results, we suggest that more attention should be paid to the climatical fluctuations mediated biodiversity mechanisms, which are tightly correlated with ecosystem's service capacity and resistance capacity under a rapid climate change scenario in the future.
Collapse
Affiliation(s)
- Lan Du
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, Xinjiang, China
| | - Shengchuan Tian
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, Xinjiang, China
| | - Jing Sun
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, Xinjiang, China
| | - Bin Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, Xinjiang, China
| | - Xiao-Han Mu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, Xinjiang, China
| | - Lisong Tang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, Xinjiang, China
| | - Xinjun Zheng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, Xinjiang, China
| | - Yan Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, Xinjiang, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A and F University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Wu W, Wang X, Ren Z, Zhou X, Du G. N-Induced Species Loss Dampened by Clipping Mainly Through Suppressing Dominant Species in an Alpine Meadow. FRONTIERS IN PLANT SCIENCE 2022; 13:815011. [PMID: 35392523 PMCID: PMC8980528 DOI: 10.3389/fpls.2022.815011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen addition and clipping can exert substantial impact on species diversity but their interactions and the underlying mechanisms still remain unclear. Resource competition theory holds that sufficiently strong competitive ability of dominant species can lead to the losses of subordinate species through competitive exclusion, while niche differentiation theory suggests that the persistence of subordinate species in competitive systems can be promoted by guaranteeing positive growth rates of rare species. Taking advantage of a field experiment with nitrogen addition (10 g N m-2 year-1) and different clipping intensities (2, 15, and 30 cm) treatments in a Tibetan alpine meadow across 2015-2020, we assessed the relative importance of competitively dominant species and niche differentiation in driving species diversity changes via using community weighted mean (CWM) and variation coefficient of nearest neighbor distance (CV_NND) of functional traits including height, specific leaf area (SLA) and leaf dry matter content (LDMC). We show that nitrogen enrichment drove a strong plant diversity loss (P < 0.001). Clipping at different intensities had little effect on species diversity, but it can reduce the N-induced diversity loss. Nitrogen addition and clipping caused changes in community diversity were mainly indirectly attributed to their effects on community functional composition, and the competitive ability of dominant species. Nitrogen increased the CWM of functional traits to improve the competitive ability of dominant species. In contrast, clipping influenced species diversity positively by decreasing CWMheight (P < 0.001), and also negatively by increasing CWMSLA (P < 0.001) and decreasing CV_NNDSLA (P < 0.05). Interacting with N addition, clipping resulted in a neutral effect on species diversity, because clipping could offset the negative effects of nitrogen addition through an opposite effect on CWMheight. This study provides new insights into the mechanisms of diversity maintenance with respect to nitrogen addition and clipping. Thus, clipping is recommended as a useful management strategy to alleviate the species loss caused by nutrients enrichment and maintain the diversity of grassland ecosystems.
Collapse
|
3
|
Maestre FT, Benito BM, Berdugo M, Concostrina-Zubiri L, Delgado-Baquerizo M, Eldridge DJ, Guirado E, Gross N, Kéfi S, Le Bagousse-Pinguet Y, Ochoa-Hueso R, Soliveres S. Biogeography of global drylands. THE NEW PHYTOLOGIST 2021; 231:540-558. [PMID: 33864276 DOI: 10.1111/nph.17395] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/16/2021] [Indexed: 05/21/2023]
Abstract
Despite their extent and socio-ecological importance, a comprehensive biogeographical synthesis of drylands is lacking. Here we synthesize the biogeography of key organisms (vascular and nonvascular vegetation and soil microorganisms), attributes (functional traits, spatial patterns, plant-plant and plant-soil interactions) and processes (productivity and land cover) across global drylands. These areas have a long evolutionary history, are centers of diversification for many plant lineages and include important plant diversity hotspots. This diversity captures a strikingly high portion of the variation in leaf functional diversity observed globally. Part of this functional diversity is associated with the large variation in response and effect traits in the shrubs encroaching dryland grasslands. Aridity and its interplay with the traits of interacting plant species largely shape biogeographical patterns in plant-plant and plant-soil interactions, and in plant spatial patterns. Aridity also drives the composition of biocrust communities and vegetation productivity, which shows large geographical variation. We finish our review by discussing major research gaps, which include: studying regular vegetation spatial patterns; establishing large-scale plant and biocrust field surveys assessing individual-level trait measurements; knowing whether the impacts of plant-plant and plant-soil interactions on biodiversity are predictable; and assessing how elevated CO2 modulates future aridity conditions and plant productivity.
Collapse
Affiliation(s)
- Fernando T Maestre
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, Alicante, 03690, Spain
- Departamento de Ecología, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Blas M Benito
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, Alicante, 03690, Spain
| | - Miguel Berdugo
- Institut de Biologia Evolutiva, UPF-CSIC, Dr. Aiguadé, Barcelona, Cataluña, 08003, Spain
| | - Laura Concostrina-Zubiri
- Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Calle Tulipán s/n, Móstoles, 28933, Spain
| | - Manuel Delgado-Baquerizo
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Sevilla, 41013, Spain
| | - David J Eldridge
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Emilio Guirado
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, Alicante, 03690, Spain
| | - Nicolas Gross
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Ecosystème Prairial, Clermont-Ferrand, 63000, France
| | - Sonia Kéfi
- ISEM, CNRS, Univ. Montpellier, IRD, EPHE, Montpellier, 34090, France
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, USA
| | - Yoann Le Bagousse-Pinguet
- Aix Marseille Univ, CNRS, Avignon Université, IRD, IMBE, Technopôle Arbois-Méditerranée Bât. Villemin - BP 80, Aix-en-Provence cedex 04, F-13545, France
| | - Raúl Ochoa-Hueso
- Department of Biology, IVAGRO, University of Cádiz, Campus de Excelencia Internacional Agroalimentario (ceiA3), Campus del Rio San Pedro, Puerto Real, Cádiz, 11510, Spain
| | - Santiago Soliveres
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, Alicante, 03690, Spain
- Departamento de Ecología, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| |
Collapse
|
4
|
Gross N, Le Bagousse-Pinguet Y, Liancourt P, Saiz H, Violle C, Munoz F. Unveiling ecological assembly rules from commonalities in trait distributions. Ecol Lett 2021; 24:1668-1680. [PMID: 34128304 DOI: 10.1111/ele.13789] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/02/2020] [Accepted: 05/03/2021] [Indexed: 11/30/2022]
Abstract
Deciphering the effect of neutral and deterministic processes on community assembly is critical to understand and predict diversity patterns. The information held in community trait distributions is commonly assumed as a signature of these processes, but empirical and modelling attempts have most often failed to untangle their confounding, sometimes opposing, impacts. Here, we simulated the assembly of trait distributions through stochastic (dispersal limitation) and/or deterministic scenarios (environmental filtering and niche differentiation). We characterized the shape of trait distributions using the skewness-kurtosis relationship. We identified commonalities in the co-variation between the skewness and the kurtosis of trait distributions with a unique signature for each simulated assembly scenario. Our findings were robust to variation in the composition of regional species pools, dispersal limitation and environmental conditions. While ecological communities can exhibit a high degree of idiosyncrasy, identification of commonalities across multiple communities can help to unveil ecological assembly rules in real-world ecosystems.
Collapse
Affiliation(s)
- Nicolas Gross
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Ecosystème Prairial, Clermont-Ferrand, France
| | | | - Pierre Liancourt
- Institute of Botany of the Czech Academy of Science, Průhonice, Czech Republic.,Plant Ecology Group, University of Tübingen, Tübingen, Germany
| | - Hugo Saiz
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Cyrille Violle
- CEFE, Univ Montpellier - CNRS - EPHE - IRD - Univ Paul Valéry Montpellier, Montpellier Cedex 5, France
| | | |
Collapse
|